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Abstract

Applications in many domains perform searches over datasets that contain moving object trajectories. A
common class of searches are similarity searches that attempt to identify trajectories with similar characteristics.
In this work, we focus on the distance threshold similarity search that finds all trajectories within a given
distance of a query trajectory over a time interval. This search involves large numbers of Euclidean moving
distance calculations, thus making it a good candidate for execution on manycore platforms such as GPUs.
However, low search response time is preconditioned on efficient indexing of trajectory data. We propose three
indexing schemes designed for the GPU, with spatial, temporal and spatiotemporal selectivity. These schemes
differ significantly from traditional tree-based indexing schemes that have been previously proposed for CPU
executions. We evaluate implementations of our proposed indexing schemes using two synthetic and one real-
world astrophysics dataset, showing under which conditions each scheme achieves high performance. Our
broad finding is that a GPU implementation, provided an appropriate indexing scheme is used, can outperform
a multithreaded CPU implementation that uses a state-of-the-art index tree. In particular, the performance
improvement is large for regimes that are relevant for classes of real-world applications, thereby demonstrating

that the GPU is an attractive platform for searching and processing moving object trajectories.
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1 INTRODUCTION

Trajectory data is generated in a wide range of application domains, such as the motions of people or objects
captured by global positioning systems (GPS), the movement of objects in scientific applications, such as
stars in astrophysical simulations, vehicles in traffic studies, animals in zoological studies and a range of
applications of geographical information systems (GIS). We study historical continuous trajectories [1], where a
trajectory dataset is given as input and is searched to gain domain-specific insight. A broad class of searches are
trajectory similarity searches, i.e., searches that find trajectories that have similar spatial and/or temporal features
(proximity, shape, clustering behavior, etc.). In this work we study a particular similarity search, the distance
threshold search: Find all trajectories within a distance d of a given query trajectory over a given time interval [2].

Searching a trajectory dataset for those objects that are within a threshold Euclidean distance of each other
is a natural idea. The initial motivation for this work comes from the astrobiology domain [3]. Astrobiology is
the study the evolution, distribution and future of life in the universe. The past decade of exoplanet searches
implies that the Milky Way, and hence the universe, hosts many rocky, low mass planets that may be capable of
supporting complex life. Some regions of the Milky Way may be inhospitable due to transient radiation events,
such as supernovae explosions or close encounters with flyby stars that can gravitationally perturb planetary
systems. Studying habitability thus entails solving the following distance threshold searches on the trajectories
of stars orbiting in the Milky Way: (i) Find all stars within a distance d of a supernova explosion (or gamma ray
burst), i.e., a non-moving point over a time interval; and (ii) Find the stars, and corresponding time periods,
that host a habitable planet and are within a distance d of all other stellar trajectories.

The spatial and spatiotemporal database communities have developed efficient trajectory indexing and
processing methods. Many of these methods focus on sequential implementations, where a fraction of the
data is stored in memory and the rest is stored on disk. Minimizing disk accesses is thus the main objective.
Alternatively, with relatively large memories available in modern workstations, sizable in-memory databases
have become feasible. Furthermore, with the proliferation of multicore and manycore architectures, parallel
in-memory implementations can provide significant performance improvements over sequential out-of-core
implementations. In instances where memory capacity on a single node is insufficient, historical continuous

trajectory datasets can be partitioned and queried independently in-memory across multiple compute nodes.



For these reasons, we focus on in-memory trajectory database on a single node.

Distance threshold searches require large numbers of Euclidean moving distance calculations so as to
determine precise spatiotemporal object proximity. As a result, attractive platforms for executing these searches
are manycore GPUs whose SIMD (Single Instruction Multiple Data) execution model should allow for large
numbers of concurrent distance calculations. Regardless of the execution model, a key technique to reduce
database search response time is indexing. Several indexing schemes for spatiotemporal trajectory data have
been proposed for out-of-core databases and used for in-memory databases for searches processed on the CPU.
These techniques typically rely on index trees and are not necessarily appropriate on GPU architectures.

In this work, we focus on enabling efficient distance threshold searches on spatiotemporal trajectory databases
on the GPU. We develop three GPU-friendly indexing schemes (spatial, temporal, spatiotemporal) suitable for
distances threshold searches on the GPU, and develop a GPU kernel for each scheme. We then compare our GPU
implementations to a previous CPU-only implementation that uses an in-memory R-tree index, and show that
using the GPU can afford significant speedup. Interestingly, we find that for large datasets efficient trajectory
splitting strategies for an R-tree index, at least for the in-memory case, provides limited or no performance
improvements. We then evaluate our implementations with 4-D datasets (3 spatial dimensions and 1 temporal
dimension), including a real-world astrophysics dataset (of a galaxy merger) and two synthetic datasets. Our
key finding is that distance threshold searches on the GPU can have response times significantly lower than
that on the CPU when trajectory datasets are large, dense, and/or the distance threshold is large.

The paper is outlined as follows. Section 2 discusses related work. Section 3 formally defines the problem.
Section 4 describes our indexing techniques and search algorithms. Section 5 presents our experimental results.

Finally, Section 6 concludes with a summary of our findings and a discussion of future research directions.

