
RUBBLING AND OPTIMAL RUBBLING OF GRAPHSCHRISTOPHER BELFORD AND NÁNDOR SIEBENAbstrat. A pebbling move on a graph removes two pebbles at a vertex and adds onepebble at an adjaent vertex. Rubbling is a version of pebbling where an additional moveis allowed. In this new move one pebble is removed at verties v and w adjaent to avertex u and an extra pebble is added at vertex u. A vertex is reahable from a pebbledistribution if it is possible to move a pebble to that vertex using rubbling moves. Therubbling number of a graph is the smallest number m needed to guarantee that any vertexis reahable from any pebble distribution of m pebbles. The optimal rubbling numberis the smallest number m needed to guarantee a pebble distribution of m pebbles fromwhih any vertex is reahable. We determine the rubbling and optimal rubbling number ofsome families of graphs and we show that Graham's onjeture does not hold for rubblingnumbers. 1. IntrodutionGraph pebbling has its origin in number theory. It is a model for the transportation ofresoures. Starting with a pebble distribution on the verties of a simple onneted graph,a pebbling move removes two pebbles from a vertex and adds one pebble at an adjaentvertex. We an think of the pebbles as fuel ontainers. Then the loss of the pebble during amove is the ost of transportation. A vertex is alled reahable if a pebble an be moved tothat vertex using pebbling moves. There are several questions we an ask about pebbling.How many pebbles will guarantee that every vertex is reahable, or that all verties arereahable at the same time? How an we plae the smallest number of pebbles suh thatevery vertex is reahable? For a omprehensive list of referenes for the extensive literaturesee the survey papers [5, 6℄.In the urrent paper we propose the study of an extension of pebbling alled rubbling. Inthis version we also allow a move that removes a pebble from the verties v and w that areadjaent to a vertex u, and adds a pebble at vertex u. We �nd rubbling versions of some of thewell known pebbling tools suh as the transition digraph, the No Cyle Lemma, squishing andsmoothing. We use these tools to �nd rubbling numbers and optimal rubbling numbers forsome families of graphs inluding paths, trees, omplete graphs, omplete bipartite graphs,wheels and yles. We also show that Graham's onjeture does not hold for rubblingnumbers.Our tehniques are similar to those used in the pebbling literature, but they are not thesame. Some rubbling results require ompletely di�erent tools, some require more e�ortsthan their pebbling ounterparts. Some graphs have equal pebbling and rubbling numbers,some have a muh smaller rubbling number than pebbling number. It seems intriguing tounderstand what graph properties are responsible for these di�erenes, in partiular, whatproperty fores the pebbling and the rubbling number to be the same. Rubbling also seemsto be onneted to frational pebbling. Developing the theory of rubbling may introduenew tools and deeper understanding of pebbling.Date: 10/11/2008.1991 Mathematis Subjet Classi�ation. 05C99.Key words and phrases. pebbling, optimal pebbling, rubbling.1



2 CHRISTOPHER BELFORD AND NÁNDOR SIEBEN2. PreliminariesLet G be a simple onneted graph. We use the notation V (G) for the vertex set and
E(G) for the edge set. A pebble funtion on a graph G is a funtion p : V (G) → Z where p(v)is the number of pebbles plaed at v. A pebble distribution is a nonnegative pebble funtion.The size of a pebble distribution p is the total number of pebbles ∑

v∈V (G) p(v). We aregoing to use the notation p(v1, . . . , vn, ∗) = (a1, . . . , an, q(∗)) to indiate that p(vi) = ai for
i ∈ {1, . . . , n} and p(w) = q(w) for all w ∈ V (G) \ {v1, . . . , vn}.De�nition 2.1. Consider a pebble funtion p on the graph G. If {v, u} ∈ E(G) then thepebbling move (v, v → u) removes two pebbles at vertex v and adds one pebble at vertex uto reate a new pebble funtion

p(v,v→u)(v, u, ∗) = (p(v) − 2, p(u) + 1, p(∗)).If {w, u} ∈ E(G) and v 6= w then the strit rubbling move (v,w → u) removes one pebbleeah at verties v and w and adds one pebble at vertex u to reate a new pebble funtion
p(v,w→u)(v,w, u, ∗) = (p(v) − 1, p(w) − 1, p(u) + 1, p(∗)).A rubbling move is either a pebbling move or a strit rubbling move.Note that the rubbling moves (v,w → u) and (w, v → u) are the same. Also note thatthe resulting pebble funtion might not be a pebble distribution even if p is.De�nition 2.2. A rubbling sequene is a �nite sequene s = (s1, . . . , sk) of rubbling moves.The pebble funtion gotten from the pebble funtion p after applying the moves in s isdenoted by ps.The onatenation of the rubbling sequenes r = (r1, . . . , rk) and s = (s1, . . . , sl) isdenoted by rs = (r1, . . . , rk, s1, . . . , sl).De�nition 2.3. A rubbling sequene (s1, . . . , sn) is exeutable from the pebble distribution

p if p(s1,...,si) is nonnegative for all i ∈ {1, . . . , n}. A vertex v of G is reahable from thepebble distribution p if there is an exeutable rubbling sequene s suh that ps(v) ≥ 1. Therubbling number ρ(G) of a graph G is the minimum number m suh that every vertex of Gis reahable from any pebble distribution of size m.A vertex is reahable if a pebble an be moved to that vertex using rubbling moves withatual pebbles without ever running out of pebbles. Changing the order of moves in anexeutable rubbling sequene s may result in a sequene r that is no longer exeutable. Onthe other hand the ordering of the moves has no e�et on the resulting pebble funtion, thatis, ps = pr. This justi�es the following de�nition.De�nition 2.4. Let S be a multiset of rubbling moves. The pebble funtion gotten fromthe pebble funtion p after applying the moves in S in any order is denoted by pS.3. Rubbling treesThe pebbling number of trees was found in [2℄. We modify Chung's argument to �ndthe rubbling number of trees. Let v be a vertex of a tree G. Let →v

