
SYMMETRY AND AUTOMATED BRANCH FOLLOWING FORA SEMILINEAR ELLIPTIC PDE ON A FRACTAL REGIONJOHN M. NEUBERGER, N�ANDOR SIEBEN, AND JAMES W. SWIFTAbstrat. We apply the Gradient-Newton-Galerkin-Algorithm (GNGA) of Neuberger & Swiftto �nd solutions to a semilinear ellipti Dirihlet problem on the region whose boundary is theKoh snowake. In a reent paper, we desribed an aurate and eÆient method for generating abasis of eigenfuntions of the Laplaian on this region. In that work, we used the symmetry of thesnowake region to analyze and post-proess the basis, rendering it suitable for input to the GNGA.The GNGA uses Newton's method on the eigenfuntion expansion oeÆients to �nd solutions tothe semilinear problem. This artile introdues the bifuration digraph, an extension of the lattieof isotropy subgroups. For our example, the bifuration digraph shows the 23 possible symmetrytypes of solutions to the PDE and the 59 generi symmetry-breaking bifurations among thesesymmetry types. Our numerial ode uses ontinuation methods, and follows branhes reatedat symmetry-breaking bifurations, so the human user does not need to supply initial guesses forNewton's method. Starting from the known trivial solution, the ode automatially �nds at least onesolution with eah of the symmetry types that we predit an exist. Suh omputationally intensiveinvestigations neessitated the writing of automated branh following ode, whereby symmetryinformation was used to redue the number of omputations per GNGA exeution and to makeintelligent branh following deisions at bifuration points.1. Introdution.We seek numerial solutions to the semilinear ellipti boundary value problem�u+ f�(u) = 0 in 
u = 0 on �
;(1)where � is the Laplaian operator, 
 � R2 is the region whose boundary �
 is the Koh snowake,u : 
! R is the unknown funtion, and f� : R ! R is a one-parameter family of odd funtions. Foronveniene, we refer to 
 as the Koh snowake region. This artile is one of the �rst to onsidera nonlinear PDE on a region with fratal boundary. In this paper, we hoose the nonlinearity tobe f�(u) = �u+ u3;(2)and treat � 2 R as the bifuration parameter. When the parameter is �xed, we will sometimes usef in plae of f�. Using this onvention, note that � = f 0(0).This paper exploits the hexagonal symmetry of the Koh snowake region, and the fat that fis odd. Our nonlinear ode would work with any region with hexagonal symmetry and any odd`superlinear' funtion f (see [4℄), and with minor modi�ation for other lasses of nonlinearitiesas well. We hose to work with odd f primarily beause of the rih symmetry struture. Theexpliit shape of 
 represents a onsiderable tehnologial hallenge for the omputation of theeigenfuntions [16, 27℄, whih are required as input to the nonlinear ode.It is well known that the eigenvalues of the Laplaian under this boundary ondition satisfy0 < �1 < �2 � �3 � � � � ! 1;(3)2000 Mathematis Subjet Classi�ation. 20C35, 35P10, 65N25.Key words and phrases. Snowake, Symmetry, Bifuration, Semilinear Ellipti PDE, GNGA.Partially supported by NSF Grant DMS-0074326.June 23, 2006. 1



2 JOHN M. NEUBERGER, N�ANDOR SIEBEN, AND JAMES W. SWIFTand that the orresponding eigenfuntions f jgj2N an be hosen to be an orthogonal basis forthe Sobolev spae H = H10 (
) = W 1;20 (
), and an orthonormal basis for the larger Hilbert spaeL2 = L2(
). The inner produts arehu; viH = Z
ru � rv dx and hu; vi2 = Z
u v dx;respetively (see [1, 9, 15, 17℄). Theorem 8.37 and subsequent remarks in [9℄ imply that theeigenfuntions are in C1(
). In [17℄, properties of the gradients of eigenfuntions near boundarypoints are explored in light of the lak of regularity of �
.Using the Gradient-Newton-Galerkin-Algorithm (GNGA, see [26℄) we seek approximate solutionsu =PMj=1 aj j to (1) by applying Newton's method to the eigenfuntion expansion oeÆients ofthe gradient rJ(u) of a nonlinear funtional J whose ritial points are the desired solutions. Thede�nition of J , the required variational equations, a desription of the GNGA, and a brief historyof the problem are the subjet of Setion 2.The GNGA requires as input a basis spanning a suÆiently large but �nite dimensional subspaeBM = spanf 1; : : : ;  Mg, orresponding to the �rst M eigenvalues f�jgMj=1. As desribed in [27℄,a grid GN of N arefully plaed points is used to approximate the eigenfuntions. These are thesame grid points used for the numerial integrations required by Newton's method. Setion 3 brieydesribes the proess we use for generating the eigenfuntions.Setion 4 onerns the e�ets of symmetry on automated branh following. The symmetry the-ory for linear operators found in [27℄ is summarized and then the extensions required for nonlinearoperators are desribed. Symmetry-breaking bifurations are analyzed in a way that allows anautomated system to follow the branhes reated at the bifurations. As we develop the theory, wepresent spei� examples applying the general theory to equation (1) on the snowake region. Inpartiular, we �nd that there are 23 di�erent symmetry types of solutions to (1), and 59 generisymmetry-breaking bifurations. The symmetry types and bifurations among them are summa-rized in a bifuration digraph, whih generalizes the well-known lattie of isotropy subgroups (see[10℄). As far as we know, the bifuration digraph is a new way to organize the information aboutthe symmetry-breaking bifurations.Setion 5 desribes how understanding the symmetry allows remarkable inreases in the eÆienyof the GNGA. Setion 6 desribes the automated branh following. We use repeated exeutions ofthe GNGA or a slightly modi�ed algorithm (parameter-modi�ed GNGA) to follow solution branhesof (1, 2). The GNGA uses Newton's method, whih is known to work well if it has a good initialapproximation. The main shortoming of Newton's method is that is works poorly without a goodinitial approximation. We avoid this problem by starting with the trivial solution (u = 0). Thesymmetry-breaking bifurations of the trivial solution are found by the algorithm and the primarybranhes are started. The program follows the branhes by ontinuation methods, and then followsthe new branhes reated at symmetry-breaking bifurations. To follow an existing branh, we vary� slightly between exeutions. To start new solution branhes reated at bifuration points, wetreat � as a variable and �x one of the null eigenfuntions of the Hessian evaluated at the bifurationpoint. The symmetry analysis tells whih null eigenfuntion to use. In this way solutions with all23 symmetry types are found automatially, starting from u = 0, without having to guess anyapproximations for Newton's method.In our experiments, many bifuration diagrams were generated by applying the tehniques men-tioned above. A seletion of these diagrams are provided in Setion 7, along with ontour plotsof solutions to (1) orresponding to eah of the 23 symmetry types predited to exist. We inludeevidene of the onvergene of our algorithm as the number of modesM and grid points N inrease.Many extensions to our work are possible, inluding enforing di�erent boundary onditions onthe same region, solving similar semilinear equations on other fratal regions, and applying themethodology to partial di�erene equations (PdE) on graphs [25℄. Setion 8 disusses some ofthese possible extensions. In partiular, we are in the proess of re-writing the suite of programs.



