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Abstract

The notion of Cayley color graphs of groups is generalized to inverse semi-
groups and groupoids. The set of partial automorphisms of the Cayley
color graph of an inverse semigroup or a groupoid is isomorphic to the
original inverse semigroup or groupoid. The groupoid of color permuting
partial automorphisms of the Cayley color graph of a transitive groupoid
is isomorphic to the original groupoid.

1. Introduction

A classic result of Frucht says that every finite group is the automorphism group of
some graph. This result follows from the fact that the group of automorphisms of the
Cayley color graph of a finite group is isomorphic to the original group. The proof of both
of these results and a comprehensive discussion of the Cayley color graph can be found in
[Whi] and [GT].

In this paper we generalize the notion of Cayley color graphs for inverse semigroups
and groupoids. We show that if T is an inverse semigroup or a groupoid, then the set of
partial automorphisms of the Cayley color graph of T , with composition and inverse as the
operations, is isomorphic to T . We also show that the groupoid of color permuting partial
automorphisms of the Cayley color graph of a transitive groupoid G is isomorphic to the
semidirect product of G and the subgroup of AutG preserving the generators of G.

I thank Marc Fabbri for his suggestions.

2. Preliminaries

An inverse semigroup is a semigroup S with a unique adjoint s∗ for each s ∈ S satisfying
ss∗s = s and s∗ss∗ = s∗. Every inverse semigroup can be represented as partial bijections
of a set. We say that s ≤ t if s = ss∗t. The set of idempotents {ss∗ | s ∈ S} of S is a
semilattice, with the partial order. Our reference for inverse semigroups is [Pet].

A groupoid G is a small category with inverses. That is G is a set with a subset G(2), a
product map (x, y) 7→ xy : G(2) → G and an inverse map x 7→ x−1 : G → G such that:
(a) (xy)z = x(yz) for all (x, y), (y, z) ∈ G(2);
(b) (x, x−1) ∈ G(2) for all x ∈ G and x−1(xy) = y, (xy)y−1 = x for all (x, y) ∈ G(2).
The set G(2) is called the set of composable pairs. The domain and range maps d, r : G → U
are defined by d(x) = x−1x and r(x) = xx−1 where U = {xx−1 | x ∈ G} is the set of units
of G. Every groupoid is the disjoint union of transitive groupoids, and every transitive
groupoid is the direct product of a group G and a trivial groupoid A × A [Muh]. More
precisely a transitive groupoid G is isomorphic to a groupoid A × G × A where (d, h, c)
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and (b, g, a) are composable whenever b = c, in which case their product is (d, hg, a). The
inverse of (b, g, a) is (a, g−1, b). The set A can be chosen to be the unit space of G and the
group G is isomorphic to the isotropy subgroup Gu

u = {x | d(x) = u = r(x)} for any unit u
of G. Our references for groupoids are [Bro,Ren].

Let T be an inverse semigroup or a groupoid. A subset ∆ of T generates T if every
element of T can be written as a finite product of elements of ∆.

A color digraph is a possibly infinite directed graph with possible multiple edges and
loops together with a color function defined on the set of edges.

3. The Cayley color graph of an inverse semigroup

In this section S denotes an inverse semigroup and ∆ a set of generators of S.
The Cayley color graph of a group does not have an arrow colored with the inverse of

a generator. Every time we have an arrow with color g joining s and sg, we can imagine
a reversed arrow with color g−1 joining sg and sgg−1 = s. For inverse semigroups, sgg∗ is
not necessarily the same as s. So we may need to include both the arrows colored with g
and g∗.

Definition 3.1. The tail of a vertex v in a color digraph is the set tail (v) of vertices that
can be reached by a finite directed walk starting at v. We say that v is a head of its tail.

Note that a tail may have more than one head, and that a tail contains each of its
heads.

Definition 3.2. The Cayley color graph D∆(S) of S with respect to the generating set ∆
is the color digraph with vertices S and edges

{(s, g, sg) | s ∈ S, g ∈ ∆}

such that the edge e = (s, g, sg) connects s to sg and has color g.

Lemma 3.3. If s is a vertex of D∆(S) then tail (s) = {sr | r ∈ S}.

Proof. If t ∈ tail (s) then t can be reached from s by a finite directed walk. If g1, . . . , gn are
the colors of the edges in this walk then t = s(g1 · · · gn).

Conversely if t = sr then r = g1 · · · gn for some g1, . . . , gn ∈ ∆ and so t can be reached
from s along a directed walk on edges with colors g1, . . . , gn.

A Cayley color graph is connected, that is, any vertex t can be reached from any other
vertex s by an undirected walk since tt∗ss∗ = ss∗tt∗ is in the tail of both s and t. The
following example shows that the Cayley color graph is not necessarily strongly connected.
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Example 3.4. The inverse semigroup S = {s, s∗, s∗s, ss∗, 0} generated by ∆ = {s, s∗}
subject to the relation ss = 0, has the following Cayley color graph:
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Note that s∗ cannot be reached from s along a directed walk.

Example 3.5. The bicyclic semigroup [Pet, II.6.4] is the semigroup with identity element,
generated by ∆ = {s, t} subject to the relation ts = 1. It has the following Cayley color
graph:
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Definition 3.6. A partial automorphism of a Cayley color graph D∆(S) is a bijection α
between two tails of D∆(S), such that α(sg)= α(s)g for all s ∈ dom (α) and g ∈ ∆.

A partial automorphism is roughly a color preserving isomorphism between two sub-
graphs induced by tails.

Lemma 3.7. If α is a partial automorphism of D∆(S) then α(sr) = α(s)r for all s ∈
dom (α) and r ∈ S.

Proof. Since dom (α) is a tail, s ∈ dom (α) implies sr ∈ dom (α). There are g1, . . . , gn ∈ ∆
with r = g1 · · · gn. Hence

α(sr) = α(sg1 · · · gn) = α(sg1 · · · gn−1)gn = · · · = α(s)g1 · · · gn = α(s)r.

Lemma 3.8. If s is a vertex of D∆(S) then ss∗ is the unique idempotent for which
tail (s) = tail (ss∗).

Proof. If t ∈ tail (s) then by Lemma 3.3, t = sr for some r and so t = (ss∗)sr which
means that t ∈ tail (ss∗). Conversely, if t ∈ tail (ss∗) then t = ss∗r for some r ∈ S and so
t ∈ tail (s). Hence the idempotent ss∗ is a head for tail (s).

Suppose e and f are both idempotent heads of tail (s). Then e = fr for some r ∈ S
and so e ≤ f since fe = ffr = fr = e. Similar argument shows that f ≤ e thus e = f .
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Lemma 3.9. The inverse of a partial automorphism of a Cayley color graph D∆(S) is also
a partial automorphism.

Proof. If α is a partial automorphism then

α−1(sg) = α−1(α(α−1(s))g) = α−1(α(α−1(s)g)) = α−1(s)g

for all s ∈ S and g ∈ ∆.

Lemma 3.10. For all s ∈ S the map αs : tail (s∗) → tail (s) defined by αs(t) = st is a
partial automorphism of the Cayley color graph D∆(S). Furthermore, αs∗ = α−1

s for all
s ∈ S.

Proof. It is clear that αs maps tail (s∗) onto tail (s). αs is injective since if αs(s∗t) = αs(s∗r)
then

s∗t = s∗ss∗t = s∗αs(s∗t) = s∗αs(s∗r) = s∗ss∗r = s∗r.

αs preserves the color of the edges because αs(tg) = stg = αs(t)g.
The domains of αs∗ and α−1

s are clearly the same. If t ∈ dom (αs∗) then t = sr for
some r ∈ S and so

αs∗(t) = s∗sr = α−1
s (αs(s∗sr)) = α−1

s (ss∗sr) = α−1
s (sr) = α−1

s (t).

Proposition 3.11. Every partial automorphism α of the Cayley color graph D∆(S) is αs

for some s ∈ S.

Proof. Let e be the unique idempotent head of dom α and s = α(e). We show that α = αs.
The domain of αs is tail (s∗) = tail (s∗s). We have e ≤ s∗s since

es∗s = α−1(s)s∗s = α−1(ss∗s) = α−1(s) = e.

