CHM 151 Practice Final Exam

1. How many significant figures are there in the result of 5.52 divided by 3.745 ?
(a) 1
(b) 2
(c) 3
(d) 4
(e) 5
2. How many significant figures are there in the answer when 9.021 is added to 0.82 ?
(a) 1
(b) 2
(c) 3
(d) 4
(e) 5
3. The density of bromine liquid is $3.12 \mathrm{~g} / \mathrm{mL}$. Since it is a liquid, it is easier to measure in a graduated cylinder than to weigh out on a balance. If we needed 28.1 g of Br_{2} for a reaction, what volume would we measure out?
(a) 87.7 mL
(b) 9.01 mL
(c) 25.0 mL
(d) 0.111 mL
(e) 0.549 mL
4. How many protons, neutrons, and electrons are in the chloride ion isotope ${ }_{17}^{37} \mathrm{Cl}^{-}$?
(a) $17 \mathrm{p}, 37 \mathrm{n}, 37 \mathrm{e}$
(b) $37 \mathrm{p}, 17 \mathrm{n}, 18 \mathrm{e}$
(c) $17 \mathrm{p}, 20 \mathrm{n}, 17 \mathrm{e}$
(d) $17 \mathrm{p}, 20 \mathrm{n}, 18 \mathrm{e}$
5. What is the formula of aluminum sulfide?
(a) AlSO_{4}
(b) $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
(c) AlS
(d) $\mathrm{Al}_{2} \mathrm{~S}_{3}$
(e) $\mathrm{Al}_{3} \mathrm{~S}_{2}$
6. Name this compound: $\mathrm{Pb}\left(\mathrm{CO}_{3}\right)_{2}$
(a) lead carbonate
(b) lead dicarbonate
(c) lead(II) carbonate
(d) lead carbontrioxide
(e) lead(IV) carbonate
7. How many moles are in 12.0 g of P atoms?
(a) 372 mol
(b) 2.58 mol
(c) 0.387 mol
(d) $7.23 \times 10^{24} \mathrm{~mol}$
8. How many moles of mercury are in $1.00 \times 10^{19} \mathrm{Hg}$ atoms?
(a) $6.02 \times 10^{4} \mathrm{~mol}$
(b) $4.99 \times 10^{16} \mathrm{~mol}$
(c) $3.33 \times 10^{-3} \mathrm{~mol}$
(d) $1.66 \times 10^{-5} \mathrm{~mol}$
9. What is the mass of 7.80×10^{18} carbon atoms?
(a) $1.56 \times 10^{-4} \mathrm{~g}$
(b) $1.30 \times 10^{-5} \mathrm{~g}$
(c) $9.36 \times 10^{19} \mathrm{~g}$
(d) $6.50 \times 10^{17} \mathrm{~g}$
10. What is the percent by mass of Na in sodium carbonate?
(a) 27.7%
(b) 33.3%
(c) 43.4%
(d) 34.8%
(e) 65.7%
11. 1.52 g of a compound of N and O is 63.2% oxygen and 36.8% nitrogen by mass. What is the empirical formula of this compound?
(a) NO
(b) NO_{2}
(c) NO_{3}
(d) $\mathrm{N}_{2} \mathrm{O}$
(e) $\mathrm{N}_{2} \mathrm{O}_{3}$
12. For the reaction $2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}$, how many molecules of oxygen are produced when 0.82 moles of potassium chlorate decompose?
(a) 26
(b) 1.5×10^{24}
(c) 7.4×10^{23}
(d) 4.9×10^{23}
(e) 1.23
13. "Fool's gold" is based on an iron sulfide compound and can be made by:

$$
\mathrm{Fe}+\mathrm{S} \rightarrow \mathrm{FeS}
$$

If 9.42 g Fe and 8.50 g S react, what mass of FeS can be made?
(a) 14.8 g
(b) 23.3 g
(c) 0.169 g
(d) 17.9 g
(e) 38.1 g
14. When 1 mol magnesium chloride dissolves in water and dissociates, how many moles of ions are produced?
(a) 0 mol
(b) 1 mol
(c) 2 mol
(d) 3 mol
(e) 4 mol
15. Which one of these ionic compounds is soluble in water?
(a) BaS
(b) AgOH
(c) PbCl_{2}
(d) $\mathrm{K}_{2} \mathrm{CO}_{3}$
(e) AlPO_{4}
16. Identify the precipitate that forms when an aqueous solution of barium chloride is mixed with an aqueous solution of sodium sulfate.
(a) BaSO_{4}
(b) $\mathrm{Na}_{2} \mathrm{SO}_{4}$
(c) NaCl
(d) BaCl_{2}
(e) There would be no precipitate
17. Iron(II) nitrate $\left[\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2}(a q)\right]$ reacts with aqueous potassium hydroxide $[\mathrm{KOH}(a q)]$. Write the net ionic equation for this reaction.
(a) $\mathrm{K}^{+}(a q)+\mathrm{NO}_{3}^{-}(a q) \rightarrow \mathrm{KNO}_{3}(s)$
(b) $\mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{OH}^{2-}(a q) \rightarrow \mathrm{FeOH}(s)$
(c) $2 \mathrm{~K}^{+}(a q)+\left(\mathrm{NO}_{3}{ }^{-}\right)_{2}(a q) \rightarrow \mathrm{K}_{2}\left(\mathrm{NO}_{3}\right)_{2}(s)$
(d) $\mathrm{Fe}^{2+}(a q)+2 \mathrm{OH}^{-}(a q) \rightarrow \mathrm{Fe}(\mathrm{OH})_{2}(s)$
18. What is the molarity of a solution containing 1.77 g of ethanol $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}\right.$, molar mass: $46.07 \mathrm{~g} / \mathrm{mol}$) that has a volume of 85.0 mL ?
(a) 20.0 M
(b) $4.52 \times 10^{-4} \mathrm{M}$
(c) 2.21 M
(d) 0.452 M
(e) 0.0208 M
19. What volume of Br_{2} would be needed to make 500 . mL of a 2.50 M solution of bromine? Hint: Calculate the mass needed, then use the density in question \#3
(a) 32.0 mL
(b) 0.401 mL
(c) 128 mL
(d) 64.0 mL
(e) 16.0 mL
20. What volume of 0.200 M NaOH would it take to react exactly with 25.0 mL of $0.100 \mathrm{M} \mathrm{H}_{2} \mathrm{~S}$, according to: $\mathrm{H}_{2} \mathrm{~S}(\mathrm{aq})+2 \mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{Na}_{2} \mathrm{~S}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$?
(a) 50.0 mL
(b) 25.0 mL
(c) 100.0 mL
(d) 12.5 mL
21. A 25.0 mL sample of a $0.866 \mathrm{M} \mathrm{KNO}_{3}$ solution is poured into a 500 mL volumetric flask. Water is added to make the volume of the solution 500.00 mL . What is the molar concentration of the final solution?
(a) 17.3 M
(b) 0.0577 M
(c) 0.0433 M
(d) 23.1 M
22. $\mathrm{Al}(s)$ reacts with water to form aqueous aluminum hydroxide and hydrogen gas. Write a balanced equation using the smallest whole numbers as coefficients. What is the coefficient of $\mathrm{H}_{2} \mathrm{O}$?
(a) 6
(b) 3
(c) 2
(d) 1
23. Which substance would have a ΔH_{f}^{0} of zero at standard conditions?
(a) $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
(b) $\mathrm{O}(\mathrm{g})$
(c) $\mathrm{CH}_{4}(\mathrm{~g})$
(d) $\mathrm{H}_{2}(\mathrm{~g})$
(e) $\mathrm{C}_{2}(\mathrm{~g})$
24. Use the enthalpies of formation below to calculate ΔH_{rxn} for the combustion of 1 mol of benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ to produce CO_{2} and liquid water. Start by writing a balanced equation for the reaction of benzene and oxygen.
$\Delta H_{\mathrm{f}}\left[\mathrm{C}_{6} \mathrm{H}_{6}\right]=49.04 \mathrm{~kJ} / \mathrm{mol} ; \Delta H_{\mathrm{f}}\left[\mathrm{CO}_{2}\right]=-393.5 \mathrm{~kJ} / \mathrm{mol} ; \Delta H_{\mathrm{f}}\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{D})\right]=-285.8 \mathrm{~kJ} / \mathrm{mol}$.
(a) 629.8 kJ
(b) -2695.8 kJ
(c) -3267.4 kJ
(d) -728.3 kJ
(e) not enough information has been given
25. 466 g of water initially at $74.6^{\circ} \mathrm{C}$ releases 129 kJ of heat as it cools. What would be the final temperature of the water? The specific heat capacity of water is $4.18 \mathrm{~J} / \mathrm{g} .{ }^{\circ} \mathrm{C}$
(a) $73.4{ }^{\circ} \mathrm{C}$
(b) $141{ }^{\circ} \mathrm{C}$
(c) $74.5^{\circ} \mathrm{C}$
(d) $8.4^{\circ} \mathrm{C}$
(e) $66.2^{\circ} \mathrm{C}$
26. How much heat would be released if 36 g of methane (molar mass: $16.05 \mathrm{~g} / \mathrm{mol}$) burned according to this thermochemical equation?

