
PROOF TREES FOR WEAK ACHIEVEMENT GAMESNÁNDOR SIEBENAbstrat. Proof number searh and threat-spae searh are suessful tehniques for�nding winning strategies in ahievement games suh as go-moku. A version of proofnumber searh an be used e�etively to analyze weak ahievement games. In this versionit is su�ient to onsider the defensive moves that are involved in the maker's strategyafter null moves. The result of this restrited searh is a proof tree. The proof tree anbe translated into the usual proof sequene of winning situations used to present winningstrategies for weak ahievement games. Using this proedure, a proof sequene an befound for a handiap one strategy for weakly ahieving Snaky.1. IntrodutionA polyomino is a �nite set of ells of the in�nite hessboard that is onneted throughedges [7℄. Congruent polyominoes are onsidered to be the same, that is, a polyomino anbe freely translated, rotated and re�eted. In a polyomino weak ahievement game [6, 9℄,two players alternately mark a previously unmarked ell using their own olors. The �rstplayer (the maker) tries to mark a goal polyomino while the seond player (the breaker)tries to prevent the maker from ahieving his goal. If the maker has a strategy for ahievinga polyomino then the polyomino is alled a winner, otherwise it is alled a loser. For allbut one polyomino, it is known whether it is a winner or a loser. The known winners aresubsets of L, Y or Z shown in Figure 1.1. Proof sequenes desribing winning strategies anbe found for example in [5℄. Pairing strategies for losers an be found in [13℄.The only undeided polyomino is Snaky shown in Figure 1.1. Snaky is believed [6, 4℄ tobe a winner but no winning strategy is known. A pairing strategy is the main tool to showthat a polyomino is a loser. We know from [13℄ that no pairing strategy exists for Snaky. Weknow from [12℄ that Snaky is an edge-to-edge loser, that is, the maker annot be suessfulif he always marks next to his earlier marks. This suggests that �nding a possible winningstrategy is hard.A winning strategy with handiap k is a strategy for the maker that allows k additionalmarks for the maker in his �rst turn. A handiap 2 winning strategy for Snaky was foundin [11℄. Two desriptions of a handiap 1 winning strategy are found in [8, 15℄ but thesedesriptions do not ontain the usual proof sequene of situations as desribed in Setion 3.Translating these desriptions to proof sequenes seems di�ult. We present a proof se-quene for a handiap 1 strategy in Appendix B.A proof sequene an be found by hand but this is very di�ult if the goal polyominohas more than a few ells. The main purpose of this paper is to desribe a proedure thatan be used e�etively in a omputer program to �nd a proof sequene. The main tool is aproof tree de�ned in Setion 2. First we desribe how to onstrut a proof sequene froma proof tree. This has several steps. In Setion 4, we onvert the proof tree into a set ofsituations. In Setion 5, we use a dependeny digraph to analyze the onnetions betweenDate: Sat Sep 6 21:53:44 MST 2008 .1991 Mathematis Subjet Classi�ation. 91A46, 68P10.Key words and phrases. ahievement game, polyomino, Snaky, proof tree, proof number searh, threatsequene. 1

2 NÁNDOR SIEBEN
L Y Z SnakyFigure 1.1. Every known winner is a subset of polyomino L, Y or Z. Snakyis undeided.

ww
''OO

{{ww
ww

ww
##GG

G

{{ ""E
E

E
{{ $$J

J

�����
�

""E
EEEE

����� ��
::

Figure 2.1. A proof tree for the size 3 skinny animal. The full squares arethe marks of the maker, the empty squares are the marks of the breaker. Theempty ells belong to the territory of the position. Solid arrows represent themoves of the maker. Dotted arrows represent the null moves of the breaker.Dashed arrows represent the required other moves of the breaker.the situations. With the analysis we an greatly redue the number of situations needed bythe proof sequene. The details of this simpli�ation proess is found in Setion 6.We �nd proof trees using proof number searh and threat searh. Proof number searhand threat-spae searh are designed for �nding the game-theoretial value in game trees.They have been used to solve Connet-Four, Qubi, and Go-Moku [2, 3, 16, 1℄. We adaptthese tehniques for weak ahievement games. The main di�erene is that the breaker isonly trying to prevent the maker from ahieving his goal polyomino, she is not trying toahieve the goal polyomino on her own. So during the game tree analysis, it is su�ient toonsider those moves by the breaker whih are later played by the maker. These moves anbe found by repeatedly using null moves for the breaker until a terminal position is found.2. Proof treesTo show that an animal is a winner, we an use a proof tree as shown in Figure 2.1. Itis a partial game tree with speial properties as desribed below. The moves of the makerare represented by solid arrows, the regular moves of the breaker are represented by dashedarrows. We also onsider null moves by the breaker, these are represented by dotted arrows.A null move, when the breaker does not mark any ell, does not happen in real game play.We still allow them in the proof tree. The meaning of a null move is that the atual moveof the breaker has no e�et on the maker's strategy.The verties of a proof tree are positions of the game. A position P ontains the marks
M(P) of the maker (full squares), the marks B(P) of the breaker (empty squares). A leaf

PROOF TREES FOR WEAK ACHIEVEMENT GAMES 3
ww

''OOO

�� ��
?