G be the digraph gottenfrom G by direting the edges towards v. A path partition of →v

G is an ordered partition
P = (P1, . . . , Pm) of the edges of →v

G into direted paths so that pi ≥ pi+1 where pi is thelength of Pi for all i. We all (p1, . . . , pm) the length sequene of P. A path partition of
G is a path partition of →v

G for some vertex v of G. A path partition P majorizes anotherpath partition P ′ if (p1, . . . , pm) ≥ (p′1, . . . , p
′
m′) in the lexiographi order. A path partition



RUBBLING AND OPTIMAL RUBBLING OF GRAPHS 3is v-maximum if it majorizes all path partitions of →v

G . A path partition is maximum if itmajorizes all path partitions of G.For k ∈ N and v ∈ V (G) let ρ(G, v, k) be the minimum number m suh that for everypebble distribution p on G with size m there is an exeutable rubbling sequene s with
ps(v) ≥ k. Note that ρ(G) = max{ρ(G, v, 1) | v ∈ V (G)}. Also note that ρ(G, v, k + 1) − 1is the maximum size of a pebble distribution on G from whih at most k pebbles an bemoved to vertex v.Proposition 3.1. Let v be a vertex of the tree G and (p1, . . . , pm) be the length sequene ofa v-maximum path partition P of →v

G . Then ρ(G, v, k) = k2p1 +
∑m

i=2 2pi−1 − m + 1 for all
k ≥ 1.Proof. We use indution on the number of verties of G. The formula learly works when
|V (G)| = 1. For the indutive step let {v1, . . . , vn} be the set of verties adjaent to v.The removal of v from →v

G reates a digraph that is the disjoint union of the direted trees
→v1

G1 , . . . ,
→vn

Gn . The path partition P indues a maximum path partition of →vi

Gi with lengthsequene (pi,1 − 1, pi,2, . . . , pi,mi
) for all i. With this notation, the multisets {p1, . . . , pm}and {p1,1, . . . , p1,m1

, . . . , pn,1, . . . , pn,mn} are equal. We an assume without loss of generalitythat p1 = p1,1. Let ki be the number of pebbles reahing vi from Gi. Then
ρ(G, v, k) = max

{
n∑

i=1

(ρ(Gi, vi, ki + 1) − 1) |

⌊
k1 + · · · + kn

2

⌋

< k

}

+ 1and so by the indutive hypothesis
ρ(G, v, k) = max







n∑

i=1

(
(ki + 1)2pi,1−1 +

mi∑

j=2

2pi,j−1 − mi

)
| k1 + · · · + kn ≤ 2k − 1






+ 1.Sine 2a + 2b ≥ 2a−1 + 2b+1 for all integers satisfying a > b, the maximum ours when

k1 = 2k − 1 and k2 = · · · = kn = 0. So
ρ(G, v, k) = 2k2p1,1−1 +

m1∑

j=2

2p1,j−1 − m1 +

n∑

i=2

(2pi,1−1 +

mi∑

j=2

2pi,j−1 − mi) + 1

= k2p1,1 +

m1∑

j=2

2p1,j−1 +

n∑

i=2

mi∑

j=1

2pi,j−1 −

n∑

i=1

mi + 1

= k2p1 +
m∑

i=2

2pi−1 − m + 1.

�Proposition 3.2. Let (p1, . . . , pm) be the length sequene of a maximum path partition of
G. Then ρ(G) = 2p1 +

∑m
i=2 2pi−1 − m + 1.Proof. The result follows from the previous proposition and the fat that 2a+2b ≥ 2a−1+2b+1for all integers satisfying a > b. �The pebbling number of G is π(G) =

∑m
i=1 2pi − m + 1 by [2℄. The following is animportant speial ase of Proposition 3.2.Proposition 3.3. The rubbling number of the path Pn with n verties is ρ(Pn) = 2n−1.Note that the pebbling number of Pn is also π(Pn) = 2n−1. As another appliation ofProposition 3.2, we an �nd the rubbling number of a omplete binary tree.



4 CHRISTOPHER BELFORD AND NÁNDOR SIEBENProposition 3.4. The rubbling number of the omplete binary tree Bh with height h is
ρ(Bh) = 4h + (h − 3)2h−1 + 2.Proof. The length sequene of a maximum path partition is

(2h,

2
︷ ︸︸ ︷

h − 1, h − 1,

22

︷ ︸︸ ︷

h − 2, . . . , h − 2, . . . ,

2h−1

︷ ︸︸ ︷

1, . . . , 1 ).The result now follows from the alulation below
ρ(Bh) = 22h − 1 + 2(2h−2 − 1) + · · · + 2h−2(2 − 1) + 2h−1(20 − 1) + 1

= 4h + (h − 2)2h−1 − (1 + 2 + · · · + 2h−2) + 1

= 4h + (h − 3)2h−1 + 2.

�4. The transition digraph and the No Cyle LemmaDe�nition 4.1. Given a multiset S of rubbling moves on G, the transition digraph T (G,S)is a direted multigraph whose vertex set is V (G), and eah move (v,w → u) in S isrepresented by two direted edges (v, u) and (w, u). The transition digraph of a rubblingsequene s = (s1, . . . , sn) is T (G, s) = T (G,S), where S = {s1, . . . , sn} is the multiset ofmoves in s. Let d−
T (G,S) represent the in-degree and d+

T (G,S) the out-degree in T (G,S). Wesimply write d− and d+ if the transition digraph is lear from ontext.The transition digraph only depends on the rubbling moves and the graph but not onthe pebble distribution or on the order of the moves. It is possible that T (G,S) = T (G,R)even if S 6= R. If T (G,S) = T (G,R) then pS = pR, so the e�et of a rubbling sequene ona pebble funtion only depends on the transition digraph. In fat we have the following.Lemma 4.2. If p is a pebble funtion on G and S is a multiset of rubbling moves then
pS(v) = p(v) + d−(v)/2 − d+(v)for all v ∈ V (G).Proof. The three terms on the right hand side represent the original number of pebbles, thenumber of pebbles arrived at v and the number of pebbles moved away from v. �We are often interested in the value of qR(v) − pS(v). The funtion ∆ de�ned in thefollowing lemma is going to simplify our notation. The three parameters of ∆ representthe hange in the number of pebbles, the hange in the in-degree and the hange in theout-degree. The proof is a trivial alulation.Lemma 4.3. De�ne ∆(a, b, c) = a + b/2 − c. Then

qR(v) − pS(v) = ∆(q(v) − p(v), d−
T (G,R)(v) − d−

T (G,S)(v), d+
T (G,R)(v) − d+

T (G,S)(v)).If the rubbling sequene s is exeutable from a pebble distribution p then we must have
ps ≥ 0. This motivates the following terminology.De�nition 4.4. A multiset S of rubbling moves on G is balaned with a pebble distribution
p at vertex v if pS(v) ≥ 0. We say S is balaned with p if S is balaned with p at all
v ∈ V (G), that is, pS ≥ 0. We say that a rubbling sequene s is balaned with p if themultiset of moves in s is balaned with p.
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OOFigure 4.1. Arrows of T (G,Q). The solid arrows belong to C.
S is trivially balaned with a pebble distribution at v if d+

T (G,S)(v) = 0. The balaneondition is neessary but not su�ient for a rubbling sequene to be exeutable. Thepebble distribution p(u, v,w) = (1, 1, 1) on the yle C3 is balaned with s = ((u, u →
v), (v, v → w), (w,w → u)), but s is not exeutable. The problem is aused by the yle inthe transition digraph. The goal of this setion is to overome this di�ulty.De�nition 4.5. A multiset of rubbling moves or a rubbling sequene is alled ayli if theorresponding transition digraph has no direted yles. Let S be a multiset of rubblingmoves. An ayli multiset R ⊆ S is alled an untangling of S if pR ≥ pS.Proposition 4.6. Every multiset of rubbling moves has an untangling.Proof. Let S be the multiset of rubbling moves. Suppose that T (G,S) has a direted yle
C. Let Q be the multiset of elements of S orresponding to the arrows of C, see Figure 4.1.We show that pR ≥ pS where R = S \ Q. If v ∈ V (C) then there is an a ≤ −1 suh that

pR(v) − pS(v) = ∆(0,−2, a) = −1 − a ≥ 0.If v ∈ V (G) \ V (C) then there is an a ≤ 0 suh that
pR(v) − pS(v) = ∆(0, 0, a) ≥ 0.We an repeat this proess on R until we eliminate all the yles. This an be �nishedin �nitely many steps sine every step dereases the number of edges in R. The resultingmultiset is an untangling of S. �Note that a multiset of moves an have several untanglings. Also note that if a pebbledistribution p is balaned with S and R is an untangling of S then pR ≥ pS ≥ 0 and so p isalso balaned with R.Proposition 4.7. If the pebble distribution p on G is balaned with the ayli multiset Sof rubbling moves then there is a sequene s of the elements of S suh that s is exeutablefrom p.Proof. First note that if the pebble distribution q on G is balaned with the multiset R ofrubbling moves and t = (v,w → u) ∈ R suh that d−

T (G,R)(v) = 0 = d−
T (G,R)(w) then t isexeutable from q. If v 6= w then q(v) ≥ d+

T (G,R)(v) ≥ 1 and q(w) ≥ d+
T (G,R)(w) ≥ 1. If

v = w then q(v) ≥ d+(v) ≥ 2. In both ases t is exeutable from q.We de�ne s reursively. Let R1 = S. Sine R1 is ayli, we must have a move s1 =
(v1, w1 → u1) ∈ R1 suh that d−

T (G,R1)(v1) = 0 = d−
T (G,R1)(w1). Then s1 is exeutable from

p. Let Ri = Ri−1 \ {si−1}. Then Ri is ayli so we must have a move si = (vi, wi →
ui) ∈ Ri suh that d−

T (G,Ri)
(vi) = 0 = d−

T (G,Ri)
(wi). Then p(s1,...,si−1) is balaned with

Ri sine (p(s1,...,si−1))Ri
= pS ≥ 0 and so si is exeutable from p(s1,...,si−1). The sequene

s = (s1, . . . , s|S|) is an ordering of the elements of S that is exeutable from p. �The following is the rubbling version of the No-Cyle Lemma for pebbling [3, 7, 8℄.



