Conversions

1 1b = 453.6 g 1 in = 2.54 cm (exactly) 1 nm =
$$1 \times 10^{-9}$$
 1 J = $\frac{1 \text{ kg} \cdot \text{m}^2}{\text{s}^2}$
K = °C + 273 1 atm = 760 mmHg = 14.7 psi = 101.325 kPa

Standard Temperature and Pressure (STP): 1 atm and 0°C; 1 mol of an ideal gas has a volume of 22.4 L @ STP

Constants

electron charge =
$$1.6022 \times 10^{-19}$$
 C

Planck's constant (h) = 6.626×10^{-34} J·s

Gas Constant (R) = 0.0821 $\frac{\text{L} \cdot \text{atm}}{\text{mol} \cdot \text{K}}$

Avogadro's number (N_A) = 6.022×10^{23} particles/mole speed of light (c) = 3.00×10^8 m/s

Formulas

$$\frac{\text{grams of substance}}{\text{density} = \frac{\text{mass}}{\text{volume}}} \qquad \text{molar mass} = \frac{\text{grams of substance}}{\text{moles of substance}} \qquad \text{Molarity } (M) = \frac{\text{mol solute}}{\text{L of solution}}$$

$$q_p = \Delta H \qquad q = mC_s\Delta T \qquad q = n\Delta H_{\text{fus}} \qquad q = n\Delta H_{\text{vap}}$$

$$\Delta H_{\text{rxn}} = \sum \text{BE}(\text{reactants}) - \sum \text{BE}(\text{products})$$

$$\Delta H_{\text{rxn}} = \sum n_{\text{p}} \Delta H_{\text{f}}^{\circ}(\text{products}) - \sum n_{\text{r}} \Delta H_{\text{f}}^{\circ}(\text{reactants})$$

$$E = h_{\text{V}} = \frac{h_{\text{C}}}{\lambda}$$

$$c = \lambda_{\text{V}}$$

$$\lambda = \frac{h}{mv}$$

$$\Delta E = -2.18 \times 10^{-18} \text{ J} \left(\frac{1}{n_{\rm f}^2} - \frac{1}{n_{\rm i}^2} \right)$$

$$KE = \frac{1}{2} mv^2$$

$$u_{\rm rms} = \sqrt{\frac{3 RT}{molar mass}}$$

$$\Delta E = -2.18 \times 10^{-10} \text{ J} \left(\frac{1}{n_{\rm f}^2} - \frac{1}{n_{\rm i}^2} \right)$$

$$u_{\rm rms} = \sqrt{\frac{3M}{\text{molar mass}}}$$

$$PV = nRT$$

$$P_{\text{total}} = P_{\rm a} + P_{\rm b} + P_{\rm c} + \dots$$

$$P_{\rm A} = X_{\rm A} P_{\rm total}$$
 $X_{\rm A} \text{ (mole fraction)} = \frac{n_{\rm A}}{n_{\rm total}}$

Molarity
$$(M) = \frac{\text{mol solute}}{\text{L of solution}}$$
 molality $(m) = \frac{\text{mol solute}}{\text{kg solvent}}$

$$\Delta T_b = K_b m$$
 $\Delta T_f = K_f m$ $\Delta T_f = i K_f m$ for electrolytes $\Delta T_f = i K_f m$ for electrolytes $\Delta T_f = i K_f m$ for electrolytes

Solubility Characteristics of Ionic Compounds in Water at 25°C

Solubility Characteristics of fortic Compounds in Water at 25 C	
SOLUBLE COMPOUNDS	EXCEPTIONS
Compounds containing alkali metal ions (Li ⁺ , Na ⁺ , K ⁺ , Rb ⁺ , Cs ⁺)	
and the ammonium ion (NH ₄ ⁺)	
Nitrates (NO ₃ ⁻), bicarbonates (HCO ₃ ⁻), and chlorates (ClO ₃ ⁻)	
Halides (Cl ⁻ , Br ⁻ , l ⁻)	Halides of Ag ⁺ , Hg ₂ ²⁺ , and Pb ²⁺
Sulfates (SO ₄ ²⁻)	Sulfates of Ag ⁺ , Ca ²⁺ , Sr ²⁺ , Ba ²⁺ , and Pb ²⁺
INSOLUBLE COMPOUNDS	EXCEPTIONS
Carbonates (CO ₃ ²⁻), phosphates (PO ₄ ³⁻), chromates (CrO ₄ ⁻), and	Compounds containing alkali metal ions and the
sulfides (S ²⁻)	ammonium ion
Hydroxides (OH ⁻)	Compounds containing alkali metal ions and the Ba ²⁺ ion