?
?

�� ��
?

?

Figure 2.2. A ondensed version of the proof tree of Figure 2.1. The lakof solid lines is a reminder of the ondensation. The territory ells of thetop position tells us that after the �rst null move of the breaker the makermarked the ell above his �rst mark.vertex must be a position won by the maker, that is, the marks of the maker must ontaina polyomino ongruent to the goal polyomino.A position reated after a mark of the maker is alled a maker position, the other positionsare alled breaker positions. A proof tree shows one adequate move for the maker after eahpossible defensive move of the breaker. So a maker position an have several outgoing arrows,but a breaker position only needs a single (solid) outgoing arrow. We say that position Qis a daughter of position P if there is an arrow in the proof tree from P to Q and that Qis reahable from P if there is a direted path from P to Q. The set of daughters of P isdenoted by D(P).The territory T (P) of a position P is the set of ells marked by the maker after position
P . More preisely,

T (P) :=
⋃

{M(Q) \ M(P) | Q is reahable from P}.If P is a leaf vertex then T (P) is of ourse empty. The territory ells are shown as emptyells on Figure 2.1.There is an in�nite number of possible defensive moves but not all of them are sensible.The proof tree selets the required ones using the territories. We require that the intersetionof the territories of the daughters of a maker position is empty, that is
⋂

{T (Q) | Q ∈ D(P)} = ∅for all maker position P . This ondition guarantees that the proof tree onsiders all theneessary moves for the breaker. The maker an win from any position sine the breakeran never mark a ell that ruins all possible winning lines for the maker.Proof trees are quite large. We an ondense them without losing any information bydeleting the breaker positions as shown in Figure 2.2. The only drawbak is that hekingthe territory requirements is harder. This is not a problem sine every breaker position anbe easily reovered from its only daughter by replaing the new maker mark by a territoryell. 3. Proof sequene of situationsEven a ondensed proof tree beomes too large very quikly as the goal polyomino grows.Figure 4.1 shows a partial ondensed proof tree for the polyomino Z. Instead of the prooftree a strategy an be aptured by a proof sequene (s0, . . . , sn) of situations [5, 14, 18℄. Asituation si = (Csi
, Nsi

) is an ordered pair of disjoint sets of ells. We think of the ore
Csi

as a set of ells marked by the maker and the neighborhood Nsi
as a set of ells not

4 NÁNDOR SIEBEN
s0
0 s1

1

0

0 s2
2

1

1
1

1 1 1Figure 3.1. A proof sequene for the proof tree of Figure 2.2.marked by the breaker. A situation is the part of the playing board that is important forthe maker. A situation does not ontain any of the breaker's marks. Those marks are notimportant as long as the situation ontains enough empty ells in the neighborhood. Justlike polyominoes, ongruent situations are onsidered to be the same. If s is a situation thenwe de�ne s \ x := (Cs \ {x}, Ns \ {x}).In the situations of a proof sequene, it is always the breaker who is about to mark a ell.The game progresses from sn towards s0. We require that Cs0
is the goal polyomino and

Ns0
= ∅. This means that the maker already won by marking the ells in Cs0

and there isno need for any free ells on the board in Ns0
. For eah i ∈ {1, . . . , n} we also require thatif the breaker marks a ell in Nsi

then the maker an mark another ell of Nsi
and reah aposition sj loser to his goal, that is, satisfying j < i. More preisely, for all x ∈ Nsi

theremust be an x̃ ∈ Nsi
\ {x} and a j ∈ {0, . . . , i − 1} suh that

Csj
⊆ Csi

∪ {x̃} and Nsj
⊆ Csi

∪ Nsi
\ {x}.This relationship between si and sj is denoted by si ⊢x sj.Figure 3.1 shows a proof sequene that aptures the winning strategy of the proof treeof Figure 2.2. In the �gure the situations are denoted by sd
i where the upper index d isthe number of required additional marks by the maker until the goal polyomino is reahed,assuming optimal defense from the breaker. The numbers inside the neighborhood ellsdenote the index j of the situation that an be reahed if the breaker marks the given ell.Note that the maker an win in 3 turns while the number of ells in the goal polyomino isalso 3. We all suh a strategy eonomial.The situations of the proof sequene of Figure 3.1 are simply built from the positions ofFigure 2.2. Given a position P the orresponding situation is (M(P), T (P)). This workswell if the strategy is eonomial. If the strategy is not eonomial then we an onstrutsimpler situations. 4. From proof tree to situationsThe proof tree of Figure 4.1 is not eonomial. The maker sometimes needs to mark 6ells even though the goal polyomino Z only has 5. It is lear that in these positions someof the marks of the maker are not essential to build a orresponding situation. To deidewhat is important we introdue the notion of essene of a position.If P is a leaf position then M(P) must ontain a opy of the goal polyomino. An essene

E(P) of P an be hosen to be one of these opies. If P is not a leaf position then theessene of P is the union of the essenes of the leaf positions that an be reahed from P ,that is,
E(P) :=

⋃

{E(Q) | Q is a leaf reahable from P}.A situation s(P) orresponding to position P is de�ned as
s(P) := (M(P) ∩ E(P), T (P) ∩ E(P)).Note that if P is a leaf position then s(P) = (G, ∅) where G is the goal polyomino. Sinethe essene of a leaf position is not unique, we an get several situations from a position.

PROOF TREES FOR WEAK ACHIEVEMENT GAMES 5

· · ·

· · ·

· · ·

· · ·

· · ·

��

&
&
&
'
'
'
'
'
'
(
(
(
(
(
(
)
)
)
)
)
)
*
*
*
*

��

)

)

*

*

+

+

,

,

-

-

.

��

.
/
0
0

1
2

3
4

4

""

@
C

F

//__

JJ�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��

��
7

7
7

7
7

7

//___

��

��
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

��

��
7

7
7

7
7

7
7

��

//___

$$

//____

$$

//___

$$

//___

$$

//___

$$

//____

$$

//___

$$

//___

Figure 4.1. A partial ondensed proof tree for the polyomino Z. The �gureis rotated by 90◦. Note that this winning strategy is not eonomial.

6 NÁNDOR SIEBEN
s0
0

•
• s1

1
•
•
•

•
•
•

s2
2

ss
kk

mm
qq

�� zz
ss
kk
ddZZ

gg
jj
mm
qq
tt
wwFigure 5.1. A dependeny digraph of the situations gotten from the proofsequene of Figure 3.1. The verties in T are denoted by bullets.This is not a drawbak. If we have more situations then it is easier to �nd a short proofsequene.Applying this proedure to the maker positions of the proof tree of Figure 4.1, we anbuild a 31-element set S = {s(P) | P is a maker position}. The situations in S ould beordered into a proof sequene, but we do not need all of them.5. Dependeny digraph of situationsLet S be the set of situations gotten from the maker positions of a proof tree using theproedure desribed in Setion 4. Our goal is to use as few situations of S as possible tobuild a proof sequene. To analyze the onnetions between the elements of S, we build adependeny digraph D.Let T := {s \ x | s ∈ S and x ∈ Ns} be the set of situations with one neighborhoodell deleted. Note that T is the set of situations that an be reahed from an element of Sapplying a mark by the breaker. The vertex set of the dependeny digraph is VD := S ∪ T .To de�ne the arrow set, we need to partition S into levels {L0, . . . ,Lm}. The levels arehosen reursively. We let L0 := {(G, ∅)} where G is the goal polyomino. Given L0, . . . ,Li,let Ki := ∪i

j=0Lj and de�ne
Li+1 := {s ∈ S \ Ki | (∀x ∈ Ns)(∃t ∈ Ki) s ⊢x t}.The arrow set of the dependeny digraph is

ED := {(s, s \ x) | s ∈ S, x ∈ Ns} ∪ {(s \ x, t) | 0 ≤ i < m, s ∈ Li+1, t ∈ Ki and s ⊢x t}.The dependeny digraph shows the possible routes for the maker to win after eah defensivemove of the breaker.Figure 5.1 shows the dependeny digraph of the situations of the proof sequene of Fig-ure 3.1. In this digraph eah vertex in T has a single outgoing arrow, so the maker neverhas a hoie. This implies that the proof sequene annot be simpli�ed.Figure 5.2 shows a partial dependeny digraph of the situations gotten from the proof treeshown in Figure 4.1. Note that there are two ways to ontinue towards the goal polyominofrom vertex s2
2 \ x. If we delete situation r1, the maker still an win from s2

2 \ x by piking
s0
0 instead of r1. So situation s2

2 does not depend on situation r1. It is possible that othersituations depend on r1 so we annot delete r1 without looking at the whole dependenydigraph.Even if we an delete a situation, it might not be the best hoie to do so. If we delete asituation, we ut some of the possible routes towards the goal polyomino, so other situationsould beome indispensable. Our goal is to �nd the largest set of situations that an bedeleted together. 6. Simplifiation of the dependeny digraphLet S, T , {L0, . . . ,Lm} and D be de�ned as in the previous setion. We know that
L0 = {(G, ∅)} = {s0

0} where G is the goal polyomino. We also know that Lm = {sm
n } is

PROOF TREES FOR WEAK ACHIEVEMENT GAMES 7
s0
0•• • •

s1
1

r1

• • • • • •
s2
2 \ y

• •
s2
2 \ x

s2
3

s2
2

y

x
· · ·...L2

L1

L0

99rr
55lllll eeLLiiRRRRR

@@HH ^^ VV

\\ WW RR LL GG BB

1122
55
88
<<xxxxxx
@@���

^^
RR LL

@@

\\:::

NN���������������

PP!!!!!!!!!!!!!!!