6 CHRISTOPHER BELFORD AND NÁNDOR SIEBEN
−(2/2 − 2) = 1 v1

//
// v2

−(2/2 − 1) = 0 v6 // v7 •oo

−(0/2 − 1) = 1 v8 // • •oo

−(2/2 − 2) = 1 v3 // v4 v5ooFigure 5.1. Arrows in T (G,S) representing the possible types of rubblingmoves in E. The verties in the same box are equivalent. The solid arrowsonnet equivalent verties. The alulation on the left shows the hange in
∑

i(
1
2d−(vi) − d+(vi)) after the removal of one of the rubbling moves.Lemma 4.8. (No Cyle) Let p be a pebble distribution on G and v ∈ V (G). The followingare equivalent.(1) v is reahable from p.(2) There is a multiset S of rubbling moves suh that S is balaned with p and pS(v) ≥ 1.(3) There is an ayli multiset R of rubbling moves suh that R is balaned with p and

pR(v) ≥ 1.(4) v is reahable from p through an ayli rubbling sequene.Proof. If v is reahable from p then there is an exeutable sequene s of rubbling moves.The multiset S of rubbling moves of s is balaned with p and pS(v) ≥ 1. So (1) implies(2). If S satis�es (2) then an untangling R of S satis�es (3). Suppose R satis�es (3). ByProposition 4.7, there is an exeutable ordering r of the moves of R. This r is ayli and
v is reahable through r sine pr(v) = pR(v) ≥ 1. So (3) implies (4). Finally, (4) learlyimplies (1). �Corollary 4.9. If a vertex is reahable from a pebble distribution p on G then it is alsoreahable by a rubbling sequene in whih no move of the form (v, a → u) is followed by amove of the form (u, b → v). 5. Basi resultsIt is lear from the de�nition that for all graphs G we have ρ(G) ≤ π(G) where π is thepebbling number. For the pebbling number we have 2diam(G) ≤ π(G). This is also true forthe rubbling number.Proposition 5.1. If the graph G has diameter d then 2d ≤ ρ(G).Proof. Let v0 and vd be verties at distane d. Let p(v0, ∗) = (m, 0) be a pebble distributionfrom whih vd is reahable through the rubbling sequene s. We now build a quotientrubbling problem. Let [v] be the equivalene lass of v in the partition of the verties of Gaording to their distanes from v0. The quotient simple graph H is isomorphi to Pd+1with leaves [v0] = {v0} and [vd]. Let q([v]) =

∑

w∈[v] p(w) for all [v] ∈ V (H) and note that
q([v0], ∗) = (m, 0). The rubbling sequene s indues a multiset R of rubbling moves on H.We onstrut this R from the multiset S of rubbling moves of s. Let E be the multiset ofmoves of S of the form (v,w → u) where v ∈ [u] or w ∈ [u]. De�ne R to be the multiset ofmoves of the form ([v], [w] → [u]) where (v,w → u) runs through the elements of S \ E.We show that R is balaned with q . Figure 5.1 shows the possible types of moves in E.The removal of any of these moves does not derease the value of ∑

vi∈[v](
1
2d−(vi)− d+(vi))and so

qR([v]) =
∑

vi∈[v]

pS\E(vi) ≥
∑

vi∈[v]

pS(vi) ≥ 0
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Figure 5.2. The Petersen graph P .sine p is balaned with S.We also have qR([vd]) ≥ 1 sine vd is reahable and so pS(vd) ≥ 1. Thus [vd] is reahablefrom q and so the result now follows from Proposition 3.3. �For the pebbling number we have π(G) ≥ |V (G)|. This inequality does not hold for therubbling number as we an see in the next result.Proposition 5.2. We have the following values for the rubbling number:a. ρ(Kn) = 2 for n ≥ 2 where Kn is the omplete graph with n verties;b. ρ(Wn) = 4 for n ≥ 5 where Wn is the wheel with n verties;. ρ(Km,n) = 4 for m,n ≥ 2 where Km,n is a omplete bipartite graph;d. ρ(Qn) = 2n for n ≥ 1 where Qn is the n-dimensional hyperube;Proof. a. A single pebble is learly not su�ient but any vertex is reahable with two pebblesusing a single move.b. If we have 4 pebbles then we an move 2 pebbles to the enter using two moves.Then any other vertex is reahable from the enter in a single move. On the other hand
ρ(Wn) ≥ 2diam(Wn) = 22 = 4.. It is easy to see that from any pebble distribution of size 4 any vertex is reahable inat most 3 moves. On the other hand we have ρ(Km,n) ≥ 2diam(Km,n) = 22 = 4.d. We know [2℄ that π(Qn) = 2n. The result now follows from the inequality 2n =

2diam(Qn) ≤ ρ(Qn) ≤ π(Qn) = 2n. �The pebbling numbers of these graphs are π(Kn) = n, π(Wn) = n, π(Km,n) = m+n and
π(Qn) = 2n.Proposition 5.3. The rubbling number of the Petersen graph P is ρ(P ) = 5.Proof. Consider Figure 5.2. It is easy to see that vertex w is not reahable from the pebbledistribution p(r, s, ∗) = (3, 1, 0) and so ρ(P ) > 4. To show that ρ(P ) ≤ 5, assume that avertex is not reahable from a pebble distribution p of size 5. Sine P is vertex transitive,we an assume that this vertex is w. Then we must have

p(a) + p(b) + p(c) +

⌊
p(q) + p(r)

2

⌋

+

⌊
p(s) + p(t)

2

⌋

+

⌊
p(u) + p(v)

2

⌋

≤ 1,otherwise we ould make the total number of pebbles at verties a, b and c more than 2 afterwhih w is reahable. This fores p(a) = p(b) = p(c) = 0 and two of the remaining terms tobe 0 as well. So by symmetry we an assume that the last term is 1 and all the other termsare 0. Then we must have p(u) + p(v) = 3 and p(q) + p(r) = 1 = p(s) + p(t). A simple aseanalysis shows that w is reahable from this p, whih is a ontradition. �We know from [5℄ that the pebbling number of the Petersen graph is π(P ) = 10.



