Recitation Week 3

1. Which of these compounds exist as cis/trans isomers?

2. Rank these elements in order of increasing electronegativity:
(a) $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$
(b) C, Si, N, O, F, Cl
3. Rank these bonds in order of increasing polarity: $\mathrm{C}-\mathrm{N}, \mathrm{C}-\mathrm{O}, \mathrm{C}-\mathrm{C}, \mathrm{C}-\mathrm{F}, \mathrm{C}-\mathrm{H}$
4. Draw 3D representations of these molecules and determine if each molecule is polar. If it is polar, draw an arrow to indicate the direction of the dipole moment.
(a) CH_{4}
(b) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
(c) NF_{3}
(d) $\mathrm{H}_{2} \mathrm{O}$
(e) CF_{4}
(f) $\quad \mathrm{CH}_{3} \mathrm{OCH}_{3}$
5. What "family" of molecules is each of these (i.e. what functional group is present)?

6. Draw examples of:
(a) an alkene
(b) a ketone
(c) an ester
7. (contd) (d) an amine
(e) an aldehyde
(f) an alkyne
8. Draw a primary, a secondary, and a tertiary alcohol with the formula $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{OH}$.
1^{0}
2^{0}
3°
9. Rank each set of molecules by their boiling points.
(a) $\mathrm{NH}_{3}, \mathrm{CH}_{4}$
(b) $\mathrm{CF}_{4}, \mathrm{CCl}_{4}, \mathrm{CBr}_{4} \mathrm{CI}_{4}$
(c) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
(d) $\mathrm{CH}_{3} \mathrm{OCH}_{3}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$
(e)

(f)

10. In each case draw a hydrogen bond from the molecule shown to another molecule of the same compound.
(a)

(b)

11. Which of these substances would you expect to be soluble in water?
(a) CCl_{4}
(b) $\mathrm{CH}_{3} \mathrm{OH}$
(c) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{+}$
(d) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
(e) $\mathrm{HOCHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
12. Label the portions of this molecule that are hydrophobic and hydrophilic:

