12.6 Colligative Properties

Colligative properties are properties of a liquid that change when a solute is dissolved.

 Colligative properties depend only on the number of solute particles, not on the identity of the solute.

Four colligative properties:

- 1. Vapor pressure lowering
- 2. Freezing point depression
- 3. Boiling point elevation
- 4. Osmotic pressure

Colligative Properties

 A solution will have a higher boiling point and a lower freezing point than the pure liquid:

Freezing Point Depression

• A solute **lowers** the freezing point of the solvent. The amount that the freezing temperature is reduced (ΔT_f) depends on the molality of the solute:

$$\Delta T_{\rm f} = K_{\rm f} m$$

- K_f is the Freezing Point Depression constant, and depends on the solvent (1.86 °C/m for water).
- $\Delta T_{\rm f}$ is always a *decrease* in temperature, so an aqueous solution will freeze at 0.0 °C $\Delta T_{\rm f}$

Boiling Point Elevation

 Since a non-volatile solute lowers the V.P. of a solvent, it also raises the boiling point:

$$\Delta T_{\rm b} = K_{\rm b} m$$

- $K_{\rm b} = 0.512 \, {\rm ^{\circ}C}/m$ for water.
- The b.p. of a solution is the b.p. of the pure liquid + ΔT_b .

Osmotic Pressure

If aqueous solutions are separated by a "semipermeable membrane" which allows water but not solute to pass across it, osmosis will cause a net flow of water across the membrane into the more concentrated solution.

 This flow of water produces a pressure called the osmotic pressure, Π:

 $\Pi = MRT$ (M = molarity, R = 0.08206 L•atm/mol•K)

Reverse Osmosis

 If a pressure greater than Π is applied to the more concentrated side, pure water will flow across the membrane. This is known as reverse osmosis, a method for purifying water.

12.7 Colligative Properties of Electrolytes

NaCl lowers the freezing point of water by almost twice the expected amount. Why? Because NaCl dissociates to Na⁺ and Cl⁻ in solution:

NaCl (s)
$$\rightarrow$$
 Na⁺ (aq) + Cl⁻ (aq)

- So for electrolytes: $\Delta T = i K m$
- *i* is called the van't Hoff factor, the number of particles per formula unit that the compound dissociates into in solution.

Colligative Properties of Electrolytes (contd.)

Many solutions are non-ideal due to association of ions, and have i less than the expected value, due to ion pairing.

TABLE 12.9 Van't Hoff Factors at 0.05 <i>m</i> Concentration in Aqueous Solution		
Solute	<i>i</i> Expected	i Measured
Nonelectrolyte	1	1
NaCl	2	1.9
MgSO ₄	2	1.3
MgCl ₂	3	2.7
K ₂ SO ₄	3	2.6
FeCl ₃	4	3.4

© 2014 Pearson Education, Inc.