SYMMETRY AND AUTOMATED BRANCH FOLLOWING 3We plan to be able to solve larger problems using a parallel environment. We will be able to solveproblems with larger symmetry groups by automating the extensive group theoreti alulations.This onluding setion also has a disussion of the onvergene of the GNGA.2. GNGA.We now present the variational mahinery for studying (1) and follow with a brief desription ofthe general GNGA. Setion 6 ontains more details of the implementation of the algorithm for ourspei� problem. Let F�(u) = R u0 f�(s) ds for all u 2 R de�ne the primitive of f�. We then de�nethe ation funtional J : R �H ! R by(4) J(�; u) = Z
 �12 jruj2 � F�(u)	 dx:We will sometimes use J : H ! R to denote J(�; �). The lass of nonlinearities f found in[4, 5, 25, 28℄ imply that J is well de�ned and of lass C2 on H. The hoie (2) we make inthis paper belongs to that lass. Critial points of J are by de�nition weak solutions of (1) (seefor example [4, 28, 9℄), and learly lassial solutions are ritial points. The usual \bootstrap"argument of repeatedly applying Theorem 8.10 of [9℄ an be used in our ase. Spei�ally, Hk0 isembedded in Lq for all q � 2 when the spae diminsion n is 2, regardless of the regularity of �
 (dueto the zero Dirihlet boundary ondition, see [1℄). Hene u 2 Hk implies f(u) 2 Hk as well. As aresult, if u is a ritial point then u 2 C1(
) \ C(�
), hene a lassial solution. If one onsideredboundary onditions, spae dimensions, and nonlinear terms other than the hoies made in thispaper, it ould happen that ritial points would be weak not lassiial solutions. Regardless, ourapproximations lie inBM � C1. Here, the existene proofs for positive, negative, and sign-hangingexatly one solutions from [4, 28℄ immediately give at least 3 nontrivial (lassial) solutions forour spei� superlinear boundary value problem; appealing to symmetry implies the existene ofeven more solutions (see for example [25℄).The hoie of H for the domain is ruial to the analysis of the PDE (see [4, 24℄, and referenestherein), as well as for understanding the theoretial basis of e�etive steepest desent algorithms(see [7, 22, 23℄, for example). We will work in the oeÆient spae RM �= BM . The oeÆient vetorof u 2 BM is the vetor a 2 RM satisfying u = PMj=1 aj j . Using the orresponding eigenvalues(3) and integrating by parts, the quantities of interest are(5) gj = J 0(u)( j) = Z
fru � r j � f(u) jg = aj�j � Z
f(u) j ; and(6) hjk = J 00(u)( j ;  k) = Z
fr j � r k � f 0(u) j  kg = �jÆjk � Z
f 0(u) j  k;where Æjk is the Kroneker delta funtion. Note that there is no need for numerial di�erentiationwhen forming gradient and Hessian oeÆient vetors and matries in implementing Algorithm 2.1;this information is enoded in the eigenfuntions.The vetor g 2 RM and theM�M matrix h represent suitable projetions of the L2 gradient andHessian of J , restrited to the subspae BM , where all suh quantities are de�ned. For example,for u =PMj=1 aj j , v =PMj=1 bj j , and w =PMj=1 j j , we have:PBMr2J(u) = MXj=1 gj j; J 0(u)(v) = g � b; and J 00(u)(v; w) = hb �  = b � h:We an identify g with the approximation PBMr2J(u) of r2J(u) = �u + f(u), whih is de�nedfor u 2 BM . The solution � to the M -dimensional linear system h� = g is then identi�ed with the(suitably projeted) searh diretion (D22J(u))�1r2J(u), whih is not only de�ned for u 2 BM , butis there equal to (D2HJ(u))�1rHJ(u). We use the least squares solution of h� = g. In pratie,the algorithm works even near bifuration points where the Hessian is not invertible.



4 JOHN M. NEUBERGER, N�ANDOR SIEBEN, AND JAMES W. SWIFTThe heart of our ode is Newton's method in the spae of eigenfuntion oeÆients:Algorithm 2.1. (GNGA)(1) Choose initial oeffiients a = fajgMj=1, and set u =P aj j.(2) Loop(a) Calulate the gradient vetor g = fJ 0(u)( j)gMj=1 from equation (5).(b) Calulate the Hessian matrix h = fJ 00(u)( j ;  k)gMj; k=1 from equation (6).() Exit loop if jjgjj is suffiiently small.(d) Solve h� = g for the Newton searh diretion � 2 RM .(e) Replae a a� � and update u =P aj j.(3) Calulate sig(h) and J for the approximate solution.If Newton's method onverges then we expet that u approximates a solution to the PDE (1),provided M is suÆiently large and the eigenfuntions and numerial integrations are suÆientlyaurate. See Setion 8.Our estimate for the Morse index (MI) of the ritial point of J is the signature of h, denotedsig(h), whih is de�ned as the number of negative eigenvalues of h. This measures the number oflinearly independent diretions away from u in whih J dereases quadratially.The basi Algorithm 2.1 is modi�ed to take advantage of the symmetry of our problem. The Mintegrations required in step (a) and the M(M +1)=2 integrations in step (b) are redued to fewerintegrations if the initial guess has nontrivial symmetry.We often use a \parameter-modi�ed" version of the GNGA (pmGNGA). In this modi�ation, �is treated as an unknown variable and one of the M oeÆients ak is �xed. Along a given branh,symmetry generally fores many oeÆients to be zero. When a bifuration point is loated byobserving a hange in MI, we an predit the symmetry of the bifurating branhes using thesymmetry of the null eigenfuntions of the Hessian. By foring a small nonzero omponent in thediretion of a null eigenfuntion (orthogonal to the old branh's smaller invariant subspae), we anassure that the pmGNGA will not onverge to a solution lying on the old branh. Another bene�tof the pmGNGA is that it an handle a urve bifurating to the right as well as one bifuratingto the left. In our system, the branhes that bifurate to the right have saddle node bifurationswhere they turn around and go to the left. The pmGNGA an follow suh branhes while thenormal GNGA annot.The implementation of pmGNGA is not diÆult. The M equations are stillgi = J 0(u)( i) = 0;but the M unknowns are ~a = (a1; : : : ; ak�1; �; ak+1; : : : ; aM );and the value of one oeÆient, ak, is �xed. Consequently, we replae the Hessian matrix h with anew matrix ~h where the k-th olumn is set to �gi=�� = �ai:~hij = � hij if j 6= k�ai if j = k :The searh diretion ~� is the solution to the system ~h~� = g. The pmGNGA step is~a ~a� ~�;and then u and � are updated. After Newton's method onverges, the k-th olumn of the originalhij is alulated and the MI of the solution, sig(h), is omputed.We onlude this setion with a very brief history of the analytial and numerial aspets ofthe researh into (1) given our type of nonlinearity f . Our introdution to this general subjetwas [4℄, where a sign-hanging existene result was proven. This theorem is extended in [5℄; weindiate briey in Setion 7 where this so-alled CCN solution an be found on our bifurationdiagrams. The artile [7℄ was our �rst suess in using symmetry to �nd higher MI solutions. The



SYMMETRY AND AUTOMATED BRANCH FOLLOWING 5

Figure 1. The Koh snowake region 
 with the grids G13 and G133 at levels` = 2 and 3, respetively. A generi grid point (whih is not on any line of reetionsymmetry) is indiated in the larger grid.GNGA was developed in [26℄, wherein a muh more detailed desription of the variational strutureand numerial implementation an be found. The �rst implementation of the GNGA for regionswhere the eigenfuntions are not known in losed form is in [12℄, where the region is a Bunimovihstadium. The artile [24℄ provides a historial overview of the authors' experimental results usingvariants of the Mountain Pass Algorithm (MPA, MMPA, HLA) and the GNGA, as well as reentanalytial results and a list of open problems; the referenes found therein are extensive.3. The Basis of Eigenfuntions.In [27℄, we desribe theoretial and omputational results that lead to the generation of a basisof eigenfuntions solving(7) �u+ �u = 0 in 
; u = 0 on �
:That paper details the grid tehnique and symmetry analysis that aompanied the e�ort; we brieysummarize those results in this setion.The Koh snowake is a well-known fratal, with Hausdor� dimension log3 4. Following Lapidus,Neuberger, Renka, and GriÆth [16℄, we take our snowake to be insribed in a irle of radius p33entered about the origin. We use a triangular grid GN of N points to approximate the snowakeregion. Then, we identify u : GN ! R with u 2 RN , that is,(8) u(xi) = uiat grid points xi 2 GN . Our paper [27℄ di�ers from [16℄ in that we use a di�erent plaement of thegrid points and a di�erent method of enforing the boundary ondition, resulting in more aurateeigenvalue estimates with fewer points. Figure 1 depits the levels 2 and 3 grids in the family of gridsused in [27℄ to ompute eigenfuntions; we used the �rst M eigenfuntions omputed at levels 4, 5,and 6 in our nonlinear experiments. The number of grid points at level ` is N = (9`�4`)=5, and thespaing between grid points is h = 2=3`. We omputed the eigenvalues and eigenfuntions for (7)using ARPACK and this approximation to the Laplaian with zero-Dirihlet boundary onditions:��u(x) � 23h2 �(12 � number of neighbors)u(x)�Xfneighboring values of ug� :(9)The ARPACK is based upon an algorithmi variant of the Arnoldi proess alled the ImpliitlyRestarted Arnoldi Method (see [19℄) and is ideally suited for �nding the eigen-pairs of the largesparse matries assoiated with the disretization of the Laplaian.



6 JOHN M. NEUBERGER, N�ANDOR SIEBEN, AND JAMES W. SWIFT4. Symmetry: The Lattie of Isotropy Subgroups and The Bifuration Digraph.This setion desribes equivariant bifuration theory as it applies to the branhing of solutionsto equation (1), see [6, 10, 11, 18℄. We are able to desribe the expeted symmetry types ofsolutions to (1), as traditionally arranged in a lattie of isotropy subgroups. We introdue thebifuration digraph, a re�nement of the lattie, whih shows every possible generi bifuration fromone symmetry type to another as a direted edge whih is labeled with information about thebifuration. The bifuration digraph is of interest in its own right and summarizes the essentialinformation required by our automated branh following ode. In this projet, GAP (Groups,Algorithms, and Programming, see [8℄) was used solely to verify the symmetry analysis we did byhand. In our ontinuing projets GAP is a useful tool sine it an perform the tedious alulationsand write the information in a format that an be read by the branh following ode. Matthews[21℄ has used GAP to do similar alulations. We apply this methodology to the snowake domainbeing onsidered in this paper. The analysis shows that solutions fall into 23 symmetry types, andthat there are 59 types of generi symmetry breaking bifurations.Group Ations and the Lattie of Isotropy Subgroups. Let � be a �nite group and V be areal vetor spae. A representation of � is a homomorphism � : � ! GL(V ). Where onvenient,we identify GL(V ) with the set of invertible matries with real oeÆients. Every representation� orresponds to a unique group ation of � on V by the rule  � v := �()(v) for all  2 � andv 2 V . We will usually use the ation rather than the representation. The group orbit of v is� � v = f � v j  2 �g.Example 4.1. Let D 6 := h�; � j �6 = �2 = 1; � � = ��5ibe the dihedral group with 12 elements. It is onvenient to de�ne � = �3�. It follows that�� = �� = �3. The group D 6 is the symmetry of a regular hexagon, and of the Koh Snowakeregion 
. The standard D 6 ation on the plane is given by� � (x; y) = �12x+ p32 y;�p32 x+ 12y�� � (x; y) = (�x; y)� � (x; y) = (x;�y):(10)In this ation, � is a rotation by 60Æ, � is a reetion aross the y-axis, and � is a reetion arossthe x-axis. These group ations are depited in Figure 13, near the end of the paper.We will denote subgroups of D 6 by listing the generators. While any given subgroup of D 6an be de�ned using only � and �, we �nd it geometrially desriptive to use � in ertain ases.For example, we prefer h�2; �i to the equivalent h�2; ��i. In order to make relationships amongsubgroups intuitive, we often inlude � when its membership is implied by the other generators(see for example Figure 2).The standard D 6 group ation (10) is not the only ation we onsider. For a funtion u 2 L2(
)and group element  2 D 6 , we de�ne ( � u)(x) = u(�1 � x). In this paper, a vetor u de�ned byui = u(xi), for a given grid GN = fxigNi=1, is a disrete approximation of a funtion on 
. The D 6group ation on u 2 RN is a permutation of the omponents: ( �u)i = u(�1 �xi). Given a funtionu 2 L2(
) or RN , the group orbit D 6 � u onsists of funtions obtained from u by a reetion orrotation.Example 4.2. The group D 6 � Z2, where Z2 = f1;�1g, ats on L2(
) in a natural way. For all(; z) 2 D 6 � Z2, de�ne (; z) � u = z( � u):We will denote (; 1) 2 D 6 � Z2 by  and (;�1) 2 D 6 � Z2 by �. With this natural notation(�) � u = �( � u), whih we all simply � � u.



SYMMETRY AND AUTOMATED BRANCH FOLLOWING 7Let us reall some fats about group ations, following [6, 10, 11℄. The isotropy subgroup orstabilizer of v 2 V in � is Stab(v;�) := f 2 � j  � v = vg:The isotropy subgroup measures the symmetry of v, and is sometimes alled the little group of v, or�v. If the group � is understood, we may simply write Stab(v) in plae of Stab(v;�). The stabilizerof a subset W � V in � is Stab(W;�) := f 2 � j  �W = Wg. This must be distinguished fromthe point stabilizer of a subsetpStab(W;�) := f 2 � j  � v = v for all v 2Wg =\fStab(v;�) j v 2Wg:Another ommonly used notation is �W for the stabilizer and �(W ) for the point stabilizer. Notethat pStab(W;�) is always normal in Stab(W;�), and the e�etive symmetry group ating on W isStab(W;�)=pStab(W;�), whih ats faithfully on W .If � is a subgroup of � then the �xed point subspae of � in V isFix(�; V ) := fv 2 V j  � v = v for all  2 �g:Another notation for the �xed point subspae is V�. We write Fix(�) when V is understood.An isotropy subgroup of the � ation on V is the stabilizer of some point v 2 V . For some groupations, not every subgroup of � is an isotropy subgroup.Example 4.3. Consider the D 6 ation on the plane R2 desribed in equation (10. It is well-knownthat h�i is not an isotropy subgroup of this ation.Now onsider the D 6 ation on the funtion spae L2(
). We give a standard argument thatevery subgroup of D 6 is an isotropy subgroup. Start with a funtion u� that is zero everywhereexept for a small region, and suppose that the region is distint from eah of its nontrivial imagesunder the D 6 ation. Then for any subgroup � � D 6 , the average of the funtion u� over �, de�nedas(11) P�(u�) = 1j�jX2�  � u�has isotropy subgroup �. Therefore every subgroup of the D 6 ation on L2(
) is an isotropysubgroup. The average over the group is an example of a Haar operator, and P� : V ! Fix(�; V )is an orthogonal projetion operator [36℄.Similarly, every subgroup of D 6 is an isotropy subgroup of the D 6 ation on RN , the spae offuntions on the grid GN , provided ` � 3. This follows from averaging the funtion that is 1 at ageneri lattie point, and 0 elsewhere. Reall that a generi point is one whose isotropy subgroupis trivial. Figure 1 shows that the level two grid G13 does not have a generi point, while the levelthree grid G133 does. Thus, the spae of funtions on G133 has the same isotropy subgroups asL2(
), but a muh smaller spae has this same property. Start with any generi point x1 2 
.Then D 6 ats on the spae of funtions on the 12 points D 6 � x1. This D 6 ation on R12 has thesame struture of isotropy subgroups as the D 6 ation on L2(
), and is the D 6 ation used inour GAP alulations. The orresponding 12-dimensional representation is the well-known regularrepresentation of D 6 (see [29, 31, 34℄).The symmetry of funtions is desribed by two related onepts. A funtion q : V ! R is�-invariant if q( � v) = q(v) for all  2 � and all v 2 V . Similarly, an operator T : V ! V is�-equivariant if T ( � v) =  � T (v) for all  2 � and all v 2 V .Example 4.4. The energy funtional J de�ned in equation (4) is D 6 �Z2-invariant. The nonlinearPDE (1) an be written as (�+ f)(u) = 0, where �+ f is a D 6 �Z2-equivariant operator. (Thereare subtleties onerning the domain and range of �. See [6, 7℄ for a areful treatment of thefuntion spaes.) In partiular, � + f is D 6 -equivariant beause the snowake region 
 has D 6symmetry, and (�+ f)(�u) = �(�+ f)(u), sine f is odd. As a onsequene, if u is a solution to(1), then so is every element in its group orbit (D 6 � Z2) � u.