2 BACKGROUND AND RELATED WORK

A key question in database research is the efficient retrieval of data. While database management systems can
support arbitrary queries on arbitrary data, more efficient retrieval can be achieved in specific domains if there
is structure on the data and/or if particular queries are expected. Such a domain is that of spatiotemporal

databases that store the trajectories of moving objects. A trajectory is a collection of points connected by
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polylines (i.e., a set of line segments). A typical goal of trajectory databases is to perform trajectory similarity
searches, i.e., finding trajectories that exhibit similarity in terms of spatial and/or temporal proximity, or exhibit
similarity in terms of spatial and/or temporal features. Similarity searches have been studied in various
domains, such as convoys [4], flocks [5], and swarms [6]. A well-known trajectory similarity search is the
kNN (k Nearest Neighbors) search [7], [8], [9], [10].

The typical similarity search approach proceeds in two phases: (i) search an index to obtain a candidate set;
(ii) use refinement to produce the final result set. The search phase focuses on pruning, i.e., avoiding traversing
parts of the index. To this end, several index-trees have been proposed as inspired by the success of the popular
R-tree [11], such as TB-trees [12], STR-trees [12], 3DR-trees [13], SETI [14], and implemented in systems such as
TrajStore [15] and SECONDO [10]. More specifically, these works map nodes in an index-tree to pages stored
on disk. The goal is to minimize the number of accessed index-tree nodes so as to avoid costly data transfers
between memory and disk. Index-trees have been used extensively for kNN searches.

In this work we study distance threshold searches, which can be viewed as kNN searches with an unknown
value of £ and thus unknown result set size. As a result several of the aforementioned index-trees are not effi-
cient as the index search cannot be pruned. Distance threshold searches, although relevant to several application
domains, have not received a lot of attention in the literature. Our previous work in [16] studies in-memory
sequential distance threshold searches, using an R-tree to index trajectories inside hyperrectangular minimum
bounding boxes (MBBs). The main contribution therein is an indexing method that achieves a desirable trade-
off between the index overlap, the number of entries in the index, and the overhead of processing candidate
trajectory segments. The work in [17] solves a similar problem, but assume that part of the database resides on
disk. Other trajectory similarity searches rely on metrics of similarity at coarse grained resolutions [18]. Instead,
the distance threshold search requires precise comparisons between individual polylines. The large number of
such comparisons is the main motivation for using the GPU.

In the context of in-memory moving object trajectory databases, several authors have explored the use of
multicore and manycore architectures. Spatial and spatiotemporal indexing methods have been advanced for
the GPU [19], [20], [21], [22], [23], [24]. Given the single instruction multiple data (SIMD) nature of the GPU,

proposed indexes for this architecture tend to be less sophisticated than the index-trees used for out-of-core
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databases. This is in part because branches in the instruction flow cause thread serialization and thus loss of
parallel efficiency [25]. The kNN query (not on trajectories) has been studied in the context of the GPU [26],
[27] and on hybrid CPU-GPU environments [28]. In this work we focus on indexing techniques for distance
threshold similarity searches on trajectories for the GPU, which to our knowledge has only been explored in
our previous work [29]. That previous work assumes that the query set cannot fit entirely on the GPU due to
memory constraints, thereby requiring back-and-forth communication between the host and GPU. Instead, in

this work we assume the query set fits on the GPU, which mandates different indexing schemes.

3 PROBLEM STATEMENT

Distance threshold search on the GPU - Let D be a spatiotemporal database of n 4-dimensional (3 spatial and
1 temporal dimensions) entry line segments. A line segment I;, i = 1,...,|D]|, is defined by a spatiotemporal

end ,end

start gstart pstart ystarty an end point (z$"?, y¢d, 264, t¢7d), a segment id and a trajectory id.

start point (3", y*"", z;
Segments belonging to the same trajectory have the same trajectory id and are ordered temporally by their
segment ids. We call ¢¢"¢ — ¢5t97 the temporal extent of I;. The distance threshold search searches for entry
segments within a distance d of a query set (), where () is a set of line segments that belong to a series of
moving object trajectories. We call the line segments in Q) query segments and denote them by ¢x, k =1,...,|Q|.
The search is continuous, such that an entry segment may be within the distance threshold d of a particular
query segment for only a subinterval of that segment’s temporal extent. We call a comparison between an entry
segment and a query segment an interaction. The result set thus contains a set of query and entry segment pairs,
and for each pair the time interval during which the two segments are within a distance d of each other. For
example, a search may return (g1,/1,[0.1,0.3]) and (g1,02,[0.5,0.95]), for a query segment ¢; with temporal extent
[0,1]. We consider the above search on a platform that consists of a host, with RAM and CPUs, and a GPU
with its own memory and Streaming Multi-Processors (SMPs) connected to the CPU via a (PCI Express) bus.
We consider an in-memory database, meaning that D is stored once and for all in global memory on the GPU,
i.e., the database is stored once and queried multiple times. The objective is to minimize the response time for
processing the queries in ). This is the typical objective considered in other spatiotemporal database works

such as the ones reviewed in Section 2. We consider the case in which both D and @ can fit in GPU memory.
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This means that GPU memory is large enough and not shared with other users. Our intended scenario is that of
a distributed memory environment in which multiple GPUs (e.g., within compute nodes and across compute
nodes) are reserved by a user. As explained in Section 1, D can be partitioned and () can be replicated across
GPUs, so as to enable in-memory distance threshold searches for databases larger than the physical memory
of a single GPU. To ensure good load balancing, all of our approaches assign one query segment to each GPU
thread. Assuming that |Q| is moderately large, then all GPU cores can be utilized.