$$
\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta H_{\mathrm{rxn}}=-891 \mathrm{~kJ}
$$

(a) $4.0 \times 10^{2} \mathrm{~kJ}$
(b) $3.2 \times 10^{4} \mathrm{~kJ}$
(c) $2.0 \times 10^{3} \mathrm{~kJ}$
(d) 25 kJ
27. Calculate the frequency of red light with a wavelength of $650 . \mathrm{nm}$.
(a) $4.61 \times 10^{14} \mathrm{~Hz}$
(b) $3.05 \times 10^{-19} \mathrm{~Hz}$
(c) $4.32 \times 10^{-31} \mathrm{~Hz}$
(d) $4.61 \times 10^{5} \mathrm{~Hz}$
28. What is the energy of 1 mol of photons of red light with a wavelength of $700 . \mathrm{nm}$?
(a) $2.84 \times 10^{-19} \mathrm{~J}$
(b) $4.29 \times 10^{14} \mathrm{~J}$
(c) $1.71 \times 10^{5} \mathrm{~J}$
(d) $4.22 \times 10^{17} \mathrm{~J}$
29. How many electrons in total can be contained in any p subshell?
(a) 2
(b) 3
(c) 4
(d) 6
(e) 8
30. Which atom corresponds to the electron configuration $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{5}$?
(a) Cr
(b) Fe
(c) Br
(d) As
(e) Mn
31. What is the electron configuration of the Cr^{2+} ion?
(a) $[\mathrm{Ar}] 4 s^{2} 3 d^{4}$
(b) $[\operatorname{Ar}] 4 s^{1} 3 d^{5}$
(c) $[\mathrm{Ar}] 3 d^{4}$
(d) $[\mathrm{Ar}] 4 s^{2} 3 d^{2}$
(e) $[\operatorname{Ar}] 4 s^{1} 3 d^{3}$
(f) $[\mathrm{Ar}] 4 s^{2} 3 d^{6}$
32. Rank the elements P, Si and N in order of increasing atomic radius.
(a) $\mathrm{N}<\mathrm{Si}<\mathrm{P}$
(b) $\mathrm{Si}<\mathrm{N}<\mathrm{P}$
(c) $\mathrm{N}<$ P $<\mathrm{Si}$
(d) $\mathrm{Si}<\mathrm{P}<\mathrm{N}$
33. Which is a correct ranking by ionic radius?
(a) $\mathrm{Fe}^{2+}>\mathrm{Fe}^{3+}$
(b) $\mathrm{Cl}^{-}>\mathrm{Br}^{-}$
(c) $\mathrm{Na}^{+}>\mathrm{F}^{-}$
(d) $\mathrm{O}^{-}>\mathrm{O}^{2-}$
34. Which of these elements would require the least amount of energy to remove an electron and form a +1 cation (i.e which would have the lowest first ionization energy)?
(a) Be
(b) Li
(c) Ne
(d) O
(e) F
35. An ionic bond typically consists of:
(a) Two metal atoms
(b) Two nonmetal atoms
(c) A metal cation and a nonmetal anion
(d) A metal anion and a nonmetal cation
36. Which of these elements is the most electronegative?
(a) Na
(b) Si
(c) P
(d) S
(e) Cl
37. Which of these bonds has been classified incorrectly?
(a) $\mathrm{N}-\mathrm{H}$ - polar covalent
(b) K-F - ionic
(c) The CC bond in $\mathrm{C}_{2} \mathrm{H}_{4}$ - polar covalent
(d) $\mathrm{Cl}-\mathrm{Cl}$ - nonpolar covalent
38. Which of these is not a valid Lewis structure for sulfur trioxide?
(a)

(b)

(c)

(d)

(e) All of the above are possible
39. Draw the Lewis structure of XeF_{2}. The number of lone pairs on the xenon atom is:
(a) 0
(b) 1
(c) 2
(d) 3
40. The formal charge on the phosphorus in the Lewis structure shown of the phosphate ion $\left(\mathrm{PO}_{4}{ }^{3-}\right)$ is:

(a) 0
(b) +1
(c) -1
(d) +4
(e) -3
41. CO_{2} reacts with two moles of NH_{3} to produce urea and water. Use the bond energies given to calculate ΔH_{rxn} for this reaction:

Bond energies (kJ/mol): C=O: 799, N-H: 391, C-N: 305, O-H 467
(a) 37 kJ
(b) 418 kJ
(c) 809 kJ
(d) 836 kJ
(e) -418 kJ
42. Which molecule has no net dipole, but has polar bonds?
(a) CO_{2}
(b) I_{2}
(c) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
(d) NH_{3}
(e) Molecules that have no net dipole cannot have polar bonds
43. Which molecule has the correct molecular geometry listed?
(a) BH_{3} - bent
(b) CH_{4} - square planar
(c) SF_{4} - tetrahedral
(d) PF_{5} - trigonal bipyramidal
(e) $\mathrm{H}_{2} \mathrm{~S}$ - linear
44. Which approximate bond angles are incorrect for the given molecule?
(a) $\mathrm{BeH}_{2}-180^{\circ}$
(b) $\mathrm{CO}_{3}{ }^{2-}-120^{\circ}$
(c) $\mathrm{NH}_{4}^{+}-109.5^{\circ}$
(d) $\mathrm{XeF}_{4}-109.5^{\circ}$
45. How many sigma (σ) bonds, pi (π) bonds, and lone pairs are there in $\mathrm{C}_{2} \mathrm{H}_{4}$?
(a) $4 \sigma, 2 \pi, 0$ lone pairs
(b) $5 \sigma, 0 \pi, 2$ lone pairs
(c) $5 \sigma, 1 \pi, 0$ lone pairs
(d) $6 \sigma, 0 \pi, 1$ lone pair
46. In the nitrate ion, $\mathrm{NO}_{3}{ }^{-}$, what hybrid orbitals are used by nitrogen in bonding?
(a) $s p$
(b) $s p^{2}$
(c) $s p^{3}$
(d) $s p^{3} d$
(e) $s p^{3} d^{2}$
47. What is the volume in liters occupied by 7.40 g of carbon dioxide gas at $25^{\circ} \mathrm{C}$ and 1.09 atm pressure?
(a) 0.32 L
(b) 166 L
(c) 3.77 L
(d) 133 L
48. The density of a gaseous compound is $3.38 \mathrm{~g} / \mathrm{L}$ at $40^{\circ} \mathrm{C}$ and 1.97 atm . What is the molar mass of the gas? (Hint: Assume 1.0 L of gas, and calculate the number of moles.)
(a) $44.1 \mathrm{~g} / \mathrm{mol}$
(b) $5.6 \mathrm{~g} / \mathrm{mol}$
(c) $16.1 \mathrm{~g} / \mathrm{mol}$
(d) $70.90 \mathrm{~g} / \mathrm{mol}$
49. Sodium azide $\left(\mathrm{NaN}_{3}\right.$, molar mass: $\left.65.01 \mathrm{~g} / \mathrm{mol}\right)$ is used in air bags for automobile safety. The impact triggers the decomposition of NaN_{3} to form nitrogen gas, filling the bag as follows:

$$
2 \mathrm{NaN}_{3} \rightarrow 2 \mathrm{Na}(s)+3 \mathrm{~N}_{2}(g)
$$

What volume of N_{2} would be produced at $21^{\circ} \mathrm{C}$ and 823 mmHg from the reaction of 60.0 g of sodium azide?
(a) 20.6 L
(b) 30.8 L
(c) 2010 L
(d) $2.90 \times 10^{-3} \mathrm{~L}$
(e) 2.20 L
50. In which gas would the molecules be moving at the highest average speed (velocity) at room temperature?
(a) CH_{4}
(b) CO_{2}
(c) Cl_{2}
(d) $\mathrm{C}_{3} \mathrm{H}_{8}$
(e) All gases have the same average velocity at the same temperature
51. If 1.20 g of Cl_{2} gas and 4.20 g of O_{2} gas were placed into a 2.5 L container at 298 K , what would be the total pressure in the container? [molar masses: $\mathrm{Cl}_{2}: 70.90 \mathrm{~g} / \mathrm{mol} ; \mathrm{O}_{2}: 32.00 \mathrm{~g} / \mathrm{mol}$]
(a) 52.8 atm
(b) 0.166 atm
(c) 1.28 atm
(d) 1.45 atm
(e) 0.690 atm

52 The boiling point of I_{2} is higher than that of F_{2} because of what type of attraction?
(a) dispersion forces
(b) dipole-dipole forces
(c) covalent bonds
(c) ionic bonds
(d) ion-dipole forces
(e) hydrogen bonds
53. The heating curve below shows how the temperature of a substance changes as heat is added. What represents the heat involved in going from point \mathbf{D} to point \mathbf{E} ?