Also s∗s ≤ e since
s∗se = s∗α(e)e = s∗α(ee) = s∗α(e) = s∗s.

Thus, e = s∗s and so α and αs have the same domain. If t ∈ dom α then t = er for some
r ∈ S and so

α(t) = α(er) = α(eer) = α(e)er = st = αs(t).

Theorem 3.12. The set of partial automorphisms of D∆(S), with composition and inverse
as the operations, is an inverse semigroup isomorphic to S.

Proof. By Proposition 3.11 and Lemma 3.10, the range of the map s 7→ αs is the set of
partial automorphisms, and we have s∗ 7→ α−1

s . This map is clearly multiplicative so it
remains to show that it is injective.

If αs = αt then they have the same domain and so s∗s and t∗t are the same unique
head of this domain. Thus

s = ss∗s = αs(s∗s) = αt(s∗s) = αt(t∗t) = tt∗t = t.
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4. The Cayley color graph of a groupoid

In this section G denotes a groupoid and ∆ a set of generators of G.

Definition 4.1. Let ∆ be a set of generators of the groupoid G. The Cayley color graph
D∆(G) of G with respect to the generating set ∆ is the color digraph with vertices G and
edges

E = {(x, z, xz) | x ∈ G, z ∈ ∆, (x, z) ∈ G(2)}

such that the edge e = (x, z, xz) connects x to xz and has color z.

Example 4.2. If A = {a, b} then the transitive groupoid G = A × Z2 × A has eight
elements. ∆ = {(b, 0, a), (a, 1, b)} is a generating set. The Cayley color graph has two
strongly connected components:
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(a,1,b)

// (a, 1, b)

(b,0,a)

��

(b, 0, a)
(a,1,b)

// (b, 1, b)
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��
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(b,0,a)

OO
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(a,1,b)
oo (b, 0, b)

(b,0,a)

OO
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(a,1,b)
oo

The proof of the following two lemmas are similar to that of Lemma 3.3 and Lemma 3.8
respectively.

Lemma 4.3. If x is a vertex of D∆(G) then tail (x) = {xy | y ∈ G}.

Lemma 4.4. If x is a vertex of D∆(G) then r(x) is the unique unit of G for which
tail (x) = tail (r(x)).

Note that every tail is strongly connected and every element of a tail is a head of the
tail.

Definition 4.5. A partial automorphism of a Cayley color graph D∆(G) is a bijection α
between two tails of D∆(G), such that α(xz) = α(x)z for all (x, z) ∈ G(2) and z ∈ ∆.

Note that since (x, d(x)) ∈ G(2) we have (α(x), d(x)) ∈ G(2) and so d(α(x)) = d(x) for
all x ∈ dom (α). We are going to use this fact in the proof of Proposition 4.9.

The proof of the following three lemmas are similar to that of Lemma 3.7, Lemma 3.9
and Lemma 3.10 respectively.

Lemma 4.6. If α is a partial automorphism of D∆(G) then α(xy) = α(x)y for all x ∈ dom α
and (x, y) ∈ G(2).

Lemma 4.7. The inverse of a partial automorphism of a Cayley color graph D∆(G) is also
a partial automorphism.
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Lemma 4.8. For all x ∈ G the map αx : tail (x−1) → tail (x) defined by αx(y) = xy is a
partial automorphism of the Cayley color graph D∆(G). Furthermore, αx−1 = α−1

x for all
x ∈ G.

Proposition 4.9. Every partial automorphism α of the Cayley color graph D∆(G) is αx

for some x ∈ G.

Proof. Let u be the unique unit of the domain of α and x = α(u). We show that α = αx.
The domain of α is the same as the domain of αx since

dom (αx) = tail (x−1) = tail (x−1x) = tail (d(x)) = tail (d(u)) = tail (u) = dom (α).

If y ∈ dom (α) then y = uy and so

α(y) = α(uy) = α(u)y = xy = αx(y).

Theorem 4.10. The set of partial automorphisms of D∆(G), with composition and inverse
as the operations, is a groupoid isomorphic to G.