Moving distance calculation — The distance threshold search performs spatiotemporal comparisons between
entry and query segments. Each comparison amounts to a moving distance computation, which requires a large
number of floating point operations (see Appendix B in [30] for details). The algorithms described in upcoming
sections have GPU threads invoke a compare () function to perform these comparisons. Threads can take
three possible execution paths in this function due to three distinct scenarios: (i) the two line segments do not
overlap temporally; (ii) the two line segments overlap temporally but are not within spatial distance d of each
other; or (iii) the two segments overlap temporally and are within spatial distance d of each other (a query
hit). As a result, GPU threads invoking this function concurrently will experience branch divergence [25] since
some threads will return from compare () earlier than others. Note that this is different from typical divergent
scenarios in which all threads end at the same point but take different execution paths. Those threads that take a
longer execution path (query hits) perform significant amounts of SIMD computation and achieve high parallel
efficiency. Since the search is data-dependent, it is not possible to determine ahead of time which execution
path will be taken for a given query, and therefore not possible to avoid branch divergence.

Memory management — Our distance threshold search proceeds in the two typical steps (see Section 2). In
the first step, an index is searched so as to determine a set of candidate line segments that may be part of
the final result set. The final result set cannot be returned directly because the index is constructed based on
line segment MBBs. As a result, due to “wasted space” in the index [16], [31], the MBB of a line segment
and that of a query segment may overlap, but the line segment does not necessarily fall within the threshold
distance of the query segment. In a second step, each candidate segment is compared to the query segment and
potentially added to the result set. The number of candidate segments and the number of segments in the result

set are data-dependent and cannot be determined before the search executes. In CPU implementations of in-
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memory distance threshold searches [16], [17], [32], memory for holding the candidate sets and the final result
sets is either allocated/deallocated dynamically or pre-allocated conservatively (overestimating the memory
requirement by a factor |Q|). On the CPU these memory management issues are not problematic in practice
since the number of threads is limited (e.g., set to the number of physical cores) and the memory is large and
can be easily dynamically allocated. By contrast, on the GPU these issues are problematic, even though we
assume that both D and @ fit in memory. First, there is a large number of threads that each need memory to
store candidate segments concurrently, leading to memory pressure [23]. Second, on the GPU an upper bound
on the memory requirement must be defined before execution of the search (there is no true dynamic memory
allocation). As a result, one must define a fixed size for a statically allocated memory buffer for each thread.
If the memory requirements exceed this buffer then one must perform a series of kernel invocations so as to

“batch” the generation of the candidate sets and the final result set.

4 INDEXING TRAJECTORY DATA

We outline three trajectory indexing techniques for the GPU. Although our implementations use OpenCL,
hereafter we use the more common CUDA terminology to describe our algorithms (GPU as opposed to device,

kernel as opposed to program, thread as opposed to work-item, etc.).

4.1 Spatial Indexing: Flatly Structured Grids

Previous work has proposed “flatly structured grids” (FSG) to index trajectory data spatially on the GPU
[21]. In that work, the authors focus on 2-D spatial data (and Hausdorff distance) while our context is 3-D
spatiotemporal data (and Euclidean distance). An interesting question is whether spatial indexing with FSGs is
effective even when the data has a temporal dimension. In what follows we describe an FSG indexing scheme

and accompanying search algorithm for the GPU. We call this approach GPUSPATIAL.

4.1.1 Trajectory Indexing

A FSG is a 3-D rectangular box with grid,, grid,, grid. cells in the x, y, and z spatial dimensions, respectively,
for a total of grid, x grid, x grid, cells. Each line segment [; in D is contained in a spatial MBB defined by two

points M BB and M BBI"**, where M BB™™ = (min(x3*", x¢"d) min(ystert, ysn?), min(z5107t, 2¢74))
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Fig. 1: 2-D example rasterization of two line segment MBBs (green) to grid cells (blue) in a 4 x 5 FSG. I;: a long
line segment whose MBB spans six grid cells; lo: a short line segments whose MBB spans one grid cell.

and M BB = (max(z5'%, z¢"?) max(ys1e"t, y¢"d), max(z5tert, z¢n?)), and assigned to the FSG by raster-
izing its MBB to grid cells. Figure 1 shows a 2-D example for two line segments and a 5 x 4 FSG. Each line
segment may occupy more than one grid cell, and some grid cells can remain empty. We store the FSG as an
array of non-empty cells, G. Each cell is denoted as Cj, h = 1,...,|G|, where h is a linearized coordinate
computed from the cell’s z, y, and z coordinates using row-major order.

Each cell C}, is defined by h, and by an index range [A7"", A7*%*] in an additional integer “lookup” array,
A. A[AMin . Amat] contains the indices of the line segments whose MBBs overlap cell Cj, (the notation X [a : b]
is used to denote the “slice” of array X from index a to index b, inclusive). In other terms, if I;"s MBB overlaps
Ch, then i € A[AT"™ . A7), Since the MBB of line segment /; can overlap multiple grid cells, i can occur
multiple times in array A. Section 1 in the supplemental material discusses an example of this indexing scheme,
showing the relationship between arrays D, G, and A.

One of the objectives of the above design is to reduce the memory footprint of the index. This is why we
only index non-empty grid cells, and why for each cell C}, we do not store its spatial coordinates but instead
compute h whenever needed (thereby trading off space for time). Furthermore, the use of lookup array A makes
it possible for array G to consist of same-size elements (even though some cells contain more line segments than
others). Without this extra indirection through array A, it would have been necessary to store entry segment
ids directly into the elements of G. This, in turn, would have made it necessary to pick an element size large

enough to accommodate the cell with the largest number of entry segments, thereby wasting memory. D, A,

and G are stored in GPU memory before query processing begins.