(a) $m C \Delta T$
(b) $\Delta H_{\text {fus }}$
(c) $\Delta H_{\text {sublimation }}$
(d) $\Delta H_{\text {vap }}$
(e) ΔH_{f}^{0}
54. Rank these compounds in order of increasing boiling point:
ethane $\left(\mathrm{CH}_{3} \mathrm{CH}_{3}\right) \quad$ formaldehyde $\left(\mathrm{CH}_{2} \mathrm{O}\right) \quad$ hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$
(a) $\mathrm{CH}_{3} \mathrm{CH}_{3}<\mathrm{CH}_{2} \mathrm{O}<\mathrm{H}_{2} \mathrm{O}_{2}$
(b) $\mathrm{CH}_{3} \mathrm{CH}_{3}<\mathrm{H}_{2} \mathrm{O}_{2}<\mathrm{CH}_{2} \mathrm{O}$
(c) $\mathrm{CH}_{2} \mathrm{O}<\mathrm{H}_{2} \mathrm{O}_{2}<\mathrm{CH}_{3} \mathrm{CH}_{3}$
(d) $\mathrm{H}_{2} \mathrm{O}_{2}<\mathrm{CH}_{2} \mathrm{O}<\mathrm{CH}_{3} \mathrm{CH}_{3}$
55. What is the main intermolecular attraction in ammonia $\left(\mathrm{NH}_{3}\right)$?
(a) dispersion forces
(b) dipole-dipole forces
(c) ionic bonds
(d) hydrogen bonding
56. On the phase diagram below, what phase(s) would be present at the point "A?"

(a) solid
(b) liquid
(c) gas
(d) solid and gas
(e) solid and liquid
57. Which of the following substances would be the most soluble in CCl_{4} ?
(a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
(b) $\mathrm{H}_{2} \mathrm{O}$
(c) NH_{3}
(d) $\mathrm{C}_{10} \mathrm{H}_{22}$
(e) NaCl
58. A solution is prepared by dissolving 50.0 g of cesium chloride (CsCl) in 50.0 g of water. What is the molality of this solution?
(a) 1.00 m
(b) 1000 m
(c) 2.97 m
(d) 1.68 m
(e) 5.94 m
59. Calculate the molarity of the cesium chloride solution in the previous question if the density of the solution is $1.58 \mathrm{~g} / \mathrm{mL}$.
(a) 4.69 M
(b) 0.0667 M
(c) 0.188 M
(d) 9.38 M
60. What is the boiling point of a solution of 5.1 g of ethylene glycol (molar mass: $62.06 \mathrm{~g} / \mathrm{mol}$) dissolved in 48.3 g of water? Some possibly useful constants for water are $K_{f}=1.86^{\circ} \mathrm{C} / \mathrm{m}$ and $K_{b}=0.512{ }^{\circ} \mathrm{C} / \mathrm{m}$. Assume pure water boils at $100.00^{\circ} \mathrm{C}$.
(a) $103.2^{\circ} \mathrm{C}$
(b) $100.87^{\circ} \mathrm{C}$
(c) $96.8{ }^{\circ} \mathrm{C}$
(d) $99.13^{\circ} \mathrm{C}$
(e) $100.04{ }^{\circ} \mathrm{C}$

Answers

(1) c (2) c (3) b (4)d (5) d (6) e (7) c (8) d (9) a (10) c (11) e (12) c (13) a (14) d (15) d (16) a (17) d (18)d (19) d (20) b (21) c (22) a (23)d (24) c (25) d (26) c (27) a (28) c (29)d (30)e (31) c (32) c (33) a (34) b (35) c (36)e (37) c (38) b (39) d (40) b (41) a (42) a (43) d (44) d (45) c (46) b (47) c (48) a (49) b (50) a (51) d (52) a (53) d (54) a (55) d (56) c (57)d (58) e (59) a (60) b