8 CHRISTOPHER BELFORD AND NÁNDOR SIEBEN6. SquishingThe following terms are needed for the rubbling version of the Squishing Lemma of [1℄.A thread in a graph is a path ontaining verties of degree 2. A pebble distribution issquished on a thread P if all the pebbles on P are plaed on a single vertex of P or on twoadjaent verties of P . A pebble distribution an be made squished using squishing moves.A squishing move removes one pebble from eah of two verties on a thread and puts twopebbles on some vertex between them on the thread.Lemma 6.1. Let P be a thread in G. If vertex x 6∈ V (P ) is reahable from the pebbledistribution p then x is reahable from p through a rubbling sequene in whih there is nostrit rubbling move of the form (v,w → u) where u ∈ V (P ).Proof. Let S be an ayli multiset of rubbling moves balaned with p suh that pS(x) ≥ 1.Let E be the multiset of strit rubbling moves of S of the form (v,w → u) where u ∈ V (P ).If e = (v,w → u) ∈ E then we have d+
T (G,S\{e})(u) = d+

T (G,S)(u) = 0 sine S is ayli andso S \ {e} is balaned with p at u. It is lear that pS\{e}(y) ≥ pS(y) for all y ∈ V (G) \ {u}and so S \ {e} is balaned with p. We still know that S \ {e} is ayli and pS\{e}(x) ≥ 1,so indution shows that R = S \ E is balaned with p.By Proposition 4.7, there is an ordering r of the elements of R that is exeutable from p.Then v is reahable through r sine pr(v) = pS(v) ≥ 1. �The following is the rubbling version of the Squishing Lemma for pebbling [1℄.Lemma 6.2. (Squishing) If vertex v is not reahable from a pebble distribution with size nthen there is a pebble distribution r of size n that is squished on eah thread not ontaining
v suh that v is not reahable from r either.Proof. The result follows from the proof of [1, Lemma 4℄ and Lemma 6.1. �7. Rubbling CnThe Squishing Lemma allows us to �nd the rubbling numbers of yles. The pebblingnumbers π(C2k) = 2k π(C2k+1) = 2

⌊
2k+1

3

⌋

+ 1 were determined in [10, 1℄.Proposition 7.1. The rubbling number of an even yle is ρ(C2k) = 2k.Proof. It is well known [10℄ that π(C2k) = 2k. The �rst result now follows sine
2k = 2diam(C2k) ≤ ρ(C2k) ≤ π(C2k) = 2k.

�Proposition 7.2. The rubbling number of an odd yle is ρ(C2k+1) = ⌊7·2k−1−2
3 ⌋ + 1.Proof. Let C2k+1 be the yle with onseutive verties

xk, xk−1, . . . , x1, v, y1, y2, . . . , yk, xk.First we show that ρ(C2k+1) ≤ ⌊7·2k−1−2
3 ⌋+1. Let p be a pebble distribution on C2k+1 fromwhih not every vertex is reahable. It su�es to show that p ontains at most ⌊7·2k−1−2

3 ⌋pebbles. By symmetry, we an assume that v is the vertex that is not reahable from p.By the Squishing Lemma, we an assume that p is squished on the thread with onseutiveverties y1, . . . , yk, xk, . . . , x1.



RUBBLING AND OPTIMAL RUBBLING OF GRAPHS 9First we onsider the ase when all the pebbles are at distane k from v, that is,
p(xk, yk, ∗) = (a, b, 0). By symmetry, we an assume that 0 ≤ a ≤ b. Then we musthave(7.1) ⌊a

2

⌋

+ b ≤ 2k − 1,otherwise we ould move ⌊a
2⌋ pebbles from vertex xk to vertex yk and then reah v from bk.Hene a

2 <
⌊

a
2

⌋
+ 1 ≤ 2k − 1 − b + 1 = 2k − b and so(7.2) a + 2b ≤ 2k+1 − 1.We also must have(7.3) ⌊

b − 2k−1

2

⌋

+ a ≤ 2k−1 − 1,otherwise we ould move ⌊ b−2k−1

2 ⌋ pebbles from vertex yk to vertex xk after whih x1 isreahable from xk and y1 is reahable from yk, and so v would be reahable by the move
(x1, y1 → v). Hene b−2k−1

2 <
⌊

b−2k−1

2

⌋

+ 1 ≤ 2k−1 − 1 − a + 1 = 2k−1 − a and so(7.4) b + 2a ≤ 2k + 2k−1 − 1.Adding (7.2) and (7.4) gives
3(a + b) ≤ 2k+1 − 1 + 2k + 2k−1 − 1 = 7 · 2k−1 − 2,whih shows that |p| = a + b ≤ ⌊7·2k−1−2

3 ⌋.Now we onsider the ase when some pebbles are loser to v than k, that is, p(xi, xi+1, ∗) =
(b, a, 0) with b ≥ 1 and a ≥ 0 for some 1 ≤ i < k. Then we must have ⌊

a
2

⌋
+ b ≤ 2i − 1 ≤

2k−1 − 1 otherwise v is reahable. Hene
|p| = a + b ≤ a −

⌊a

2

⌋

+
⌊a

2

⌋

+ b

≤
⌊a

2

⌋

+ 1 + 2k−1 − 1 ≤ 2k−1 − 1 − b + 1 + 2k−1 − 1

= 2 · 2k−1 − 2 <

⌊
7 · 2k−1 − 2

3

⌋

.Now we show that we an always distribute ⌊7·2k−1−2
3 ⌋ pebbles so that v is unreahableand so ρ(C2k+1) ≥ ⌊7·2k−1−2