UU****************
BB����

Figure 5.2. Partial dependeny digraph of the situations gotten from theproof tree of Figure 4.1. Levels L0 and L1 are omplete.
t �

s \ x •

s �

OO

OO �

•

�

OO

OO

� � · · · �

s \ x •
OO

WW/////

OO ??������

� � · · · �

•OO

WW//////

✂

� ✂

rule (2) rule (3) rule (4)Figure 6.1. Shemati rules for simplifying a dependeny digraph of sit-uations. The blak squares represent the indispensable situations. Whitesquares represent undeided situations. The bullets represent the situationsin T .also a singleton set ontaining the initial situation sm
n . The most important property ofthe dependeny digraph is that every direted path starting at sm

n an be ontinued until itreahes s0
0. Our goal is to delete as many situations from S as possible while keeping thisproperty alive. Of ourse if we delete a situation from S then all of its daughters an bedeleted from T .Some of the situations in S are indispensable, we ollet these situations in the set I.Here are the simpli�ation rules we use to build I and to delete some verties or edges.(1) We have s0

0, s
m
n ∈ I. The starting and goal positions are learly indispensable.(2) Let s ∈ I and s \x ∈ T . If t is the only element of S with (s \x, t) ∈ ED then t ∈ I.If s is indispensable and the maker has only one possible answer t for a defensivemove x of the breaker then t must also be indispensable.(3) If t ∈ I and (s\x, t), (s\x, t1), . . . , (s\x, tk) ∈ ED then (s\x, t1), . . . , (s\x, tk) shouldbe deleted. If the maker an ontinue the game through an already indispensablesituation t then he should do so and avoid any other hoies.(4) If a situation in S has no inoming arrows then the situation should be deleted, sinelearly no other situation is dependent on it.

8 NÁNDOR SIEBEN
s0
0 s1

1
0

0

s2
2

0 0
1

0

s2
3

1 1
1

1
1

1

s3
4

2
1
2

1
1 1

2
1

s4
5

3 3
3
3

3
3
3
3

4

3
3
3
3

3
3

s5
6

5

5

5
5
5
5

5
5
5
5
5
5
5

5
5

5
5

5
5
5
5
5
5
5

5
5
5
5

5

5

Figure 6.2. A proof sequene for Z.Figure 6.1 shows a shemati representation of these rules.The use of the simpli�ation rules help eah other, so we use them while any of them isappliable. If the digraph still has a vertex s \ x ∈ T suh that s is indispensable and s \ xhas more than one outgoing arrows then further simpli�ations are possible. Then we �ndone suh s \ x with the smallest number of outgoing arrows (s \ x, t1), . . . , (s \ x, tn) and wemake one of t1, . . . , tn indispensable arti�ially and apply the simpli�ation rules again. Atthis point we have to use a baktraking algorithm to �nd the smallest dependeny digraphthat still has the path ontinuation property.There is still another possibility for simpli�ation. If (s, s \ x), (s \ x, t1), (s \ x, t2) ∈ EDand we delete t2 from the digraph then it possible that the situation s itself an be redued.It is possible that a ore ell or a neighborhood ell of s was needed to guarantee thatsituation t2 is reahable. Sine t2 is no longer an option, these ells ould be deleted form s.In theory we ould hek for this possibility every time we delete a situation and realulatethe dependeny digraph. This would make the baktraking quite a bit more ompliatedand also muh slower. To avoid this di�ulty we only hek for this possibility after thebaktraking part is done.After these simpli�ation proesses, the remaining situations in S an be ordered into aproof sequene. Figure 6.2 shows the result of the algorithm applied to the proof tree ofFigure 4.1. Every situation in this proof sequene an be gotten from the positions shown onthe partial proof tree of Figure 4.1. Note that the starting position s5
6 of the proof sequeneis a redued version of the situation that orresponds to the initial position of Figure 4.1.7. Proof number searhTo �nd a proof tree we use a standard proof number searh ombined with a variationof threat spae searh [1℄. Proof number searh is an algorithm to evaluate an AND/ORtree ontaining AND-nodes and OR-nodes. A node an have three possible values: true (1),unknown (1

2) or false (0). The value of node P is denoted by v(P). If the values of theleaf nodes are known, then the value of an internal node is determined by the values of itshildren using the following truth tables:
∨ 1 1

2 01 1 1 1
1
2 1 1

2
1
20 1 1

2 0 ∧ 1 1
2 01 1 1
2 0

1
2

1
2

1
2 00 0 0 0Note that ∨ takes the maximum and ∧ takes the minimum of the arguments. This is whyOR-nodes and AND-nodes are also alled MAX-nodes and MIN-nodes.Our AND/OR trees orrespond to game trees. The AND-nodes orrespond to makerposition and the OR-nodes to breaker positions. This means that at an AND-node thebreaker an try several defensive moves. At an OR-node, the maker only needs to �nd onegood move. The value of a node is true if the maker wins from that position. We make the

PROOF TREES FOR WEAK ACHIEVEMENT GAMES 9
1△2

0▽∞ 1▽2

0△∞win 1△1
?

∞△0loss 1△1
??

1△1
?

uul l l l
))RRRR

����
��

�
��

??
??

?

������
��

�
��

??
??

?