Proof. By Proposition 4.9 and Lemma 4.8 the range of x 7→ αx is the set of partial auto-
morphisms, and we have x−1 7→ α−1

x . This map is clearly multiplicative so it remains to
show that it is injective.

If αx = αy then they have the same domain and so x−1x and y−1y are the same unique
unit in this domain. Thus

x = xx−1x = αx(x−1x) = αy(y−1y) = yy−1y = y.

Definition 4.11. Let E be a digraph with vertices E0 and edges E1. If c : E1 → G is a
function where G is a groupoid then the skew product graph E ×c G is the digraph whose
vertex set is E0 × G and edge set is {(e, x) : e ∈ E1, x ∈ G, xc(e) ∈ G(2)}. If e is an edge
from v to w, then the edge (e, x) connects (v, x) to (w, xc(e)).

The group version of the following example can be found in [GT, Theorem 2.2.3].

Example 4.12. Let ∆ = {z1, . . . , zn} be a set of generators of G. Let E be the bouquet of
n directed loops with a single vertex E0 = {u} and edges E1 = {e1, . . . , en}. If c(ei) = zi

for all i then the skew product graph E×c G is isomorphic to the underlying digraph of the
Cayley color graph D∆(G). The isomorphism α : E ×c G → D∆(G) is given by the vertex
map α(u, x) = x and edge map α(ei, x) = (x, zi, xzi).

5. The groupoid of color permuting partial automorphisms

In [FFY] it is shown that the group of color permuting automorphisms of the Cayley
color graph of a group G is the semidirect product of G and a subgroup of Aut G. We prove
a similar result for transitive groupoids. In this section G denotes a transitive groupoid and
∆ a set of generators of G.
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Definition 5.1. A color permuting partial automorphism of a Cayley color graph D∆(G)
is a bijection α between two tails of D∆(G) and a permutation ρ of ∆, such that α(xz) =
α(x)ρ(z) for all (x, z) ∈ G(2) and z ∈ ∆.

Note that a color permuting partial automorphism is color preserving if ρ is the identity
permutation.

Let H = {π ∈ AutG | π(∆) = ∆} be the group containing the automorphisms of
G preserving ∆. Let ι : H → AutG be the canonical embedding. Recall [Ren] that the
semidirect product G ×ι H is the groupoid G ×H where

(x1, π1)(x2, π2) = (x1π1(x2), π1π2)

whenever x1 and π1(x2) are composable, and

(x, π)−1 = (π−1(x−1), π−1).

Lemma 5.2. For all (x, π) ∈ G ×ι H the map α(x,π) : tail (π−1(x−1)) → tail (x) defined by
α(x,π)(y) = xπ(y) is a color permuting partial automorphism α(x,π) of D∆(G). Furthermore,

α(x,π)−1 = α−1
(x,π) for all (x, π) ∈ G ×ι H.

Proof. α(x,π) is clearly a bijection. The restriction ρ = π|∆ of π is a permutation of ∆. If
z ∈ ∆ and (y, z) ∈ G(2) then

α(x,π)(yz) = xπ(yz) = xπ(y)π(z) = α(x,π)(y)ρ(z).

The domains of α(x,π)−1 and α−1
(x,π) are clearly the same. If y ∈ dom (α(x,π)−1) then y ∈

tail (x) and so y = xx−1z for some z ∈ G which implies

α(x,π)−1(y) = π−1(x−1)π−1(xx−1z) = π−1(x−1z) = α−1
(x,π)(xx−1z) = α−1

(x,π)(y).

Note that r(π−1(x−1)) = π−1(x−1x) is also a head for the domain of α(x,π).

Proposition 5.3. Every color ρ-permuting partial automorphism α of D∆(G) is α(x,π) for
some (x, π) ∈ G ×ι H.

Proof. Let u be the unique unit of the domain of α and x = α(u). To define the auto-
morphism π ∈ H, suppose that y ∈ G and write y = z1 · · · zn for some z1, . . . , zn ∈ ∆.
Since G is transitive, there is a t ∈ dom (α) such that ty ∈ dom (α). The definition
π(y) = ρ(z1) · · · ρ(zn) does not depend on the choice the generators z1, . . . , zn because
if y = w1 · · ·wm for some w1, . . . , wm ∈ ∆, then

ρ(z1) · · · ρ(zn) = α(t)−1α(t)ρ(z1) · · · ρ(zn) = α(t)−1α(tz1 · · · zn)

= α(t)−1α(tw1 · · ·wm) = α(t)−1α(t)ρ(w1) · · · ρ(wm)
= ρ(w1) · · · ρ(wm).

