CHM 151 Practice Final Exam

1.	How many	signifi	cant figures	are there	in the res	sult of 5.52 d	ivided by	3.745?					
(a)	1	(b) 2	(c)	3	(d) 4	(e) 5							
2.	How many	signifi	cant figures	are there	e in the an (d) 4	swer when 9	.021 is ad	ded to 0.82?					
(a)	1	(0) 2	(C)	5	(u) Ŧ	(C) J							
3. The density of bromine liquid is 3.12 g/mL . Since it is a liquid, it is easier to measure in a graduated cylinder than to weigh out on a balance. If we needed 28.1 g of Br ₂ for a reaction, what volume would we measure out?													
(a)	87.7 mL	(b)	9.01 mL	(c) 25	5.0 mL	(d) 0.111 n	nL (e	e) 0.549 mL					
4.	How many protons, neutrons, and electrons are in the chloride ion isotope ${}^{37}_{17}Cl^?$												
(a)	17 p, 57 n,	57 e	(b) 57 p, 1	<i>i</i> II, 10 e	(c) 17 p	20 fi, 17 e	(a) 17 p,	, 20 II, 18 e					
5.	What is the	e formu	ıla of alumi	num sulfi	ide?								
(a)	AlSO ₄	(b) .	$Al_2(SO_4)_3$	(c) A	1S	$(d) \ Al_2S_3$	(6	e) Al ₃ S ₂					
6.	Name this	compo	und: Pb(CO	$_{3})_{2}$									
(a)	lead carbo	nate	(b)	lead dica	rbonate	(c) lea	ad(II) carb	onate					
(d)	lead carbo	ntrioxi	de (e)	lead(IV)	carbonate								
7. How many moles are in 12.0 g of P atoms?													
(a)	372 mol		(b) 2.58 m	ol	(c) 0.38	7 mol	(d) 7.23	× 10^{24} mol					
8.	How many	moles	of mercury	are in 1.0	$00 \times 10^{19} \mathrm{E}$	lg atoms?							
(a)	6.02×10^4	mol	(b) 4.99 ×	10 ¹⁶ mol	(c) 3.33	\times 10 ⁻³ mol	(d) 1.66	\times 10 ⁻⁵ mol					
9.	What is the	e mass	of 7.80 × 10	¹⁸ carbon	atoms?								
(a)	1.56×10^{-4}	g	(b) 1.30 ×	10^{-5} g	(c) 9 . 36	\times 10 ¹⁹ g	(d) 6.50	$\times 10^{17} \mathrm{g}$					
10.	What is th	ie perc	ent by mass	of Na in	sodium ca	rbonate?							
(a)	27.7 %	(b)	33.3 %	(c) 4	3.4 %	(d) 34.8 %	6 (6	e) 65.7 %					
11. 1.52 g of a compound of N and O is 63.2 % oxygen and 36.8 % nitrogen by mass. What is the empirical formula of this compound?													
(a)	NO	(b)	NO_2	(c) N	IO ₃	$(d) \ N_2O$	(e) N_2O_3					
12. For the reaction 2 KClO ₃ \rightarrow 2 KCl + 3 O ₂ , how many <u>molecules</u> of oxygen are produced when 0.82 moles of potassium chlorate decompose?													
(a)	26	(b) 1. 5	5×10^{24}	(c) 7.4 ×	10^{23}	(d) 4.9×10^{2}	23 (6	e) 1.23					

13. "Fool's gold" is based on an iron sulfide compound and can be made by:

$$Fe + S \rightarrow FeS$$

If 9.42 g Fe and 8.50 g S react, what mass of FeS can be made?