8 JOHN M. NEUBERGER, N�ANDOR SIEBEN, AND JAMES W. SWIFTThe isotropy subgroups and �xed point subspaes are important beause of the following simpleyet powerful results. See [6, 10, 11℄.Proposition 4.5. Suppose � ats linearly on V , T : V ! V is �-equivariant and � is an isotropysubgroup of �.(a) If v 2 Fix(�) then T (v) 2 Fix(�). Thus, T jFix(�) : Fix(�)! Fix(�) is de�ned.(b) Stab(Fix(�)) = N�(�), the normalizer of � in �, and pStab(Fix(�)) = �.() T jFix(�) is N�(�)-equivariant.(d) T jFix(�) is N�(�)=�-equivariant, and N�(�)=� ats faithfully on Fix(�).If � is a subgroup of �, the normalizer of � in � is de�ned to be N�(�) := f 2 � j � = �g,whih is the largest subgroup of � for whih � is a normal subgroup. The presene of the normalizerin Proposition 4.5(b) is interesting, sine the normalizer is a property of the abstrat groups, andis independent of the group ation.Example 4.6. As a onsequene of Proposition 4.5, we an solve the PDE (1), written as (�+f)(u) =0, by restriting u to funtions in Fix(�; L2(
)). This leads to a simpler problem sine the funtionspae Fix(�; L2(
)) is simpler than L2(
). An example of this is in Costa, Ding, and Neuberger[7℄. The tehniques of that paper, applied to our problem, would �nd sign-hanging solutions withMorse index 2 within the spae Fix(D 6 ; L2(
)). This spae onsists of all funtions whih areunhanged under all of the rotations and reetions of the snowake region.Proposition (4.5) also applies to the GNGA, sine the Newton's method iteration mapping isD 6 �Z2-equivariant. If the initial guess is in a partiular �xed point subspae, all the iterates willbe in that �xed point subspae. This fat an be used to speed numerial alulations, as desribedin Setion 5.Two subgroups �1;�2 of � are onjugate (�1 � �2) if �1 = �2�1 for some  2 �. Thesymmetry type of v 2 V for the � ation is the onjugay lass of Stab(v;�). Note that Stab( �v) = Stab(v)�1. Thus, every element of a group orbit � � v has the same symmetry type.Let S = fSig denote the set of all symmetry types of a � ation on V . The set S has a naturalpartial order, with Si � Sj if there exits �i 2 Si and �j 2 Sj suh that �i � �j. The partiallyordered set (S;�) is alled the lattie of isotropy subgroups of the � ation on V [10℄. The diagramof the lattie of isotropy subgroups is a direted graph with verties Si and arrows Si  Sj if, andonly if, Si � Sj and there is no symmetry type between Si and Sj .Example 4.7. The symmetry type of a solution u to our PDE (1) for the D 6 � Z2 ation is theonjugay lass of Stab(u; D 6 � Z2); we refer to this as the symmetry type of u, without refereneto D 6 �Z2. The disussion of D 6 ating on L2(
) in Example 4.3 an easily be extended to D 6 �Z2ating on L2(
). Note that if �1 2 � � D 6 �Z2, then the average of any funtion over � is u = 0.Therefore the only isotropy subgroup of D 6 �Z2 whih ontains �1 is D 6 �Z2 itself. On the otherhand, the argument in Example 4.3 shows that any subgroup of D 6 � Z2 whih does not ontain�1 is an isotropy subgroup. Therefore, � � D 6 � Z2 is an isotropy subgroup of this group ationif and only if � = D 6 � Z2 or �1 =2 �.This result allowed us to ompute the isotropy subgroups by hand. We veri�ed our alulationsusing GAP. There are exatly 23 onjugay lasses of isotropy subgroups for the D 6 � Z2 ationon L2(
), shown in ondensed form in Figure 2. Thus, a solution to the PDE (1) has one of 23di�erent symmetry types.Irreduible Representations and the Isotypi Deomposition. In order to understand thesymmetry-breaking bifurations we need to �rst understand irreduible representations and theisotypi deomposition of a group ation. The information about the irreduible representations issummarized in harater tables [29, 31, 32, 34℄. For our purposes, irreduible representations overthe �eld R are required, see [6, 10, 11℄. The irreduible representations of � are homomorphismsfrom � to the spae of dj � dj real matries:  7! �(j)(), suh that no proper subspae of Rdj is
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�22 = h1iFigure 2. The ondensed diagram of the isotropy lattie (see [10℄) for the D 6 �Z2ation on L2(
). The verties of this diagram are the symmetry types (equivalenelasses of isotropy subgroups). We follow the onvention [6, 10, 11℄ that one element�i of eah symmetry type Si = [�i℄ is listed. The representatives �i have the propertythat �i � �j i� Si � Sj. Contour plots of solutions to PDE (1) with eah of the23 symmetry types are given in Figures 13 and 14. The diagram of the isotropylattie is ondensed as in [32℄. The small numbers on the edges tell the number ofonnetions emanating from eah symmetry type in a box. A missing small numbermeans 1. For example, the two arrows representing [�21℄ � [�13℄ and [�21℄ � [�14℄in the full diagram are ollapsed to a single arrow in the ondensed diagram. For�0 through �4, the � generator is redundant sine � = �3�, but its presene makesthe subgroups manifest. For example, �2 = h�;��;��i = h�;��i, but the threegenerators make it lear that h��;��i � h�;��;��i.