4.1.2 Search Algorithm

The trajectory segments in () are not sorted by any spatial or temporal dimension. This is because sorting

segments temporally would not be effective when using a spatial index. Regarding spatial sorting, it is not clear



9

by which dimension the segments should be sorted. We do not sort the query segments in () by any spatial or
temporal dimension. Temporal sorting would not make sense for a spatial index, and sorting by a single spatial
dimension is not effective to achieve meaningful contiguity for arbitrary 3-D spatial data. As a result, we simply
store segments that are part of the same query trajectory contiguously. Each query segment gy, is assigned to a
GPU thread. The kernel first calculates the MBB for g, and the FSG cells that overlap this MBB. Given the z, y,
z coordinates of each such cell in the FSG, the kernel computes its linearized coordinate (h) using a row-major
order. A binary search is used to find whether cell C}, occurs in array G, in O(log |Q]) time. In this manner the
kernel creates a list of non-empty cells that overlap gx’s MBB. For each cell C}, in this list, the indices of the
entry segments it contains are computed as A[A7*™ : A7'%"]. These indices are appended to a buffer Uy.

The rationale for the above scheme is that with a spatial indexing scheme there is no good approach for
storing index entry segments in a contiguous manner (since one would have to arbitrarily pick one of the spatial
dimensions). This is why we must resort to using buffer Uy, as opposed to, for instance, a 2-integer index range
in a contiguous array of entry segments. Each entry in U}, is then compared to the query segment g, to see if it
is within the threshold distance. Note that while the segments are expected to be relatively nearby each other
spatially (given their FSG overlap), they may not overlap temporally. Note that we do not remove duplicate
indices in buffer Uy, leading to some redundant entry segment processing. Removing duplicates would amount
to sorting buffer Uy, as done for instance in [21], which thus comes at an additional computational cost that, as
shown in our experimental results, offsets the benefits of removing redundant segment processing.

The use of buffer Uy, creates memory pressure and its size must be defined prior to the search (see Section 3).
We define an overall buffer size, s, that is split equally among all queries (|Ux| = s/|Q)|). If the processing of
query g exceeds the capacity of Uy, then the thread terminates, and stores the query id into an array that is
sent back to the host. Once the kernel execution finishes, the host re-attempts the execution of those queries
that could not complete due to memory pressure. For each such re-attempt, memory pressure is lower because
fewer queries are executed (i.e., |Uy| is larger). It is likely that more efficient methods could be designed, but
our results show that completely discounting the overhead of these re-attempts does not significantly change
how GPUSPATIAL compares to the schemes we propose in upcoming sections.

The pseudo-code of the search algorithm is shown in Algorithm 1. Its arguments are: (i) the FSG array (G);
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Algorithm 1 GPUSPATIAL kernel.

1: procedure SEARCHSPATIAL(G, A, D, Q, querylDs, U, d, redo, resultSet)
2 gid < getGloballd()
3 if queryIDs = () and gid>|Q)| return
4: if queryIDs # () and gid>|queryIDs| return
5: if queryIDs = () then
6: queryID < gid

7 else

8: queryID < queryIDs[gid]

9: (overflow , candidateSet) <— getCandidates(G, A, D, Q[querylD], U, d)

10: if overflow then

11: atomic: redo < redo U { queryID }

12: return

13: for all entryID € candidateSet do

14: result <— compare(D[entryID],Q[queryID])
15: if result # () then

16: atomic: resultSet <— resultSet U result
17: return

(ii) the lookup array (A); (iii) the database (D); (iv) the set of queries (()); (v) an array that contains the ids of
the queries to be reprocessed (queryIDs), which is empty for the first kernel invocation; (vi) buffer space (U);
(vii) the query distance (d); (viii) an output array in which the kernel stores the ids of the queries that must be
reprocessed (redo); and (ix) the memory space to store the result set (resultSet). Arguments that lead to array
transfers between the host and the GPU, either as input or output, are shown in boldface. Other arguments
are either pointers to pre-allocated zones of (global) GPU memory or integers. The algorithm first checks the
global thread id and aborts if it is greater than @ or |queryIDs|, depending on whether this is a first invocation
or a re-invocation (lines 3-4). The id of the query assigned to the GPU thread is then acquired from () or
using an indirection via querylDs (lines 6-8). Function getCandidates searches the FSG and returns a boolean
that indicates whether buffer space was exceeded and the (possibly empty) set of candidate entry segment ids
(line 9). If buffer space was exceeded, then the query id is atomically added to the redo array and the thread
terminates (line 10-12). The algorithm then loops over all candidate entry segment ids (line 13), compares each
entry segment to the query (line 14) and atomically adds any query result to the result set (line 16). Once all
threads have completed, resultSet and redo are transferred back to the host. If [redo| is non-zero, then the kernel

is re-invoked, passing redo as queryIDs. Duplicates in the result set are filtered out on the host.

4.2 Temporal Indexing

In this section, we propose a purely temporal partitioning strategy, GPUTEMPORAL. The indexing scheme is

similar to that used in [29], and we described it here for completeness. The search algorithm, however, is very
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different due to different memory constraint assumptions.