Figure 7.1. An AND/OR tree with proof and disproof numbers. The AND-nodes are represented by △, the OR-nodes by ▽. Unknown leaf nodes aredenoted by a question mark. The most proving node is denoted by twoquestion marks. The proof numbers are on the left, the disproof numbers areon the right.value of a node false if the node seems hopeless for the maker. To determine the value ofthe root node, the searh expands as many leaf nodes with unknown value as needed.The order of expansion has a great e�et on the number of required expansions. We useproof and disproof numbers to pik the most proving leaf node to expand. The proof numberis roughly the minimum number of nodes we need to evaluate to onlude that the value ofthe node is true. The disproof number is roughly the minimum number of nodes we need toevaluate to onlude that the value of the node is false. If P is a leaf node then the proofnumber p(P) and disproof number d(P) of P is de�ned by
p(P) :=

0 if v(P) = 1

∞ if v(P) = 0

i(P) if v(P) = 1
2

, d(P) :=

∞ if v(P) = 1

0 if v(P) = 0

i(P) if v(P) = 1
2

.In the simplest implementation i(P) = 1. If i(P) is de�ned to be the depth of P thenexpanding deeper nodes is more expensive and the searh tree beomes shallower. If theOR-node P̌ and the AND-node P̂ are interior nodes then
p(P̌) := min{p(Q) | Q ∈ D(P̌)}, d(P̌) :=

∑

Q∈D(P̌)

d(Q),

p(P̂) :=
∑

Q∈D(P̂)

p(Q), d(P̂) := min{d(Q) | Q ∈ D(P̂)}.The most proving node an be found by starting at the root node and following the �rstdaughter with the smallest proof number at OR-nodes, and with the smallest disproof num-ber at AND-nodes. Figure 7.1 shows an example.After expanding the most proving node we update the proof and disproof numbers. Afterthis update we delete all nodes with a 0 disproof number.8. Threat sequenesLet s be a winning situation and let P be a breaker position, that is, a position when themaker is on the move. If the maker an mark a ell and reate a opy of s then he an winfrom that position so the game is deided. Now suppose that the maker an mark a ell xand almost reate a position (C,N) that is almost the same as s exept that one ore ell
y missing, that is, (C ∪ {y}, N) = s. Then the outome is not yet deided but he reated athreat for whih the breaker has to respond. To avoid this threat the breaker needs to mark
y or a ell of N . Using the terminology of [1℄ ell x is a gain ell and the ells of N ∪ {y}are ost ells of the threat.

10 NÁNDOR SIEBEN
s1

1 //___
s1

1 //___
s0

0 //___
s0

0 //___
s0

0 //

s1

1 //___
s1

1 //Figure 8.1. Two winning threat sequenes to ahieve Z. In eah positionthe maker is on the move. The labels on the arrows show the name of thesituation of Figure 6.2 used to reate the threat. Dashed arrows lead todefended threats while solid arrows lead to winning situations.A threat sequene is a sequene (P0, P1, . . . , Pn) of breaker positions suh that Pi+1 an begotten from Pi by marking the gain ell of the threat with the maker's olor and marking theost ells with the breaker's olor. The threat sequene is alled winning if the maker anahieve an atual winning situation from Pn. Figure 8.1 shows two winning threat sequenesto ahieve Z. It is lear that if there is a winning threat sequene starting at P0, the makeran win from position P0 by marking the gain ells.It is possible that the maker an win from a position even though there is no winningthreat sequene. Still it is useful to searh for threat sequenes sine this is muh faster thana full game tree analysis. The searh also helps deiding what moves should be onsideredduring the proof number searh.In our implementation we only onsider dependent threat sequenes. A threat sequene isdependent if for eah i ≥ 1 the threat used to reate Pi+1 would not exist without the gainell of the threat used to reate Pi. This means that we do not want to experiment withusing available threats in di�erent orders. We only want to follow newly reated threats.To reate a threat sequene we need to �nd threats and threats need winning situations.We do not have a proof sequene, that is why we are interested in threat sequenes in the�rst plae. So we need to reate winning situations. It is possible to use only the goalpolyomino. This is, in fat, what we did to �nd the proof tree of Figure 4.1. For moredi�ult games we an reate winning positions by hand as in [18℄. Another possibility is touse the winning situations of a proof sequene for a handiap strategy.Threat sequenes simulate the tatial thinking of human players. Humans often �ndwinning lines in the game by disregarding the di�ulties aused by the marks of the oppo-nent. This is suessful beause tatis are very important in ahievement games. The longterm strategy that omes from experiene and intuition of human players are simulated bythe proof number searh. 9. Node expansionDuring the expansion of nodes in the proof number searh we need to reate possiblemoves. The proedure depends on the type of the node.If we expand an OR-node P̌ then we need to selet our best andidates for the maker tomark. Of ourse if P̌ has a opy of the goal polyomino marked by the maker then we anassign v(P̌) := 1 and there is no need for further expansion. Otherwise we hek whetherthe depth of the node is beyond our limit. If it is then our searh in this diretion is hopelessand we assign v(P̌) := 0. If we did not reah the depth limit then we searh for a winning

PROOF TREES FOR WEAK ACHIEVEMENT GAMES 11
P̂

Q0

��

P̂

Q0 Q1 · · · Qn

��
x1

���
�
� xn

B

B
B

B P̂

Q0 Q1 Q2 Q3

{{
x1

���
�
�

x2

��
.

.
.

x3

##H
H

H
H P̂

Q1 Q2

x1

���
�
�

x2

��
.