10 JOHN M. NEUBERGER, N�ANDOR SIEBEN, AND JAMES W. SWIFTinvariant under �(j)() for all  2 �. The dimension of the irreduible representation �(j) is dj. Weall W � V a �-invariant subspae of V if � �W �W . An irreduible subspae of V is an invariantsubspae with no proper invariant subspaes. Every irreduible subspae of the � ation on Vorresponds to a unique (up to similarity) irreduible representation of �. The dimension of theirreduible subspae is the same as the dimension of the orresponding irreduible representation.For eah irreduible representation �(j) of �, the isotypi omponent of V for the � ation,denoted by V (j)� , is de�ned to be the diret sum of all of the irreduible subspaes orrespondingto the �xed �(j) [6, 10, 11, 27℄. The isotypi deomposition of V is then(12) V =Mj V (j)� :Some of the isotypi omponents might be the single point at the origin. These an be left outof the isotypi deomposition. A desription of the isotypi omponents in terms of projetionoperators is given in [27℄.For any group �, we denote the trivial representation by �(1). That is �(1)() = 1 for all  2 �.Thus, if � is an isotropy subgroup of a �0 ation on V , thenV (1)� = Fix(�; V ):Example 4.8. Let us onsider the D 6 = h�; �; �i ation on L2(
). We need to onsider the sixirreduible representations of D 6 , whih are listed in [27℄, to �nd the isotypi deomposition ofL2(
). Sine these isotypi omponents are entral to our problem, we drop the D 6 and de�neV (j) := V (j)D6 , j = 1; 2; : : : ; 6 as follows:V (1) = fu 2 L2(
) j � � u = u; � � u = u; � � u = ug(13) V (2) = fu 2 L2(
) j � � u = u; � � u = �u; � � u = �ugV (3) = fu 2 L2(
) j � � u = �u; � � u = u; � � u = �ugV (4) = fu 2 L2(
) j � � u = �u; � � u = �u; � � u = ugV (5) = fu 2 L2(
) j �3 � u = u; u+ �2 � u+ �4 � u = 0gV (6) = fu 2 L2(
) j �3 � u = �u; u+ �2 � u+ �4 � u = 0g:Example 4.9. The isotypi deomposition of �13 = h�i �= Z6 illustrates some features of real repre-sentation theory. The irreduible representations of Z6 over C are all one-dimensional. They are�(j)(�) = (ei�=3)j�1 for j = 1; 2; : : : ; 6. Over the �eld R, however, the one-dimensional irreduiblerepresentations of Z6 are given by(14) �(1)(�) = 1; �(2)(�) = �1;and the two-dimensional irreduible representations of Z6, up to similarity transformations, aregiven by(15) �(3)(�) =  �12 p32�p32 �12 ! ; �(4)(�) =  12 p32�p32 12 ! :Note that �(3)(�) is matrix for a rotation by 120Æ and �(4)(�) is a 60Æ rotation matrix.An irreduible representation over R is alled absolutely irreduible if it is also irreduible over C .For example, all of the irreduible representations of D 6 listed in [27℄ are absolutely irreduible, asare the one-dimensional irreduible representations of Z6 in equation (14). On the other hand, thetwo-dimensional irreduible representations of Z6 in equation (15) are not absolutely irreduible.The four isotypi omponents of the h�i ation on L2(
) areV (1)h�i = fu 2 L2(
) j � � u = ug = V (1) � V (2)



SYMMETRY AND AUTOMATED BRANCH FOLLOWING 11V (2)h�i = fu 2 L2(
) j � � u = �ug = V (3) � V (4)V (3)h�i = V (5); and V (4)h�i = V (6):If we had used the omplex irreduible representations, some of the orresponding isotypi ompo-nents would ontain omplex-valued funtions. It is more natural to use real irreduible representa-tions, and onsider only real-valued funtions. The prie we pay is that most of the representationtheory found in books, and built into GAP, is done for omplex irreduible representations.The isotypi deomposition for eah of the 23 isotropy subgroups, �i, of D 6 �Z2 an be writtenas a diret sum of some subset of the eight spaes V (j), for j = 1; : : : ; 4, and V (j)1 and V (j)2 forj = 5; 6 de�ned in (13) and [27℄. The C++ program an easily hek if a funtion is in any of theisotypi omponents V (j)�i of BM for eah of the �i, i = 0; 1; : : : ; 22, ations.Symmetry-Breaking Bifurations. The fat that there are 23 possible symmetry types ofsolutions to the PDE (1) begs the question, do solutions with eah of these symmetry types exist?Clearly the trivial solution u = 0, with symmetry type S0, exits. Our proedure for �ndingapproximate solutions with eah of these symmetry types is to start with the trivial solution andreursively follow solution branhes reated at symmetry-breaking bifurations.Let us start by abstrating the PDE de�ned by (1), whih depends on the real parameter �. LetV be an inner produt spae and J : R�V ! R be a family of �0�invariant funtions that dependson a parameter �. That is, J(�;  � u) = J(�; u) for all  2 �0 and u 2 V . It is understood that �0is the largest known group for whih J is invariant; of ourse J is also invariant under any subgroupof �0. We will use �, or �i, to refer to an isotropy subgroup of the \full" group �0. Consider thesteady-state bifuration problem g(�; u) = 0, where g(�; u) = rJ(�; u). Throughout this paper,the gradient r ats on the u omponent. The solutions to g(�; u) = 0 are ritial points of J , sowe use the terms \solution" and \ritial point" interhangeably. Note that g : R � V ! V is afamily of �0�equivariant gradient operators on V . That is, g(�;  � u) =  � g(�; u). For our PDE,�0 = D 6 � Z2. In the numerial implementation, V = RM �= BM and g is de�ned in (5).We de�ne a branh of solutions to be a onneted omponent of f(�; u) 2 R � L2(
) j g(�; u) =0; Stab(u) = �g, where � is alled the isotropy subgroup, or symmetry, of the branh. A branh ofsolutions B1 has a symmetry-breaking bifuration at the bifuration point (��; u�) 2 B1 if a branhof solutions, B2, with a di�erent symmetry, has (��; u�) as a limit point but (��; u�) =2 B2. We saythat branh B2 is reated at this bifuration, and often refer to B1 as the mother branh and B2as the daughter branh. The symmetry of the daughter branh is always a proper subgroup of thesymmetry of the mother branh. That is, the daughter has less symmetry than the mother.The main tool for �nding bifuration points is the Hessian of the energy funtional, h. If (��; u�)is a bifuration point, then h(��; u�) is not invertible, sine otherwise the impliit funtion theoremwould guarantee the existene of a unique loal solution branh. The Morse index (MI) of a ritialpoint (�; u) is de�ned to be the number of negative eigenvalues of h(�; u) = D2J(�; u), providedno eigenvalue is 0. The Hessian is symmetri, so all of its eigenvalues are real. The MI on a branhof solutions typially hanges at a bifuration point.Example 4.10. The trivial solution to (1, 2) is u = 0, and the trivial branh is f(�; 0) j � 2 Rg.Sine h(�; 0)(v) = �v+ �v, the bifuration points of the trivial branh are (�i; 0), where �i; i 2 N,are the eigenvalues (3). If �i < � < �i+1, then the MI of the trivial solution (�; 0) is i. The i-thprimary branh is reated at the bifuration point (�i; 0) on the trivial branh. In ases with doubleeigenvalues there are two branhes reated at the same point in our problem. For example, theseond and third primary branhes are reated at �2 = �3. Near (�i; 0), the solutions on the i-thprimary branh are approximately some onstant times the i-th eigenfuntion of the Laplaian,  i.We de�ne a degenerate ritial point, or a degenerate solution, to be a point (��; u�) whihsatis�es g(��; u�) = 0 and det h(��; u�) = 0. Thus, every bifuration point is a degenerate ritialpoint. Some degenerate ritial points are not bifuration points. For example, when a branh