3 ⌋ + 1. Let a = ⌊2k

3 ⌋ and b = ⌊5·2k−1

3 ⌋. It is easy to hek that
a =

{
2k−2

3 , k odd
2k−1

3 , k even , b =

{
5·2k−1−2

3 , k odd
5·2k−1−1

3 , k even ,

⌊
7 · 2k−1 − 2

3

⌋

=

{
7·2k−1−4

3 , k odd
7·2k−1−2

3 , k evenand so a + b = ⌊7·2k−1−2
3 ⌋. We show that v is unreahable from the pebble distribution

p(xk, yk, ∗) = (a, b, 0).It is easy to see that a and b satisfy (7.2) and (7.4). Suppose that v is reahable from p,that is, there is an ayli multiset S of rubbling moves that is balaned with p satisfying
pS(v) ≥ 1. The balane ondition at v shows that d−(v) ≥ 2. Hene S must have at leastone of (x1, y1 → v), (x1, x1 → v) or (y1, y2 → v).First assume that (x1, y1 → v) ∈ S. The argument used in the proof of Proposition 3.3shows that then T (G,S) has at least 2i−1 arrows from xi to xi−1 and from yi to yi−1 for all
i ∈ {2, . . . , k}. Sine S is ayli, any arrow in T (G,S) pointing to xk must ome from yk.So the balane ondition at xk requires m arrows from yk to xk satisfying 2k−1 ≤ a + m

2 .The balane ondition at yk gives 2k−1 + m ≤ b. Combining the two inequalities gives
2k + 2k−1 ≤ b + 2a whih ontradits (7.4).
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Figure 8.1. The produt graph C3 � C3.Next assume that (y1, y1 → v) ∈ S. Then T (G,S) has at least 2i arrows from yi to yi−1for all i ∈ {2, . . . , k}. The balane ondition at yk requires m arrows from xk to yk satisfying
2k ≤ b + m

2 . We must have d−(xk) = 0, otherwise there is a direted path from v to xkwhih is impossible sine S is ayli. The balane ondition at xk gives m ≤ a. Combiningthe two inequalities gives 2k+1 ≤ a + 2b whih ontradits (7.2).Similar argument shows that (x1, x1 → v) ∈ S is also impossible. �8. Graham's onjetureThe Cartesian produt G � H of the graphs G and H has vertex set V (G � H) =
V (G) × V (H) and edge set E(G � H) = {{(v1, w1), (v2, w2)} | (v1 = v2 and {w1, w2} ∈
E(H)) or (w1 = w2 and {v1, v2} ∈ E(G))}.Graham's onjeture π(G � H) ≤ π(G)π(H) generated a lot of interest but it is stillunresolved. We know from [4℄ that the inequality holds for the optimal pebbling number.Proposition 8.1. ρ(C3 � C3) > 4.Proof. Using the notation of Figure 8.1, we show that w is not reahable from the pebbledistribution p(u, v, ∗) = (3, 1, 0). All the pebbles in p are of distane 2 from w. We haveonly 4 pebbles, so the only possibility to reah w is to use pebbling moves that derease thedistane of the pebbles from w. This is impossible sine u and v do not have a ommonneighbor vertex that is at distane 1 from w. �It is not hard to see that ρ(C3 � C3) = 5. Note that ρ(C3 � C3) > 4 = ρ(C3)ρ(C3) soGraham's onjeture does not hold for rubbling numbers.9. Optimal rubblingOptimal pebbling was studied in [10, 9, 4, 1℄. In this setion we investigate the optimalrubbling number of ertain graphs.De�nition 9.1. The optimal rubbling number ρopt(G) of a graph G is the minimum number
m for whih there is a pebble distribution of size m from whih every vertex of G is reahable.Proposition 9.2. We have the following values for the optimal rubbling number:a. ρopt(Kn) = 2 for n ≥ 2 where Kn is the omplete graph with n verties;b. ρopt(Wn) = 2 for n ≥ 5 where Wn is the wheel with n verties;. ρopt(Km,n) = 3 for m,n ≥ 3 where Km,n is the omplete bipartite graph;d. ρopt(P ) = 4 where P is the Petersen graph.
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��
◦ ◦ ◦ ◦