(a) 14.8 g (b) 23.3 g (c) 0.169 g (d) 17.9 g (e) 38.1 g

14. When 1 mol magnesium chloride dissolves in water and dissociates, how many moles of ions are produced?

 $(a) 0 mol \qquad (b) 1 mol \qquad (c) 2 mol \qquad (d) 3 mol \qquad (e) 4 mol$

15. Which one of these ionic compounds is soluble in water?

(a) BaS (b) AgOH (c) PbCl₂ (d) K₂CO₃ (e) AlPO₄

16. Identify the precipitate that forms when an aqueous solution of barium chloride is mixed with an aqueous solution of sodium sulfate.

(a) $BaSO_4$ (b) Na_2SO_4 (c) NaCl (d) $BaCl_2$

(e) There would be no precipitate

17. Iron(II) nitrate $[Fe(NO_3)_2 (aq)]$ reacts with aqueous potassium hydroxide [KOH (aq)]. Write the <u>net ionic equation</u> for this reaction.

(a)
$$K^+(aq) + NO_3^-(aq) \rightarrow KNO_3$$
 (s)
(b) $Fe^{2+}(aq) + OH^{2-}(aq) \rightarrow FeOH$ (s)
(c) $2K^+(aq) + (NO_3^-) (aq) \rightarrow KNO_3$ (c) (d) $Fe^{2+}(aq) + 2OH^-(aq) \rightarrow FeOH$ (s)

(c)
$$2 \times (aq) + (NO_3)_2(aq) \rightarrow K_2(NO_3)_2(s)$$
 (d) $Fe^{-(aq)} + 2OH^{-(aq)} \rightarrow Fe(OH)_2(s)$

18. What is the molarity of a solution containing 1.77 g of ethanol (CH_3CH_2OH , molar mass: 46.07 g/mol) that has a volume of 85.0 mL?

(a) 20.0 M (b) $4.52 \times 10^{-4} M$ (c) 2.21 M (d) 0.452 M (e) 0.0208 M

19. What <u>volume</u> of Br_2 would be needed to make 500. mL of a 2.50 *M* solution of bromine? Hint: Calculate the mass needed, then use the density in question #3

(a) 32.0 mL (b) 0.401 mL (c) 128 mL (d) 64.0 mL (e) 16.0 mL

20. What volume of 0.200 *M* NaOH would it take to react exactly with 25.0 mL of 0.100 *M* H₂S, according to: H₂S (*aq*) + 2 NaOH (*aq*) \rightarrow Na₂S (*aq*) + 2 H₂O (*l*) ?

(a) 50.0 mL (b) 25.0 mL (c) 100.0 mL (d) 12.5 mL

21. A 25.0 mL sample of a 0.866 *M* KNO₃ solution is poured into a 500 mL volumetric flask. Water is added to make the volume of the solution 500.00 mL. What is the molar concentration of the final solution?

(a) 17.3 M (b)
$$0.0577 M$$
 (c) $0.0433 M$ (d) 23.1 M

22. Al (s) reacts with water to form aqueous aluminum hydroxide and hydrogen gas. Write a balanced equation using the smallest whole numbers as coefficients. What is the coefficient of H_2O ?

(a) 6 (b) 3 (c) 2 (d) 1

23. Which substance would have a ΔH_{f}^{0} of zero at standard conditions?

(a) $H_2O(l)$ (b) O(g) (c) $CH_4(g)$ (d) $H_2(g)$ (e) $C_2(g)$

24. Use the enthalpies of formation below to calculate ΔH_{rxn} for the combustion of 1 mol of benzene (C₆H₆) to produce CO₂ and liquid water. Start by writing a balanced equation for the reaction of benzene and oxygen.

 $\Delta H_{\rm f}$ [C₆H₆] = 49.04 kJ/mol; $\Delta H_{\rm f}$ [CO₂] = -393.5 kJ/mol; $\Delta H_{\rm f}$ [H₂O (*l*)] =-285.8 kJ/mol.