12 JOHN M. NEUBERGER, N�ANDOR SIEBEN, AND JAMES W. SWIFTfolds over and is not monotoni in �, the fold point is degenerate, but is not a bifuration point aswe have de�ned it. (Note that we avoid the term \saddle-node bifuration" sine there is really nobifuration.)Let us develop some notation to talk about bifurations. Suppose that (��; u�) is an isolateddegenerate ritial point of a �0-equivariant system g(�; u) = 0. Let � = Stab(u�;�0), and de�neL := h(��; u�). Note that �, not �0, is important as far as the bifuration of (��; u�) is onerned.Let E be the null spae of the �-equivariant operator L. We all E the enter eigenspae. Let �0be the point stabilizer of E. The de�nitions are repeated here for referene:(16) � := Stab(u�;�0); L := h(��; u�); E := N(L); �0 := pStab(E;�):If e 2 E, then L(e) = 0 by de�nition. For any  2 �,  � e 2 E sine the �-equivariane of Limplies that L( � e) =  � L(e) = 0. Hene,Stab(E;�) = �:Note that Stab(E;�)=pStab(E;�) = �=�0 ats faithfully on E. In the usual ase where (��; u�) isa bifuration point, not just a degenerate ritial point, we say that �=�0 is the symmetry group ofthe bifuration, or that (��; u�) undergoes a bifuration with �=�0 symmetry.In the notation of (16), L sends eah of the isotypi omponents V (j)� to itself [27, 31, 34℄.Barring \aidental degeneray," the enter eigenspae E is a �-irreduible subspae. Thus, E istypially a subspae of exatly one isotypi omponent V (j)� , and dim(E) is the dimension dj ofthe orresponding orresponding irreduible representation, �(j). Furthermore, the point stabilizerof E is the kernel of �(j) and an be omputed without knowing E. In summary, at a generibifuration point there is some irreduible representation �(j) of � suh that:E is �-irreduible; E � V (j)� ; dim(E) = �MI = dj ; �0 = f 2 � j �(j)() = Ig:Aidental degeneray is disussed in [27, 31, 34℄. We did not enounter any aidental degenerayin our numerial investigation of (1, 2), so we will not disuss it further here.We �nally have the bakground to desribe the bifurations whih our in equivariant systems.The goal is to predit what solutions will be reated at eah of the symmetry breaking bifurations,and know what vetors in E to use to start these branhes using the pmGNGA. While suh apredition is impossible for some ompliated groups, we an determine how to follow all of thebifurating branhes in the system (1, 2). We follow the treatment and notation of [10, 11℄. At asymmetry-breaking bifuration we an translate (��; u�) to the origin, and we ould, in priniple,do an equivariant Liapunov-Shmidt redution or enter manifold redution to obtain reduedbifuration equations ~g : R � E ! E where ~g(0; 0) = 0, D~g(0; 0) = 0, and ~g is � := Stab(u�)-equivariant. It is important to realize that we do not atually need to perform the Liapunov-Shmidtredution.The most powerful tool for understanding symmetry breaking bifurations is the EquivariantBranhing Lemma. Reall that absolutely irreduible representations were de�ned in Example 4.9.See [6, 10, 11℄ for a thorough disussion of the Equivariant Branhing Lemma, inluding furtherreferenes.Theorem 4.11. Equivariant Branhing Lemma (EBL) Suppose � ats absolutely irreduiblyon the spae E, and let ~g : R � E ! E be �-equivariant. Assume that � ats nontrivially, so~g(�; 0) = 0. Sine � ats absolutely irreduibly, D~g(�; 0) = (�)Id for some funtion  : R ! R,where Id is the identity matrix of size d = dim(E). Assume that (0) = 0 and 0(0) 6= 0. Let �be an isotropy subgroup of the � ation on E with dimFix(�; E) = 1. Then there are at least twosolution branhes of ~g(�; u) = 0 with isotropy subgroup � reated at (0; 0).The EBL, ombined with Liapunov-Shmidt theory, implies that there are at least two solutionbranhes of the full problem g(�; u) = 0 with isotropy subgroup � reated at the bifuration point(��; u�). We all these newly reated branhes EBL branhes sine their existene an be preditedby the EBL. Other branhes reated at a bifuration are alled non-EBL branhes.
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��h�3i h1iFigure 3. Diagrams of the six isotropy latties for the ations of D 6 = h�; �; �i oneah of the six isotypi omponents V (j) of the D 6 ation on L2(
). This desribesthe six possibilities (barring aidental degeneray) for the D 6 ation on the entereigenspae E at a degenerate ritial point.Following [6, 10, 11℄, we de�ne a maximal isotropy subgroup of a � ation on V to be an isotropysubgroup � 6= � with the property that if � is an isotropy subgroup suh that � � �, then � = �or � = �. In other words, a maximal isotropy subgroup is a maximal proper isotropy subgroup. Ifdim(Fix(�; E)) = 1, then � is a maximal isotropy subgroup of the � ation on E. The onverse,however, is not true.In gradient systems, for example the PDE (1), more an be said. If � is any maximal isotropysubgroup of the � ation on E, then there is typially a solution branh reated at the bifurationwith isotropy subgroup �. If dimFix(�; E) � 2, the branh reated is an example of a non-EBLbranh. See [30℄ for a disussion of bifurations in gradient systems.By Proposition 4.5, the e�etive symmetry group of ~g, restrited to Fix(�; E), is N�(�)=�. Thise�etive symmetry group determines how solutions with symmetry � bifurate.Example 4.12. Consider a degenerate ritial point with isotropy subgroup �1 = D 6 = h�; �; �i.Barring aidental degeneray, the enter eigenspae E is a subspae of one of the 6 isotypiomponents of the D 6 ation on L2(
) desribed in Example 4.8. Figure 3 shows the lattie ofisotropy subgroups for D 6 ating on eah of these 6 isotypi omponents V (j). These 6 ases anbe distinguished by determining whih isotypi omponent an arbitrary eigenfuntion in E belongsto. We shall go through eah of these six ases, and desribe the resulting bifuration. Reall that� = �1 = D 6 for eah of these six ases, and �0 = pStab(E;�).E � V (1) ) �0 = �1 = h�; �; �i; dimE = 1; �=�0 �= h1iE � V (2) ) �0 = �13 = h�i; dimE = 1; �=�0 �= Z2E � V (3) ) �0 = �9 = h�2; �i; dimE = 1; �=�0 �= Z2E � V (4) ) �0 = �10 = h�2; �i; dimE = 1; �=�0 �= Z2E � V (5) ) �0 = �19 = h�3i; dimE = 2; �=�0 �= D 3E � V (6) ) �0 = �22 = h1i; dimE = 2; �=�0 �= D 6 :The �rst ase, E � V (1) = Fix(�1; L2(
)), does not lead to a symmetry-breaking bifuration. TheD 6 ation on E is trivial, so the EBL does not apply. The degenerate ritial point (u�; ��) istypially a fold point (or saddle-node), not a bifuration point. In the neighborhood of the foldpoint there is only one solution branh, with isotropy subgroup �1, and the branh lies to one sideof � = �� or the other.The next three ases, with �=�0 �= Z2 symmetry, are alled pithfork bifurations. Clearly, theonly maximal isotropy subgroup is �0 in eah ase, and the EBL applies. The e�etive symmetrygroup ating on E is Z2, so there are two onjugate solution branhes reated at the bifuration.In the branh following ode we follow one of these branhes using the pmGNGA starting with anyeigenvetor e 2 E.