v1 v2 v3 v4 v5 • •

•

LLLLLLLFigure 9.1. Visualization of a single rolling move with i = 2 and n = 5.An arrow indiates the transfer of a single pebbleProof. a. Not every vertex of Kn is reahable from a distribution of size 1 sine n ≥ 2. Onthe other hand any vertex is reahable by a single move from any distribution of size 2.b. Again, not every vertex of Wn is reahable from a distribution of size 1. On the otherhand, every vertex is reahable from the distribution that has 2 pebbles at the enter of Wn.. Let A and B be the natural partition of the vertex set of Km,n. Let p be a pebbledistribution of size 2. If p plaes both pebbles on verties in A then there is a vertex in Athat is not reahable from p. If p plaes both pebbles on verties in B then there is a vertexin B that is not reahable from p. If p plaes one pebble on a vertex in A and one pebble ona vertex in B then both A and B have verties that are unreahable from p. On the otherhand any vertex is reahable in at most two moves from a pebble distribution that plaesone pebble on a vertex in A and two pebbles on a vertex in B.d. Every vertex is reahable from the pebble distribution that has 4 pebbles on any ofthe verties. We show that 3 pebbles are not su�ient to make every vertex reahable usingthe notation of Figure 5.2. By symmetry, we an assume that a pebble is plaed on vertex
w and a seond pebble is plaed on w, a or q. A simple ase analysis shows that in all threeases it is impossible to plae the third pebble to make eah vertex reahable. �The optimal pebbling numbers of these graphs are πopt(Kn) = 2, πopt(Wn) = 2,
πopt(Km,n) = 3 and πopt(P ) = 4.Smoothing was used in [1℄ to study optimal pebbling numbers. A smoothing move removestwo pebbles from a vertex v ontaining at least three pebbles and adds one pebble at eahneighbor of v. A smoothing move is only allowed if v has at least three pebbles. Rollingmoves serve the same purpose for rubbling as the smoothing moves for pebbling. We wantto restrit the set of possible pebble distributions we need to onsider, to determine thevalue of the optimal rubbling number.De�nition 9.3. Let v1, . . . , vn be the onseutive verties of a path suh that the degree of
v1 is 1 and the degrees of v2, v3, . . . , vn−1 are all 2. The subgraph indued by {v1, . . . , vn}is alled an arm of the graph. Let p be a pebble distribution suh that p(vi) ≥ 2 for some
i ∈ {1, . . . , n− 1}, p(vn) = 0, and p(vj) ≥ 1 for all j ∈ {1, . . . , n− 1}. A single rolling movereates a new pebble distribution q by taking one pebble from vi and plaing it on vn, thatis q(vi, vn, ∗) = (p(vi) − 1, 1, p(∗)). See Figure 9.1.Lemma 9.4. Let q be a pebble distribution on G gotten from the pebble distribution p byapplying a single rolling move from vi to vn on the arm with verties v1, . . . , vn. If vertex
u ∈ G is reahable from p then u is also reahable from q.Proof. If u is a vertex of the arm then it is learly reahable from q so we an assume that
u is not on the arm. Let S be an ayli multiset of rubbling moves balaned with p suhthat pS(u) ≥ 1. Let P be a maximum length direted path in T (G,S) starting at vi andnot going further than vn. Then P has onseutive verties vi = vn0

, vn1
. . . , vnk

on thearm. Let R be the multiset ontaining the elements of S without the moves orrespondingto the arrows of P . We show that R is balaned with q and so u is reahable from q sine
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vi

//
// vn1

//
// · · ·

//
// vnk vi

//
// · · ·

//
//
vnk−1

// vnk •oo

vi vi // vnk •ooFigure 9.2. Four possible on�gurations for T (G,S \ R). The solid arrowsrepresent the arrows of P .
•
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• v1 v2 v3 v4 v5 • •

•

qqqqqqq
•

LLLLLLLFigure 9.3. Visualization of a double rolling move with i = 2 and n = 5.An arrow indiates the transfer of a single pebble.
qR(u) = pS(u) ≥ 1. Figure 9.2 shows the possible on�gurations for T (G,S \ R). If nk = nthen

qR(vnk
) = pS(vnk

) + ∆(1,−2, 0) = pS(vnk
) ≥ 0,while if nk 6= n then d+

T (G,S)(vnk
) = 0 and so

qR(vnk
) = pS(vnk

) + ∆(0,−2, 0) ≥ pS(vnk
) − 1 ≥ 0.So R is balaned with q at vnk

. If d+
T (G,S)(vn0

) = 0 then n0 = nk, otherwise there is an
a ∈ {−1,−2} suh that

qR(vn0
) = pS(vn0

) + ∆(−1, 0, a) ≥ pS(vn0
) ≥ 0and so R is balaned with q at vn0

. If 0 < j < k then there is an a ∈ {−1,−2} suh that
qR(vnj

) = pS(vnj
) + ∆(0,−2, a) ≥ pS(vnj

) ≥ 0and so R is balaned with q at vnj
. It is lear that R is balaned with q at every othervertex. �De�nition 9.5. Let v1, . . . , vn be the onseutive verties of a path suh that the degreesof v2, v3, . . . , vn−1 are all 2. Let p be a pebble distribution suh that p(v1) = 0 = p(vn),

p(vi) ≥ 2 for some i ∈ {2, . . . , n − 1} and p(vj) ≥ 1 for all j ∈ {2, . . . , n − 1}. A doublerolling move reates a new pebble distribution q by taking two pebbles from vi and plaingone pebble on v1 and one pebble on vn, that is q(vi, v1, vn, ∗) = (p(vi) − 2, 1, 1, p(∗)). SeeFigure 9.3.Lemma 9.6. Let q be a pebble distribution on G gotten from the pebble distribution pby applying a double rolling move from vertex vi to verties v1 and vn on the path withonseutive verties v1, . . . , vn. If vertex u ∈ G is reahable from p then u is also reahablefrom q.Proof. If u ∈ {v1, . . . , vn} then it is learly reahable from q so we an assume that u 6∈
{v1, . . . , vn}. Let S be an ayli multiset of rubbling moves balaned with p suh that
pS(u) ≥ 1. Let P be a maximum length direted path in T (G,S) starting at vi and not goingfurther than v1 or vn. Then P has onseutive verties vi = vn0

, vn1
, . . . , vnk

∈ {v1, . . . , vn}.Let R be the multiset ontaining the elements of S without the moves orresponding to thearrows of P . An argument similar to the one in the proof of Lemma 9.4 shows that R isbalaned with q at every vertex exept maybe at vi. If nk = n0 or the arrow (vn0
, vn1

) in P
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vi //

// vn1 •oo
oo

• // • vioo // vn1 •oo

vi
//

//
// vn1 •oo • vioo

oo
// vn1 •ooFigure 9.4. The four possible on�gurations for T (G,S \ R̃). The solidarrows represent the moves orresponding to the arrows of P̃ . The dottedarrows represent the moves orresponding to the arrows of P .orresponds to a pebbling move, then R is balaned with q at vi as well. Then u is reahablefrom q sine qR(u) = pS(u) ≥ 1.So we an assume that (vn0