4.2.1 Trajectory Indexing

We begin by sorting the entries in D by non-decreasing 4.4+ values, re-numbering the entry segments in
this order, ie., t{**" < ¢5197 The full temporal extent of D is [tmin, tmaz] Where tyin = mingep 5"
and tpq; = maxyep tf‘"d. We divide this full temporal extent so as to create m logical bins of fixed length
b = (tmaz — tmin)/m. We assign each entry segment, [;, ¢ = 1,...,|D|, to a bin, where [; belongs to bin B;, j =
1,...,m, if [t5'"t /b| = j. There can be temporal overlap between the line segments in adjacent bins. For each
bin B; we defined its start times as B§**"* = j x b and its end time as B{"? = max((j 4+ 1) X b, max;, ¢, t5").
B$'"* does not depend on the line segments in bin B;, but Bj”d does. The temporal extent of bin B; is defined
as [B3*t, B]e-”d]. Given the definitions of B5**"* and B;-”d, the union of the temporal extents of the bins is equal
to the full temporal extent of D. We define B]f st — arg min;, e g, 5" and By**" = argmax; ), ¢, £, i.e,,
the ids of the first and last entry segments in bin B;, respectively. [B]f irst, B;“St] forms the index range of the
entry segments in B;. Bin B; is thus fully described as (Bjt‘“"t,B;f”d, ij irst Bé-“St). The set of bins forms the
temporal database index. Section 2 in the supplemental material discusses an example of this indexing scheme,

showing how line segments are assigned to temporal bins.

4.2.2 Search Algorithm

Before performing the search, the following pre-processing steps must be performed. First, query segments in ()
are sorted by non-decreasing ts:q.+ values, in O(|Q|log |Q]) time. For each query segment ¢, we calculate the
index range of the contiguous bins that it overlaps temporally. A naive algorithm for computing this overlap
would be to scan all bins in O(m) time. A binary search could be used to obtain a logarithmic time complexity.
In practice, however, there are many temporally contiguous query segments and each overlaps only a few bins.
Since segments in () are sorted by non-decreasing ¢;4,+ values, the search can be done efficiently by using the
first temporal bin that overlaps the previous query segment as the starting point for the scan for the temporal
bins that overlap the next query segment. The search thus typically takes near-constant time. Let B, denote the
set of contiguous bins that temporally overlap query segment gy, as identified by the above search. In constant

time we compute the index range of the entry line segments that may overlap and must be compared with gy;:
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Er = [mingeg, ij 5t maxpes, B!*5']. We term the mapping between g; and Ej, the schedule, S. Each GPU
thread compares a single query to the line segments in D whose indices are in the £}, range.

In all of our experiments, the time to compute S on the CPU is a negligible portion of the overall response
time. Over all experiments for the largest dataset used in this work (Merger, as described in Section 5), the

schedule computation on the CPU accounts for at most 0.002% of the compute time on the GPU.

Algorithm 2 GPUTEMPORAL kernel.

1: procedure SEARCHTEMPORAL(D, Q, S, d, resultSet)
2 gid < getGloballd()

3 if gid>|Q| return

4 queryID <« gid

5: entryMin < S[gid].EntryMin

6: entryMax < S[gid]. EntryMax

7: for all entryID € {entryMin,....entryMax} do
8 result <— compare(D[entryID],Q[queryID])
9 if result # () then

0 atomic: resultSet <+ resultSet U result

1 return

The pseudo-code of the search algorithm is shown in Algorithm 2. Its arguments are: (i) the database (D);
(ii) the query set (Q); (iii) the schedule (S); (iv) the query distance (d); and (v) the memory space to store the
result set (resultSet). As in Algorithm 1, arguments that lead to host-GPU transfers are shown in boldface. The
algorithm first checks the global thread id and aborts if it is greater than |Q| (line 3). The query assigned to
the thread is then acquired from @) (line 4). Next, the algorithm retrieves the minimum and maximum entry

segment indices from the schedule (lines 5-6). From line 7 to 11 the algorithm operates as Algorithm 1.

4.3 Spatiotemporal Indexing

In the two previous sections, we have proposed a purely spatial and a purely temporal indexing scheme. The
spatial scheme leads to segments in ) and D being compared that are spatially relevant but may be temporal
misses (no temporal overlap). Likewise, the temporal indexing scheme compares temporally relevant segments
in @ and D, but these segments may be spatial misses (no spatial overlap). Therefore, either approach can
outperform the other depending on the spatiotemporal characteristics of () and D. Assuming for the sake of
discussion that these characteristics do not give any such particular advantage to either one of the two indexing
approaches, we can reason about their relative performance. First, the spatial indexing approach requires buffer
space to store the spatially overlapping trajectory segments. In contrast, because the temporal indexing scheme

is indexed in a single dimension, the temporally overlapping entry segments can be defined by an index range
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in D, which represents significant memory space savings. The same method could possibly be used with a
spatial indexing scheme if considering only one of the spatial dimensions, making the index no longer a multi-
dimensional grid, but instead a linear array. This approach would however drastically decrease the spatial
selectivity of the search, leading to large increases in wasted computational effort (i.e., comparisons of segments
that have no overlap in one or two of the spatial dimensions). Second, to minimize the memory footprint on the
GPU, the spatial scheme requires two additional arrays (G and A), thus leading to two indirections in global
GPU memory. In contrast, the temporal scheme requires a single indirection. Moreover, the entry segments are
stored contiguously in the temporal scheme, while this is not the case in the spatial scheme.