.
.

stage 1 stage 2 stage 3 stage 4Figure 9.1. Four stages of the life of an AND-node. A label on a dashedarrow shows the ell marked by the maker for his move. There are no labelson the dotted arrows sine those represent null moves. In stage 3, T (Q0) ∩
T (Q2) = {x1, x3}.threat sequene. If we an �nd one then the maker should mark the gain ell of the �rstposition of the winning threat sequene, so P̌ has only one daughter after the expansion. Ifwe annot �nd a winning threat sequene or the searh for it reahes our depth limit thenwe need to use some heuristis to selet a few promising moves. During this seletion weuse an evaluation funtion that measures the potential of a move to reate new threats inthe future and we pik the moves with the highest values. The evaluation funtion �nds thepossible plaements of the winning situations on the board with as few missing ore ells aspossible. We try to avoid piking moves that reate immediate threats sine those moves arealready analyzed by the searh for a winning threat sequene. We also try to avoid movesthat do not reate threat moves after a null move of the breaker.If we expand an AND-node P̂ then our main onern is to satisfy the territory intersetionproperty of proof trees. When we expand P̂ we simply reate a null move for the breaker.This is shown as stage 1 on Figure 9.1. The resulting position is denoted by Q0. If Q0is expanded further and evaluates to true, then we need to reate additional daughters

{Q1, . . . , Qn} for P̂ . If T (Q0) = {x1, . . . , xn} then we let M(Qi) := M(P̂) ∪ {xi} and
B(Qi) := B(P̂). This is stage 2. Whenever an additional daughter evaluates to true we anerase some of the daughters to satisfy

{xi | v(Qi) = 1
2} =

⋂

{T (Qi) | v(Qi) = 1}.This is stage 3. At the end we reah stage 4 when ⋂

{T (Qi) | v(Qi) = 1} = ∅ so the valueof P̂ beomes true and we do not need to onsider any more daughters. It is possible thatthe intersetion of the territories is empty even if we delete some of the daughters. Node Q0an be deleted frequently this way beause the other daughters require more sophistiatedplay from the maker and so their territories are likely smaller. Of ourse it is possible that adaughter evaluates to false whih makes the value of P̂ false as well. Then node P̂ is deletedfrom the tree. 10. The art of finding proof treesIf the goal polyomino is relatively simple then the proedure we desribed works auto-matially even if the initial set of situations used in the threat sequene searh and themove seletion ontains only the goal polyomino or a few more situations that an be easilyreated by hand. For more ompliated goals this is not so easy beause the searh takestoo long. We need to wath how the searh progresses and adjust some parameters likethe depth limits, the number of onsidered moves for the maker, the evaluation funtion toselet promising moves. Oasionally utting a few branhes that are learly hopeless byhand speeds up the searh signi�antly.

12 NÁNDOR SIEBENWe need to be more sophistiated with the initial set of situations as well. First weuse only a few initial situations and a starting board position that has a large handiapnumber. This starting board position ould ontain for example a ouple of ells marked bythe maker. The proof number searh �nishes quikly and the proof sequene gotten fromthe resulting proof tree beomes the new initial set of situations for the next searh.To gain something from this next searh we need to make the starting board positionharder to win. This an be done by adding a few ells marked by the breaker. The loserthese ells are to the ation the harder it is to �nish the proof number searh and the moreuseful the resulting proof sequene. Another way to make the starting board position harderis to derease the handiap, that is, to add fewer ells marked by the maker.It would be possible to automate this proess by extending the initial set of situationswith new winning situations disovered during the proof number searh. Every time thevalue of and AND-node beomes true, we ould add the orresponding situation s(P) to theinitial set of situations. Of ourse this burden of knowledge slows down the move seletionand the threat sequene searh. Implementing this would perhaps help to settle the fate ofSnaky.
Referenes[1℄ L. V. Allis, H. J. van den Herik, and M. P. H. Huntjens. Go-moku and threat-spae searh. (Preprint)http://iteseer.ist.psu.edu/170657.html.[2℄ L. Vitor Allis. Searhing for Solutions in Games and Arti�ial Intelligene. PhD thesis, ComputerSiene Department Rijksuniversiteit Limburg, 1994.[3℄ L. Vitor Allis, Maarten van der Meulen, and H. Jaap van den Herik. Proof-number searh. Artif. Intell.,66(1):91�124, 1994.[4℄ Elwyn R. Berlekamp, John H. Conway, and Rihard K. Guy. Winning ways for your mathematialplays. Vol. 2. 2nd ed. Natik, MA: A K Peters. xvii, 277�473 , 2003.[5℄ Jens-P. Bode and Heiko Harborth. Hexagonal polyomino ahievement. Disrete Math., 212(1�2):5�18,2000. Graph theory (Dörnfeld, 1997).[6℄ Martin Gardner. Mathematial games. Si. Amer., 240:18�26, 1979.[7℄ Solomon G. Golomb. Polyominoes: Puzzles, Patterns, Problem and Pakings. Prineton UniversityPress, 1965.[8℄ Immanuel Halupzok and Jan-Christoph Shlage-Puhta. Ahieving snaky. Integers, 7:G02, 28 pp. (ele-troni), 2007.[9℄ Frank Harary. Ahievement and avoidane games on �nite on�gurations. J. Rereational Math.,16(3):182�187, 1983/84.[10℄ Frank Harary. Is Snaky a winner? Geombinatoris, 2(4):79�82, 1993.[11℄ Frank Harary, Heiko Harborth, and Markus Seemann. Handiap ahievement for polyominoes. In Pro-eedings of the Thirty-�rst Southeastern International Conferene on Combinatoris, Graph Theory andComputing (Boa Raton, FL, 2000), volume 145, pages 65�80, 2000.[12℄ Heiko Harborth and Markus Seemann. Snaky is an edge-to-edge looser. Geombinatoris, 5(4):132�136,1996.[13℄ Heiko Harborth and Markus Seemann. Snaky is a paving winner. Bull. Inst. Combin. Appl., 19:71�78,1997.[14℄ Heiko Harborth and Markus Seemann. Handiap ahievement for squares. J. Combin. Math. Combin.Comput., 46:47�52, 2003. 15th MCCCC (Las Vegas, NV, 2001).[15℄ Hiro Ito and Hiromitsu Miyagawa. Snaky is a winner with one handiap. 8th Helleni European Con-ferene on Computer Mathematis and its Appliations, 2007.[16℄ M. P. H. Huntjens L. V. Alus, H. J. van den Herik. Go-moku solved by new searh tehniques. Compu-tational Intelligene, 12(1):7�23, 1996.[17℄ Nándor Sieben. Snaky is a 41-dimensional winner. Integers, 4:G5, 6 pp. (eletroni), 2004.[18℄ Nándor Sieben and Elaina Deabay. Polyomino weak ahievement games on 3-dimensional retangularboards. Disrete Mathematis, 290:61�78, 2005.