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). Thisdesribes the four possibilities (barring aidental degeneray) for the �13 ation onthe enter eigenspae E at a degenerate ritial point.The next ase, with E � V (5), is a bifuration with D 3 symmetry. The maximal isotropysubgroup �5 = h�; �i satis�esdimFix(�5; E) = 1; and N�1(�5)=�5 = h1i:Our branh following ode uses a projetion operator to �nd an eigenvetor e 2 E with Stab(e;�1) =�5. The pmGNGA using this eigenvetor e will follow one of the solution branhes reated at thebifuration, and the pmGNGA using the negative eigenvetor �e will �nd a branh that is notonjugate to the �rst. Bifurations with D 3 symmetry are typially transritial, and two D 3 -orbitsof branhes are reated at the bifuration [10, 11℄.The last ase, with E � V (6), is a bifuration with D 6 symmetry. There are two maximalsymmetry types, the onjugay lasses of �15 and �16. A alulation shows thatdimFix(�15; E) = dimFix(�16; E) = 1; and N�1(�15)=�15 = N�1(�16)=�16 = Z2:To follow one branh from eah of the group orbits of solution branhes reated at this bifuration,it suÆes to use the pmGNGA twie, with the eigenvetors e1; e2 2 E, where Stab(e1;�1) = �15and Stab(e2;�1) = �16. It is well-known that these EBL-branhes are typially the only branhesreated at a bifuration with D 6 symmetry [10, 11℄.Example 4.13. Consider a degenerate ritial point with isotropy subgroup �13 = h�i �= Z6. Barringaidental degeneray, the enter eigenspae E is a subspae of one of the 4 isotypi omponentsV (j)h�i de�ned in Example 4.9. Figure 4 shows the lattie of isotropy subgroups for �13 ating oneah of these 4 isotypi omponents. Reall that � = �13 = h�i for eah of these ases, and theminimal isotropy subgroup is �0 = pStab(E;�). We shall go through eah of the four ases, anddesribe the resulting bifuration:E � V (1)h�i = V (1) � V (2) ) �0 = �13 = h�i; dimE = 1; �=�0 �= h1iE � V (2)h�i = V (3) � V (4) ) �0 = �21 = h�2i; dimE = 1; �=�0 �= Z2E � V (3)h�i = V (5) ) �0 = �19 = h�3i; dimE = 2; �=�0 �= Z3E � V (4)h�i = V (6) ) �0 = �22 = h1i; dimE = 2; �=�0 �= Z6:The �rst two ases are analogous to the �rst two ases in Example 4.12. When �=�0 �= h1i there is afold point, but no symmetry breaking bifuration. There is a pithfork bifuration when �=�0 �= Z2.The next two ases are interesting beause �13 does not at absolutely irreduibly on E, and theEBL does not apply. In both ases �0 is a maximal isotropy subgroup.In the third ase, where E � V (3)h�i = V (5), every eigenfuntion in the 2-dimensional E hasisotropy subgroup �19. Sine we have a gradient system, we know that solution branhes withisotropy subgroup �19 are reated at this bifuration with Z3 symmetry. The bifuration is well-understood, and it looks like a bifuration with D 3 symmetry, exept that the \angle" of thebifurating solutions in the E plane is arbitrary. This means that trial and error is needed, in



SYMMETRY AND AUTOMATED BRANCH FOLLOWING 15general, to �nd eigenfuntions in E for whih the pmGNGA will onverge. If a branh is found fora starting eigenfuntion e, then the eigenfuntion �e is used to �nd the other solution branh.In the fourth ase, where E � V (4)h�i = V (6), every eigenfuntion in E has the same isotropysubgroup: �22 = h1i. Gradient bifurations with Z6 symmetry look like bifurations with D 6symmetry, exept that the angle in the E plane is arbitrary. Again, trial and error is needed to�nd starting eigenfuntions for whih the pmGNGA onverges.The Bifuration Digraph. A alulation similar to those summarized in Examples 4.12 and4.13 was done for eah of the isotropy subgroups of the D 6 �Z2 ation on L2(
). The alulationswere done by hand, and veri�ed with GAP. There are 59 generi symmetry-breaking bifurations,one for eah isotypi omponent V (j)�i on whih �i ats nontrivially. The amount of information isoverwhelming, so we display the essential results in what we all a bifuration digraph.De�nition 4.14. The bifuration digraph of the �0 ation on a real vetor spae V is a diretedgraph with labelled arrows. The verties are the symmetry types (equivalene lasses of isotropysubgroups). Given � � �, two isotropy subgroups of the �0 ation on V , we draw an arrow from[�℄ to [�℄ i� � is a maximal isotropy subgroup of the � ation on some isotypi omponent V (j)�of V . Eah arrow has the label �=�0, where �0 is the kernel of the � ation on V (j)� . Furthermore,eah arrow is either solid, dashed or dotted. The arrow issolid if dimFix(�; E) = 1 and N�(�)=� = Z2;dashed if dimFix(�; E) = 1 and N�(�)=� = h1i; anddotted if dimFix(�; E) � 2;where E is any irreduible subspae ontained in V (j)� .Note that if dimFix(�; E) = 1, then N�(�)=� is either Z2 or h1i, sine these are the only lineargroup ations on E �= R1 . Thus, the three arrow types (solid, dashed, and dotted) exhaust allpossibilities.Theorem 4.15. For a given �0 ation on V , every arrow in the diagram of the isotropy lattie isan arrow in the bifuration digraph.Proof. Suppose [�℄! [�℄ is an arrow in the diagram of the isotropy lattie. Then some �� 2 [�℄ is amaximal isotropy subgroup of the � ation on V . Choose u� 2 V suh that Stab(u�;�) = ��. Suha u� exists sine �� is an isotropy subgroup. Now onsider the isotypi deomposition fV (j)� gj2Jof V . We an write u� = Pj2J u(j), where u(j) 2 V (j)� are uniquely determined. Let  be anyelement of ��. Then  � u� =Pj2J  � u(j) = u�. Sine eah of the omponents V (j)� is �-invariant, � u(j) = u(j) for eah j 2 J . Thus �� � Stab(u(j);�) for eah j 2 J . Either Stab(u(j);�) = � orStab(u(j);�) = ��, sine �� is a maximal isotropy subgroup of the � ation on V . If Stab(u(j);�) =� for all j 2 J , then Stab(u�;�) = �. But Stab(u�;�) 6= �, so Stab(u(j);�) = �� for some j 2 J ,and �� is a maximal isotropy subgroup of the � ation on this omponent V (j)� of V . Therefore thebifuration digraph has an arrow from [�℄ to [��℄ = [�℄. �Theorem 4.15 says that the bifuration digraph is an extension of the diagram of the isotropylattie. The bifuration digraph has more arrows, in general. As with the lattie of isotropysubgroups, we usually draw a single element � of the equivalene lass [�℄ for eah vertex of thebifuration digraph.An arrow from � to � in the bifuration digraph indiates that a �0-equivariant gradient systemg(�; u) = 0 an have a generi symmetry-breaking bifuration where a mother branh with isotropysubgroup � reates a daughter branh with isotropy subgroup �. The symmetry group of thebifuration is �=�0, and the enter eigenspae at the bifuration point is the �-irreduible spae



16 JOHN M. NEUBERGER, N�ANDOR SIEBEN, AND JAMES W. SWIFTE. The information enoded in the label and arrow type is used by the heuristis of our branh-following algorithm. A solid arrow indiates that every e in the one-dimensional spae Fix(�; E)satis�es  � e = �e for some  2 �. Thus, there is typially a pithfork bifuration in the spaeFix(�; E). A dashed arrow indiates that  � e = e for all e 2 Fix(�; E) and  2 �. Thus,the daughter branhes bifurating in the diretions e and �e are not onjugate. A dotted arrowindiates that the EBL does not apply to this bifuration. As mentioned above, branhing ofsolutions orresponding to a dotted arrow is generi in gradient systems [30, 10℄.A ondensed bifuration digraph for the D 6 � Z2 ation on L2(