We propose an alternate spatiotemporal indexing scheme, GPUSPATIOTEMPORAL, that retains the benefit

of both GPUSPATIAL and GPUTEMPORAL, without some of the above drawbacks.

4.3.1 Trajectory Indexing

GPUSPATIOTEMPORAL adopts a temporal index so as to avoid the buffering and multiple indirection issues
of spatial indexing, but subdivides each temporal bin into spatial subbins to achieve spatial selectivity. Entry
segments in D are assigned to m temporal bins exactly as for GPUTEMPORAL. We then compute the spatial

extent of D in each dimension. For instance, in the & dimension the extent of D is:

[mmWH xmam] = [ggg(min(miturﬂxind» ) Eleal)){(max(witarﬂxénd))] .

Spatial extents in the y and z dimensions are computed similarly. We then compute the maximum spatial
extent in each dimension of the entry segments, which for the z dimension is max;, e p 2%, ,,, — 2%, ;|- Maximum
spatial extents are computed similarly for the y and z dimension. For each of the temporal bins, we create v
spatial subbins along each dimension, with the constraint that these subbins are larger than the maximum
spatial extent of the entry segments. For instance, in the x dimension, this constraint is expressed as v <
(Tmaz — Tmin)/ maxyep |k, — 2, ,4]. We place this constraint for two reasons: (i) to eliminate duplicates
in the result set, and (ii) to reduce the amount of redundant information in the index. In total we have m x v
subbins and we denote each subbin as Bem», withi=1,...,mand j=1,...,v.

The above indexing of line segments to temporal and spatial bins is implemented via three integer arrays,

X,Y,and Z. Each array stores the ids of the line segments that overlap the subbins in one spatial dimension.
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The ids for a subbin are stored contiguously, for the subbins B ;’s sorted by (j,4) lexicographical order. This
amounts to storing contiguously all ids in the first subbins of the temporal bins, then all ids in the second
subbins of the temporal bins, etc. The reason for storing the ids in this manner is as follows. Consider a query
segment with some spatial and temporal extent. This query may overlap several contiguous temporal bins
(as shown in Section 4.2). However, because of the way in which we choose the sizes of the spatial subbins,
most queries will not overlap multiple subbins in all three dimensions. Identifying potential overlapping entry
segments then amounts to examining the i-th subbin of contiguous temporal bins, for some 0 < ¢ < v. Given the
X,Y,and Z array, each spatial subbin is then described with the index range of the entries in those arrays, i.e.,
6 integers. When compared to the purely temporal index, this spatiotemporal indexing scheme requires only
additional space in GPU memory for the X, Y, and Z integer arrays, which corresponds to > 3|D| x 4 bytes.
Section 3 in the supplemental material discusses an example of this indexing scheme, showing how segments

are assigned to temporal and spatial bins and how arrays X, Y, and Z are constructed.

4.3.2 Search Algorithm

On the host, as for GPUTEMPORAL, we first sort () and for each query segment calculate the temporally
overlapping entries from the temporal bins. We also compute the set of spatially overlapping subbins in each
dimension. This computation also takes place on the host, where the description of the bins and subbins are
stored. Arrays X, Y, and Z are stored on the GPU. The obvious option would be to compute the intersection
of entry segments that belong to these subbins so as to select only spatially relevant entry segments and sent a
list of their indices to the GPU. Unfortunately, this is an unpractical approach due to the memory footprint of
the list for large and or dense datasets and for relevant query distances. Let us consider the Random-dense and
Merger datasets used in this work (see Section 5). For Random-dense the list occupies 52MiB for query distance
d = 0.1 and 9,353MiB for d = 0.9. For Merger the list occupies 293MiB for d = 1 and 3,018MiB for d = 9. These
sizes assume that the database index has perfect selectivity so that the list only contains indices of line segments
that will be part of the result set. However, a state-of-the-art spatiotemporal R-tree produces a candidate set
that is 10 times larger than the result set for 3-d trajectories (see Figure 8 in [32]). Therefore, it is reasonable to
expect that the list would be roughly one order of magnitude larger than the aforementioned sizes. In practice,

besides the overhead of sending large amounts of data from the host to the GPU, the memory footprint of the
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index list is thus prohibitive due to the limited global memory capacity of the GPU (in our case 5GiB).

Since it is not feasible to use a list of indices, instead we use an approach that uses a fixed and small number
of indices. Among the three spatial dimensions we pick the one in which the number of entry segments that
overlap the query segment is the smallest. We then simply send to the GPU an index range, 2 integers, in the
X, Y, or Z array, depending on the dimension that was picked. This approach has low overhead and memory
footprint. Its drawback is that it can lead to wasteful computation on the GPU (i.e., evaluation of entry segments
that do not overlap with the query segment in one of the other two spatial dimensions). Our results show that
the search algorithm achieves good performance in spite of these wasteful computation, as might be expected
given the GPU’s sheer computational power.

On the host, we generate a schedule S, which contains for each query segment g a specification of which
lookup array to use (0 for X, 1 for Y, or 2 for Z) and an index range into that array, which we encode
using 4 integers (to preserve alignment). GPUSPATIOTEMPORAL requires 1 extra indirection in comparison
to GPUTEMPORAL, and avoids storing the overlapping entry indices in a buffer like in GPUSPATIAL. We
then sort .S based on the lookup array specification so as to minimize thread serialization due to branching.
Over all experiments for the largest dataset used in this work (Merger, as described in Section 5), the schedule
computation on the CPU accounts for at most 0.04% of the compute time on the GPU.