(a) 629.8 kJ (b) -2695.8 kJ (c) -3267.4 kJ

(d) -728.3 kJ (e) not enough information has been given

25. 466 g of water initially at 74.6 °C releases 129 kJ of heat as it cools. What would be the final temperature of the water? The specific heat capacity of water is 4.18 J/g.°C

(a)
$$73.4 \text{ }^{\circ}\text{C}$$
 (b) $141 \text{ }^{\circ}\text{C}$ (c) $74.5 \text{ }^{\circ}\text{C}$ (d) $8.4 \text{ }^{\circ}\text{C}$ (e) $66.2 \text{ }^{\circ}\text{C}$

26. How much heat would be released if 36 g of methane (molar mass: 16.05 g/mol) burned according to this thermochemical equation?

$$CH_4 (g) + 2 O_2 (g) \rightarrow CO_2 (g) + 2 H_2O (l) \qquad \Delta H_{rxn} = -891 \text{ kJ}$$
(a) $4.0 \times 10^2 \text{ kJ}$ (b) $3.2 \times 10^4 \text{ kJ}$ (c) $2.0 \times 10^3 \text{ kJ}$ (d) 25 kJ

27. Calculate the frequency of red light with a wavelength of 650. nm.

(a) 4.61×10^{14} Hz (b) 3.05×10^{-19} Hz (c) 4.32×10^{-31} Hz (d) 4.61×10^{5} Hz

28. What is the energy of $1 \mod 0$ of photons of red light with a wavelength of 700. nm?

(a) $2.84 \times 10^{-19} \text{ J}$ (b) $4.29 \times 10^{14} \text{ J}$ (c) $1.71 \times 10^5 \text{ J}$ (d) $4.22 \times 10^{17} \text{ J}$

29. How many electrons in total can be contained in any *p* subshell?

(a) 2 (b) 3 (c) 4 (d) 6 (e) 8

30. Which atom corresponds to the electron configuration $1s^22s^22p^63s^23p^64s^23d^5$?

(a) Cr (b) Fe (c) Br (d) As (e) Mn

31. What is the electron configuration of the Cr^{2+} ion?

- (a) $[Ar]4s^23d^4$ (b) $[Ar]4s^13d^5$ (c) $[Ar]3d^4$
- (d) $[Ar]4s^23d^2$ (e) $[Ar]4s^13d^3$ (f) $[Ar]4s^23d^6$

32. Rank the elements P, Si and N in order of increasing atomic radius.

(a) N < Si < P (b) Si < N < P (c) N < P < Si (d) Si < P < N

33. Which is a correct ranking by ionic radius?

(a) $Fe^{2^+} > Fe^{3^+}$ (b) $Cl^- > Br^-$ (c) $Na^+ > F^-$ (d) $O^- > O^{2^-}$

34. Which of these elements would require the least amount of energy to remove an electron and form a +1 cation (*i.e* which would have the lowest first ionization energy)?
(a) Be (b) Li (c) Ne (d) O (e) F
35. An ionic bond typically consists of:
(a) Two metal atoms (b) Two nonmetal atoms
(c) A metal cation and a nonmetal anion (d) A metal anion and a nonmetal cation
36. Which of these elements is the most electronegative?
(a) Na (b) Si (c) P (d) S (e) Cl
37. Which of these bonds has been classified incorrectly?
(a) N-H - polar covalent (b) K-F - ionic
(c) The CC bond in C₂H₄ - polar covalent (d) Cl-Cl - nonpolar covalent
38. Which of these is not a valid Lewis structure for sulfur trioxide?
(a)
$$: \vec{o}:$$
 (b) $: \vec{o}:$ (c) $: \vec{o}:$ (d) $: \vec{o}:$
 $: \vec{o}: \vec$

(e) Molecules that have no net dipole cannot have polar bonds

- 43. Which molecule has the correct molecular geometry listed?
- (a) BH_3 bent (b) CH_4 square planar (c) SF_4 tetrahedral
- (d) PF_5 trigonal bipyramidal (e) H_2S linear
- 44. Which approximate bond angles are incorrect for the given molecule?