, vn1
) orresponds to a strit rubbling move and that k = 1.Let P̃ be a maximum length path in T (G,R). Sine k = 1, the length of P̃ is either 0 or 1.If this length is 0, then q is balaned with R at vi sine d+

T (G,R)(vi) = 0 and we are done. Ifthe length of P̃ is 1, then let R̃ be the multiset ontaining the elements of R without themoves orresponding to the arrows of P̃ . Figure 9.4 shows the possibilities for T (G,S \ R̃).It is easy to hek that R̃ is balaned with q in eah ase. Thus u is reahable from q sine
qR̃(u) ≥ pS(u). �Rolling moves make it possible to �nd the optimal rubbling number of paths and yles.The optimal pebbling number πopt(Pn) =

⌈
2n
3

⌉
= πopt(Cn) was determined in [10, 1℄.Proposition 9.7. The optimal rubbling number of the path is ρopt(Pn) = ⌈n+1

2 ⌉.Proof. Let Pn be the path with onseutive verties v1, . . . , vn. It is lear that every vertexis reahable from the pebble distribution
p(vi) =

{

1, i is odd or i = n

0, elsewhih has size ⌈n+1
2 ⌉.Now assume that there is a pebble distribution of size ⌈n+1

2 ⌉− 1 from whih every vertexof Pn is reahable. Let us apply all available rolling moves (single or double). The proessends in �nitely many steps sine a rolling move redues the number of pebbles on vertieswith more than one pebble by at least one. If there is a vertex with more than one pebbleand a vertex with no pebbles, then a rolling move is available. The number of pebbles is notlarger than the number of verties, so the resulting pebble distribution q has at most onepebble on eah vertex. Every vertex of Pn still must be reahable from q by Lemma 9.6.The only moves exeutable diretly from q are strit rubbling moves. By the No CyleLemma we an assume that every vertex is reahable by a sequene of moves in whih a stritrubbling move (x, y → z) is not followed by a move of the form (z, z → x) or (z, z → y). Sowe an assume that every vertex is reahable through strit rubbling moves. Then we musthave q(v1) = 1 = q(vn) otherwise v1 or vn is not reahable.A pigeon hole argument shows that there must be two neighbor verties u and w suhthat q(u) = 0 = q(w). To avoid the existene of suh u and w, we would need to plaeat least ⌊
n−2

2

⌋ pebbles on the verties v2, . . . , vn−1 but it is easy to see that the ⌈n+1
2 ⌉ − 3pebbles available for this purpose are not su�ient.Then neither u nor w is reahable from q, whih is a ontradition. �Proposition 9.8. The optimal rubbling number of the yle is ρopt(Cn) = ⌈n

2 ⌉ for n ≥ 3.
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n 2 3 4 5

ρopt(Bn) 2 4 6
ρopt(Qn) 2 3 4 6Table 1. Rubbling values without a known general formula.Proof. Let Cn be the yle with onseutive verties v1, . . . , vn. It is lear that every vertexis reahable from the pebble distribution
p(vi) =

{

1, i is odd
0, elsewhih has size ⌈n

2 ⌉.Now assume that there is a pebble distribution of size ⌈n
2 ⌉− 1 from whih every vertex of

Cn is reahable. Let us apply all available double rolling moves. The proess ends in �nitelymany steps sine a double rolling move redues the number of pebbles on verties with morethan one pebble by two . If there is a vertex with more than one pebble and two vertieswith no pebbles, then a double rolling move is available. The number of pebbles is smallerthan the number of verties, so the resulting pebble distribution q has at most one pebbleon eah vertex. Every vertex of Cn still must be reahable from q.The only moves exeutable diretly from q are strit rubbling moves. The No CyleLemma implies that we an assume that every vertex is reahable through strit rubblingmoves. A pigeon hole argument shows that there must be two neighbor verties u and
w suh that q(u) = 0 = q(w). But then neither u nor w is reahable from q whih is aontradition. �10. Further questionsThere are plenty of unanswered questions. We list a few of them.

• What is the optimal rubbling number of the omplete binary tree Bn and the hyper-ube Qn. It is fairly easy to get answers for small n with a omputer. The knownvalues are listed in Table 1.
• The over rubbling number of a graph G is the minimum number m suh thatfor every pebble distribution p on G with size m there is an exeutable rubblingsequene s with ps(v) ≥ 1 for all v ∈ V (G). The over pebbling number is de�nedanalogously. Is the over rubbling number the same as the over pebbling numberfor every graph? The answer might depend on whether the over pebbling theoremof [11℄ an be generalized for rubbling.
• We have π(Pn) = ρ(Pn), π(Qn) = ρ(Qn) and it is easy to hek that π(L) = 8 = ρ(L)where L is the Lemke graph [6℄. This is not always the ase though. Is it possible toharaterize those graphs for whih the pebbling and the rubbling numbers are thesame? When is the rubbling number signi�antly smaller than the pebbling number?Referenes1. David P. Bunde, Erin W. Chambers, Daniel Cranston, Kevin Milans, and Douglas B. West, Pebblingand optimal pebbling in graphs, J. Graph Theory 57 (2008), no. 3, 215�238.2. Fan R. K. Chung, Pebbling in hyperubes, SIAM J. Disrete Math. 2 (1989), no. 4, 467�472.3. Betsy Crull, Tammy Cundi�, Paul Feltman, Glenn H. Hurlbert, Lara Pudwell, Zsuzsanna Szaniszlo, andZsolt Tuza, The over pebbling number of graphs, Disrete Math. 296 (2005), no. 1, 15�23.4. Hung-Lin Fu and Chin-Lin Shiue, The optimal pebbling number of the omplete m-ary tree, DisreteMath. 222 (2000), no. 1-3, 89�100.
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