As explained in the previous section, we enforce a minimum size for the spatial subbins. Ensuring that
subbins are not too small is necessary for two reasons. First, with small subbins each entry segment could
overlap many subbins with high probability. As a result, the query id would occur many times in arrays X,Y,
and/or Z, thereby wasting memory space on the GPU and causing redundant calculations. Second, given our
indexing scheme and search algorithm described hereafter, a query that overlaps multiple subbins along all three
spatial dimensions may lead to duplicates in the result set. These duplicates would then need to be filtered out
(either on the GPU or the CPU). To avoid duplicates, we simply default to the purely temporal scheme whenever
duplicates would occur. While this behavior wastes computation (i.e., we lose spatial filtering capabilities), the
constraint on subbin size described in the previous section ensures that it occurs with low probability.

The pseudo-code of the search algorithm is shown in in Algorithm 3. Its arguments are: (i) the X, Y, and Z

arrays; (ii) the database (D); (iii) the query set (Q); (iv) the schedule (S); (v) the query distance (d); and (vi) the
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memory space to store the result set (resultSet). As in Algorithm 2, arguments that lead to array transfers
between the host and the GPU are in boldface. The algorithm first checks the global thread id and aborts if
it is greater than |Q| (line 3). The query assigned to the thread is acquired from @ (line 4). A helper array is
constructed that holds pointers to the X, Y, and Z arrays (line 5). If schedule S does not give a specification
for one of the X, Y, or Z arrays (S[gid].arrayXYZ = -1) then the algorithm defaults to the temporal scheme
(line 15). Otherwise, it retrieves the pointer to the correct X, Y, or Z array (line 7) and determines the index

range for the entry segments (lines 8-9). It then processes the entry segments (line 10) as in Algorithm 2.

Algorithm 3 GPUSPATIOTEMPORAL kernel.

1: procedure SEARCHSPATIOTEMPORAL(X,Y,Z,D,Q,S,d, resultSet)
2 gid « getGloballd()

3 if gid>|Q| return

4: queryID < gid

5: arraySelector < {X,Y, Z}

6: if S[gid].arrayXYZ # -1 then

7 arrayXYZ < arraySelector[S[gid].arrayXYZ]

8 entryMin « S[gid].entryMin

9: entryMax < S[gid].entryMax
10: for all i € {entryMin, ..., entryMax} do
11: entrylD = arrayXYZ][:]
12: result <— compare(D[entryID],Q[queryID])
13: if result # () then
14: atomic: resultSet < resultSet U result
15: else
16: Lines 5-10 in Algorithm 2.
17: return

5 EXPERIMENTAL EVALUATION
5.1 Datasets

We evaluate the performance of our various indexing methods for 3 4-dimensional datasets:

Random-1M — A small, sparse synthetic dataset of 2,500 trajectories generated via random walks over 400
timesteps, for a total of 997,500 entry segments. Trajectory start times are sampled from a uniform distribution
over the [0,100] interval. This dataset is representative of small and sparse datasets in which few or no entry
segments are expected to lie within distance d of a query segment, i.e., with a low number of interactions.
Merger — A large, real-world dataset' from the field of astrophysics, which consists of particle trajectories that
simulate the merger of the disks of two galaxies. It contains the positions of 131,072 particles over 193 timesteps

for a total of 25,165,824 entry segments.

1. This dataset was obtained from Josh Barnes [33].
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Random-dense — A synthetic dataset motivated by astrophysics applications but denser than Merger, and gen-
erated as follows. Consider the stellar number density of the solar neighborhood, i.e., at galactocentric radius
Re = 8 kpc (kiloparsecs), of Reid et al. [34], ng = 0.112 stars/pc®. Random-dense has the same number of
particles as one disk in the Merger dataset (65,536) and 193 timesteps, yielding 12,582,912 entry segments, but
matching the density of [34]. This requires a cubic volume of 65536/0.112 = 585142 pc?, i.e., a cube with
length, width and height of 83.64 pc. We generate trajectories as random walks as in the Random-1M dataset,
where all of the particles are initially populated within the aforementioned cube. We allow the trajectories to
move a variable distance in each of the 3 spatial dimensions at each timestep (between 0.001 and 0.005 kpc). If
a particle moves outside of the cube by 20% of the length of the cube in any dimension, the particle is forced
back towards the cube. The particles, on average, cannot travel too far from the cube such that we maintain a
roughly consistent trajectory density at each timestep. This dataset aims to represent a density consistent within
the range of possible densities within the Milky Way. Note that increasing the trajectory density by several
factors (e.g., 4-fold) would still be consistent with that resembling the disk in the inner Galaxy. So although we

call this dataset “dense,” even denser datasets are relevant in the application domain.