(a) $BeH_2 - 180^{\circ}$ (b) $CO_3^{2-} - 120^{\circ}$ (c) $NH_4^+ - 109.5^{\circ}$ (d) $XeF_4 - 109.5^{\circ}$

- 45. How many sigma (σ) bonds, pi (π) bonds, and lone pairs are there in C₂H₄?
- (a) 4σ , 2π , 0 lone pairs (b) 5σ , 0π , 2 lone pairs
- (c) $5 \sigma, 1 \pi, 0$ lone pairs (d) $6 \sigma, 0 \pi, 1$ lone pair

46. In the nitrate ion, NO_3^- , what hybrid orbitals are used by nitrogen in bonding?

(a) sp (b) sp^2 (c) sp^3 (d) sp^3d (e) sp^3d^2

47. What is the volume in liters occupied by 7.40 g of carbon dioxide gas at 25 °C and 1.09 atm pressure?

(a) 0.32 L (b) 166 L (c) 3.77 L (d) 133 L

48. The density of a gaseous compound is 3.38 g/L at 40 °C and 1.97 atm. What is the *molar mass* of the gas? (Hint: Assume 1.0 L of gas, and calculate the number of moles.)

(a) 44.1 g/mol (b) 5.6 g/mol (c) 16.1 g/mol (d) 70.90 g/mol

49. Sodium azide (NaN₃, molar mass: 65.01 g/mol) is used in air bags for automobile safety. The impact triggers the decomposition of NaN₃ to form nitrogen gas, filling the bag as follows:

$$2 \operatorname{NaN}_3 \rightarrow 2 \operatorname{Na}(s) + 3 \operatorname{N}_2(g)$$

What <u>volume of N₂</u> would be produced at 21 °C and 823 mmHg from the reaction of 60.0 g of sodium azide?

(a) 20.6 L (b) 30.8 L (c) 2010 L (d) 2.90×10^{-3} L (e) 2.20 L

50. In which gas would the molecules be moving at the <u>highest average speed (velocity)</u> at room temperature?

- (a) CH_4 (b) CO_2 (c) Cl_2 (d) C_3H_8
- (e) All gases have the same average velocity at the same temperature

51. If 1.20 g of Cl₂ gas and 4.20 g of O₂ gas were placed into a 2.5 L container at 298 K, what would be the total pressure in the container? [molar masses: Cl₂: 70.90 g/mol; O₂: 32.00 g/mol]

- (a) 52.8 atm (b) 0.166 atm (c) 1.28 atm
- (d) 1.45 atm (e) 0.690 atm

- 52 The boiling point of I_2 is higher than that of F_2 because of what type of attraction?
- (a) dispersion forces (b) dipole-dipole forces (c) covalent bonds
- (c) ionic bonds (d) ion-dipole forces (e) hydrogen bonds

53. The heating curve below shows how the temperature of a substance changes as heat is added. What represents the heat involved in going from point \mathbf{D} to point \mathbf{E} ?

58. A solution is prepared by dissolving 50.0 g of cesium chloride (CsCl) in 50.0 g of water. What is the <u>molality</u> of this solution?

(a) $1.00 \ m$ (b) $1000 \ m$ (c) $2.97 \ m$ (d) $1.68 \ m$ (e) $5.94 \ m$

59. Calculate the molarity of the cesium chloride solution in the previous question if the density of the solution is 1.58 g/mL.

(a) 4.69 M (b) 0.0667 M (c) 0.188 M (d) 9.38 M

60. What is the boiling point of a solution of 5.1 g of ethylene glycol (molar mass: 62.06 g/mol) dissolved in 48.3 g of water? Some possibly useful constants for water are $K_{\rm f} = 1.86 \,^{\circ}{\rm C}/m$ and $K_{\rm b} = 0.512 \,^{\circ}{\rm C}/m$. Assume pure water boils at 100.00 $^{\circ}{\rm C}$.

(a)	103.2 °C	(b)	100.87 °C	(c)	96.8	°C

(d) 99.13 °C (e) 100.04 °C

Answers