PROOF TREES FOR WEAK ACHIEVEMENT GAMES 13Appendix A. A proof sequene for LThe winning strategy for L published in [5℄ ontains 33 situations. We managed to utthe number of situations in the proof sequene into half. The initial set of winning situationsontained s0
0, s1

2, s1
3, s1

4 and s2
6.

s0
0 s1

1
0

0

s1
2

0

0

s1
3

0 0 s1
4

0

0

s2
5

0

0

0

4

s2
6

3
3

3

3

3
3

s2
7

3
2

3

2

2

3

s3
8

1
1

5

5
5

1
1 1

s3
9

1
1

5

5

5

1
1 1

s4
10

2
4
2

8 2
2

3
2

2
2

s4
11

0
0 9

0

0
0
0

0
0

0

s5
12

5
5
5
5

5
6
5
5
7

5
10

10
6

5
5

5

s5
13

11
11

5
5

5
5

5

5
5
5

11
11

5
5

11

5

s6
14

6

6

6
6
6
6
6
6

6
6
6
6
6
6

6
12

13
6

6
6

6
6
6

6
6

s7
15

14
14
14
14
14

14
14
14
14
14
14
14

14
14
14
14
14
14
14

14
14
14

14
14
14

14
14
14
14
14
14
14

14
14
14
14
14
14

14
14
14
14

Appendix B. A handiap 1 proof sequene for SnakySnaky has a long history [10, 14, 12, 13, 17, 8, 15℄. It is believed to be a winner. Ourproedure found a handiap 1 proof sequene. For initial set of winning situations we usedthe handiap two proof sequene of [11℄. The last situation in our proof sequene is s10
73, sousing this strategy the maker an win in 11 turns.