It is clear that π is an automorphism of G and that π(∆) = ∆.
We show that α = α(x,π). Since α(uu) = α(u)π(u) = xπ(u), we have d(x) = π(u). The

domain of α(x,π) is the tail of π−1(x−1x) = π−1(d(x)) = u which is the domain of α. If
y ∈ dom α then y = uy = uz1 · · · zn for some z1, . . . , zn ∈ ∆ and so

α(y) = α(uz1 · · · zn) = α(u)ρ(z1) · · · ρ(zn) = xπ(y) = α(x,π)(y).
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Theorem 5.4. The set of color permuting partial automorphisms of D∆(G), with com-
position and inverse as the operations, is a groupoid isomorphic to the semidirect product
G ×ι H.

Proof. By Proposition 5.3 and Lemma 5.2, the map (x, π) 7→ α(x,π) is the set of color
permuting partial automorphisms, and we have (x, π)−1 7→ α−1

(x,π). This map is multiplica-
tive because if (x1, π1) and (x2, π2) are composable then the domain of α(x1,π1)(x2,π2) =
α(x1π1(x2),π1π2) is the tail of (π1π2)−1(d(x1π1(x2))) = π−1

2 (x−1
2 x2) which is the domain of

α(x1,π1). Also if y is in this domain then

α(x1,π1)(x2,π2)(y) = α(x1π1(x2),π1π2)(y) = x1π1(x2)π1(π2(y))

= x1π1(x2π2(y)) = α(x1,π1)(α(x2,π2)(y)).
It remains to show that our map is injective. If α(x,π) = α(y,ξ) then they have the same
domain and so π−1(x−1x) = ξ−1(y−1y). Thus

x = xπ(π−1(x−1x)) = α(x,π)(π−1(x−1x)) = α(y,ξ)(ξ−1(y−1y)) = yξ(ξ−1(y−1y)) = y.

Also, if z ∈ G then tz ∈ dom (α(x,π)) for some t ∈ G and so

π(z) = π(t)−1x−1xπ(t)π(z) = (α(x,π)(t))−1α(x,π)(tz)

= (α(y,ξ)(t))−1α(y,ξ)(tz) = ξ(t)−1y−1yξ(t)ξ(z)

= ξ(z).

Example 5.5. If G = {x, x−1, xx−1, x−1x} is the trivial groupoid with two units and the
generating set is ∆ = {x, x−1} then H is isomorphic to Z2. G ×ι H is isomorphic to the
groupoid A× Z2 ×A of Example 4.2. The Cayley color graph of G has two components:

x−1x
x−1

//
x−1

x
oo x

x−1
//
xx−1

x
oo

References

[Bro] R. Brown, From groups to groupoids: a brief survey, Bull. London math. Soc.
19(1987), 113–134.

[FFY] M.L. Fiol, M.A. Fiol, J.L.A. Yebra, When the arc-colored line digraph of a Cayley
colored digraph is again a Cayley colored digraph, Ars Combinatoria 34(1992),
65–73.

[GT] J.L. Gross, T.W. Tucker, Topological graph theory, Wiley Interscience Series in
Discrete Mathematics and Optimization, (1987)

[Muh] P.S. Muhly, CBMS Lecture Notes, Texas Christian University, May 1990.
[Pet] M. Petrich, Inverse semigroups, John Wiley & Sons, New York, 1984.
[Ren] J.N. Renault, A groupoid approach to C∗-algebras, Lecture Notes in Mathematics,

Vol 793, Springer-Verlag, New York, 1980.
[Whi] A.T. White, Graphs, Groups and Surfaces, North-Holland publishing company,

Amsterdam, 1973.

Email: nandor.sieben@nau.edu

Department of Mathematics, Northern Arizona University, Flagstaff,
AZ 86011-5717