) is shown in Figure 5. Thealulations for the direted edges oming from �1 and �13 are desribed in examples 4.12 ane 4.13,respetively. The digraph has 65 direted edges, but there are only 5 possibilities for the symmetrygroup of the bifuration: �=�0 = Z2, Z3, Z6, D 3 , or D 6 . The symmetry-breaking bifuration witheah of these symmetries is well understood [10, 11℄, and eah is desribed briey in Example 4.12or 4.13. This digraph is of great help in writing an automated ode for branh following.In our problem the label �=�0 and arrow type are suÆient to haraterize the bifurationompletely. For more ompliated groups, the label may need to ontain more information aboutthe ation of � on E. For example the label �=�0 = S4 would be ambiguous, sine S4 has twofaithful irreduible representations with di�erent latties of isotropy subgroups.5. Symmetry and Computational Effiieny.Several modi�ations of the GNGA (2.1) take advantage of symmetry to speed up the alula-tions. The symmetry fores many of the omponents of the gradient and Hessian to be zero. Weidenti�ed these zero omponents and avoided doing the time-onsuming numerial integrations toompute them. At the start of the C++ program, the isotropy subgroup, �i, of the initial guess isomputed. Reall that there are M modes in the Galerkin spae BM , so dim(BM ) = M . De�neMi := dim(Fix(�i; BM )). We hose the representatives �i within eah onjugay lass so thatFix(�i; BM ) is a oordinate subspae of BM . Thus,M �Mi omponents of the gradient g(�; u) arezero if Fix(u) = �i. The numerial integrations in (5) are done only for the Mi potentially nonzeroomponents of g. Similarly, Mi(Mi + 1)=2 rather than M(M + 1)=2 numerial integrations areneeded to ompute the part of the Hessian matrix h needed by the GNGA algorithm: The numer-ial integrations in (6) are done only if  j and  k are both in Fix(�i; BM ). The system h� = g forthe Newton step � redues to a system of Mi equations in Mi unknowns. After Newton's methodonverges to a solution, the full Hessian needs to be alulated in order to ompute the MI. Here,too, we an take advantage of the symmetry: Sine h is �i -equivariant, hj k = 0 if  j and  k arein di�erent isotypi omponents V (j)�i of BM .As an example, onsider the exeution time for approximating a solution with �1 symmetryusing M = 300 modes and a level ` = 5 grid on a 1GHz PC. Our C++ ode uses only M1 = 30modes, and takes about 1.5 seonds per Newton step, ompared to 44 seonds when the symmetryspeedup is not implemented. 6. Automated Branh Following.The branh following ode is a omplex olletion of about a dozen Perl sripts,Mathematia andGnuplot sripts, and a C++ program. These programs write and all eah other fully automatiallyand ommuniate through output �les, pipes and ommand line arguments. A omplete bifurationdiagram an be produed by a single all to the main Perl sript.Two hoies for the funtion of u plotted vs. � are shown in Figure 6. In most bifurationdiagrams we plot approximate solutions u evaluated at a generi point (2=27; 4p3=27) (the big dotin Figure 1) versus the parameter �; other hoies for the vertial axis suh as J(u) or kuk1 lead toless visible separation of branhes. Two onjugate solutions an have di�erent values at the generipoint, but sine our program follows only one branh in eah group orbit this does not ause aproblem.
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) is a subgraph of the digraph in Figure 5,so the bifurating branhes would be followed properly unless the symmetry of the mother solutionis inorretly identi�ed. The Perl sripts whih start with the trivial branh would have to bemodi�ed, sine u = 0 is not a solution when f is not odd (unless f(0) = 0). If f(0) = 0, thetrivial branh exists, but its bifurations are not properly desribed by the bifuration digraph inFigure 5, and some speial ode would be needed to handle these bifurations.It is valid to ask the question \does the GNGA onverge" (as implemented in this urrent re-searh). While we do not have a omplete proof aÆrming the positive of this onjeture, manyreferenes ontain relevant theorems. The GNGA is an implementation of Newton's method, whihindeed onverges under standard assumptions. In [14℄, one �nds the lassial �xed point itera-tion proof that Newton's method in RN onverges when the initial guess is suÆiently lose to a
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�8 = h��; �i �= Z2� Z2 �9 = h�2; �i �= D 3 �10 = h�2; �i �= D 3Figure 13. The ation of the generators of D 6 on the plane, along with ontourplots of solutions with symmetry types S0; : : : ; S10 at � = 0. Reall that Si = [�i℄.
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�20 = h��3i �= Z2 �21 = h�2i �= Z3 �22 = h1iFigure 14. Contour plots of solutions with symmetry types S11; : : : ; S22 at � = 0.
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Figure 15. A plot of u(2=27; 4p3=27) as a funtion of the number of modes forthe lowest energy solution at � = 0 with symmetry type S10. The point at M = 300mathes the point labelled with S10 in Figure 9.nondegenerate zero of the objet funtion. This proof applies almost without hange to the in�-nite dimensional ase. Also addressed in [14℄ are algorithms where the objet funtion and/or itsderivative are only approximated; this would apply to our implementation due to numerial inte-gration errors, as well as owing to our imperfet knowledge of the eigenfuntions and orrespondingeigenvalues. While not disussed exatly in the ited literature, elementary �xed point argumentsindiate that the restrition of our objet funtion rJ to suÆiently large subspaes BM will stillresult in onvergent iterations. It would be worthwhile to string these type of results togetherin order to obtain a \best possible" GNGA onvergene theorem. Monograph [13℄ gives an easyintrodution into some of the details of implementing Newton's method to solve nonlinear prob-lems. Further, in the spirit of [7℄ and [35℄, by the invariane of the Newton map, any onvergeneresult should hold in �xed point subspaes orresponding to a given symmetry type. The artiles[20, 35℄ and others by those authors disuss the onvergene of algorithms similar to the GNGA,at times also onsidering symmetry restritions. Finally, the well-known book [3℄ ontains relevantonvergene results for Newton and approximate Newton iterative �xed point algorithms.In summary, we have written a suite of programs that automatially omputes the bifurationdiagram of the PDE (1, 2). The program �nds solutions with eah of the 23 symmetry types byfollowing solution branhes whih are onneted to the trivial branh by a sequene of symmetry-breaking bifurations. A thorough understanding of the possible symmetry-breaking bifurationsis required for this task. We introdued the bifuration digraph, whih summarizes the results ofthe neessary symmetry alulations. For the group D 6 �Z2, these alulations were done by handand veri�ed by the GAP omputer program [8, 21℄. In the future, we plan to implement automatedbranh following in systems where the symmetry group is so ompliated that GAP is neessary.
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