s0
0 s1

1
0

0

s1
2

0

0

s1
3

0
0

s1
4

0

0

s1
5

0

0 s2
6

0

0

1

0 s2
7

5
0
0

0

s2
8

2
2
2

2
2
2

s2
9

2

0
0
0

s2
10

0
0
0 2

s2
11

0
0
0 2

s2
12

2

0
0
0

s2
13

5
3
3

3

5 5

s2
14

4

0

0
0

s2
15

2
2
2

2
2
2

s2
16

2
2
2

2
2
2

s3
17

0 0
0
0

7

0

s3
18

5
5
5

5
9

5
5

10
5
5

s3
19

0 0
0
0

7

0

s3
20

1 1 1
1

1
3

13
1

5

1

s3
21

0

6

0
0
0

0

14 NÁNDOR SIEBEN
s3
22

14

0
0

0
0
0

s3
23

14

0
0

0

0
0

s3
24

5
5
5

5
5

10
10

10

s3
25

10
10
10

10
10
10

10
10

10
10

s3
26

11
12
12
12

11

16

16
11
11
11
11

s3
27

0
0
0

0
0
0

0

15 s3
28

8
8
8
8

16
16
16

8

16

8
15
15
15

s3
29

15
16
16
8
8
8
8
8

15

8

15
15
15

s3
30

8
16
16
8
8
8
8

8

8

8
15
15
8

s4
31

0

0

21

0
0
0

0
0

s4
32

0 0
0
0

0

17

0 0

s4
33

0
0
0

18

0
0
0

0
0

0
0
0

s4
34

5 5
5
5

22
17

9

5
5
5

5 5

s4
35

21

21

21

21
21

21
21
21

21

21
21
21

21
21

s4
36

8 8

9
9
9

8
19

10
10
10

8

s4
37

10 10
10
10
10

23
23
23

23
15

10 10

s4
38

0
0
0

29

0
0

0

0
0
0
0

0
0
0

s5
39

0
0

0
0

0
0
0

31
0

0

s5
40

0
0

0
0

0
0
0

33 0
0

0
0

0
0

s5
41

0 0
0
0

0

32
0
0

0 0

s5
42

0 0 0
0

0

32

0
0
0

0

s5
43

5 5

5
5
5

5
5
5

5
5
5

37
37

37

5 5

s5
44

5 5 5
5
5

5
5
5

34
14

5
5
24

5
5 5

s5
45

5 5

5
5
5

5
5
5

5
5
5

36
14

5
5
25

5

s5
46

0
0
0

0
0
0

38

0

0
0
0

0
0
0

0

0

s6
47

0

0

0
0
0

0
0
0

0
0
0 46

0
0
0

0
0

0

s6
48

21 21

20

41
21

21
21

21
21
21

20
21

41

20
20
20
20
20

20
20
20

s6
49

8
8

8
8

9
9
9
8

8
39

10
10
10 8

8

s6
50

8
8

8
8

9
9
9
8

8
40

10
10
10

8
8

8
8

8
8

s6
51

5
5

5
5

5
5
5

40

16
16

5
5
5

5
5

5
5

5
5

s6
52

8
8

8
8

15
15
15
8

40
16
16
16

8
8
8

8
8

8
8

8
8

s6
53

8

8

8
8
8

8
8
8

15
15
15

46

16
16
16

8
8
8

8
8 8

PROOF TREES FOR WEAK ACHIEVEMENT GAMES 15
s6
54

8

8

8
8
8

8
8
8

16
16
16
8
8
8
8

46
15
15
15
8

8
8 8

s6
55

43
43
43
43

43
43
43
44

43
43
43
43
45
44
44
43

43
44
44

44
43
43

43
43
43

43
45
43
43
43

45
43

43
43

s6
56

8

8

8
8
8

8
8
8

15
15
15

46

16
16
16

8
8
8

8
8 8

s6
57

8

8

8
8
8

8
8
8

16
16
16

8
8
8

46

15
15
15

8
8 8

s7
58

24

24

24
24
24

24
24
24

24

42
35
35

35
35
47

48
48

41
24
24

24
24
24
24
24
24

24
24
24
24
24

24
24
24

s7
59

5
5

5
5

5
5
5
5

5
5
5

49
14

5
5
13 5

5

s7
60

5
5

5
5

5
5
5
5

5
5
5

5
5
5

50
14

5
5
25

5
5

5
5

5
5

s7
61

14
14

14
14

14
14
14
14

14
14
14

14
14

52

28
28
28

51
14
14
14

14
14

14
14

14
14

s7
62

14

14

14
14
14

14
14
14

14
14
14

14
14
14
14

14
14

53

57
57
57

28
14
14

14
14

14

s7
63

14
14

14
14

14
14
14
14
14

14
14

52
14

26
26
26

28
14
14
14
14

14
14

14
14

14
14

s7
64

26 26
26

26
27
30
30
28
26
26
26
26

26
27

53
28

26

27
27
27
27
27

26
26
26

26
26
26

26

26

s7
65

28

28

28
28
28
28

28
28
28
28

28
28
28
28
28
51
51
30
28

28
51

54
28

28
29
29
29

28
28
28

28
28

28
28

28
28

s7
66

28
28
28
28

28
28
28
28

28
28
28
28

28
28
28
28
28
53
53
30
28

28
53

54
28

28
29
29
29
28

28
28
28

28
28
28

28
28

s7
67

28

28

28
28
28

28
28
28
28

28
57
57
28
28
30
30
30
28

28
57

53
28

28
53
53
29
28
28
28

28
28
28
28

28
28
28

28

28

s8
68

43

43

43
43
43

43
43

43
43
43

43
45

43
43
43

45
58
45
43

43
45
45

45
43
43

43
43
43

43
43
43
45
43
43
43

43
43
43
45
43

43
43
43

s8
69

43
43

43
43

43
43

59
43

43
43

60
43

43
43
45

45
45
59

45
45
45

45
45
45
43
59
59
59
43

43
43
43
59

43
43
43
59

s9
70

55

55

55

55

55
55
55
62
61
61
55
55
55

55
55
55
62
61
61
55
55

55
55
55
55
62
61
63
63
63
55

55
55
69

68
68
61

55
64
64
65

65
69
69
62
55

61
62
62

61
61
61
61

55
62

61
61
55

55
62

61
61
55

s10
71

66

66
66
66
66

66

66
66
66
66
66
66
66
66

66
66
66
66
66
66
66
66
66
66

66
66
66
66
66
66
66
66

66
67
67
66
66
66
66
67
67
66

66
70
70

70
70
66

66
67
67
66
66
66
66
67
67
66

66
66
66
66
66
66
66
66

66
66
66
66
66
66
66
66
66
66

66
66
66
66
66
66
66
66

E-mail address: nandor.sieben�nau.eduCurrent address: Department of Mathematis and Statistis, Northern Arizona University, Flagsta� AZ86011-5717, USA