5.2 Experimental Methodology

For all our distance threshold search implementations the GPU-side is developed in OpenCL and the host-side
is developed in C++. The GPU-side implementation runs on an Nvidia K20c card (Kepler microarchitecture)
with 5GiB of RAM and 2496 cores. The host-side implementation is executed on one of the 6 cores of a dedicated
3.46 GHz Intel Xeon W3690 processor with 12 MiB L3 cache. In all experiments we measure query response
time as an average over 3 trials (standard deviation over the trials is negligible). For each experiment, given
the memory capacity of our card, the memory footprint of the dataset, and the memory footprint of the index,
we allocate on the GPU a buffer for holding the result set of the search that is as large as possible. The size of
this buffer is given for all the experiments described in the upcoming sections. When this buffer is overcome,
then the query set is processed incrementally via multiple kernel invocations, as explained in Section 3. The
reported response times include the induced overhead of these invocations and corresponding data transfers.
The response time does not include the time to build the index or the time to store D and the index in GPU

memory. These operations can be performed off-line before query processing begins.
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We consider three experimental scenarios, each for one of our datasets: (S1) The Random-1M dataset and a
query with 100 trajectories each with 400 timesteps for a total of 39,900 query segments; (52) The Merger dataset
and a query set with 265 trajectories each with 193 timesteps for a total of 50,880 query segments; and (S3) The
Random-dense dataset and a query set with 265 trajectories each with 193 timesteps for a total of 50,880 query
segments. For each scenario, we use ranges of query distances (in units of kpc for 52 and S3).

In addition to our GPU implementations we also evaluate a CPU-only implementation, CPU-RTREE.
This implementation relies on an in-memory R-tree index [11], and is multithreaded using OpenMP. Threads
traverse the R-tree in parallel, each for a different query segment, and return candidate entry segments. This
implementation was developed in our previous work [16], [32]. All executions of CPU-RTREE use 6 threads on
our 6-core CPU and achieve high parallel efficiency [29]. Like for the GPU implementation, our response time
measurements do not include the time to build the index tree. One important driver of response time for index
trees is how trajectory segments are assigned to MBBs [16], [31], [35]. CPU-RTREE stores r > 1 segments per
MBB. There is a trade-off between the time to search the index (which decreases as r increases due to lower tree
depth) and the time to process the candidate (which increases as 7 increases due to higher index overlap).

Although the experimental results in the following sections are constrained by the specifics of our platform,
the results for CPU-RTREE are used to demonstrate that the GPU can be used efficiently for distance threshold
searches. Note that a fundamental difference between CPU-RTREE and our GPU implementations is that the

former relies on index-tree traversals while the latter relies on non-hierarchical indexes.

5.3 Results for the Random-1M Dataset

Figure 2 shows response time vs. the number of entry segments per MBB (r) for CPU-RTREE for a range of d
values. These results illustrate the trade-off mentioned in the previous section: neither using » = 1 or using a
large value of r leads to the lower response time. Several values in between lead to good response time across
all query distances, e.g., r = 10.

Figure 3 plots response time vs. d for GPUSPATIAL for a range of grid resolutions (i.e., numbers of grid cells).
In all GPU implementations on this dataset, we allocate a buffer for the result set having 5 x 107 elements. We
use a total buffer size, |U|, of 2GiB to store overlapping entry segments, which is larger than the space necessary

to store D. This is thus an optimistic configuration for the FSG index. The results show that using too few grid
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Fig. 2: Response time vs. number of entry segments per MBB (r) for CPU-RTREE in scenario S1 with d =
5,10,...,50.
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Fig. 3: Response time vs. d for GPUSPATIAL in scenario S1. Different curves are shown for different numbers of
spatial cells in the z, y, and z dimensions (i.e., “Cells=10" means a 10 x 10 x 10 grid).

cells leads to poor performance due to poor spatial selectivity meaning that: (i) a large candidate set must be
processed and (ii) many GPU threads overflow their entry buffers (Uy) thus requiring multiple query processing
attempts. Conversely, using too many grid cells also leads to poor performance because entry segments overlap
multiple cells, causing duplicate index entries, and thus duplicates in the result set. Although filtering out these
duplicates takes negligible time, transferring them from the GPU back to the host incurs significant overhead.
In these experiments, for FSG resolutions between 30 and 110 in increments of 10, using 50 cells per dimension
leads to the lowest response time. Regardless of the FSG resolution, we see rapid growth in response time
as d increases, a behavior already mentioned in [21]. While FSG indexes have been documented to perform

well for purely spatial data and/or for point searches (rather than line segment searches), we find that for
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Fig. 4: Response time vs. the number of subbins (v) for GPUSPATIOTEMPORAL in scenario S1. The number of
temporal bins is 10,000. Different curves are shown for different query distances (d = 5, 10, ..., 50).

spatiotemporal trajectory searches they are very sensitive to the query distance.

The behavior of GPUTEMPORAL is defined by the number of temporal subbins used to construct the index
(on the host). Our results, not shown, clearly show the expected trade-off. Using too few temporal bins leads
to insufficient temporal discrimination, resulting in wasteful interactions that negatively impact the response
time. But as the number of bins increases the response time converges to a minimum value. For this dataset,
we find that using more than 5,000 bins does not lead to further response time reductions. But a conservative
approach that would pick, e.g., 10,000 bins, does not experience any response time increase.

Figure 4 shows response time vs. the number of subbins for GPUSPATIOTEMPORAL, using 10,000 temporal
bins, for several d values. For low d a greater number of spatial subbins is desirable. This is because it is unlikely
that a query will overlap multiple subbins, which would cause our algorithm to revert to the purely temporal
method that has no spatial selectivity. As d increases, queries overlap multiple spatial subbins with higher
probability. As a result, better performance is achieved with fewer subbins. Recall that we require that a query
fall within a single subbin so as to avoid duplication in the result set. Without this requirement, an increasing
number of subbins would suggest an increase in the duplication of entries in the index, thereby increasing the
number of candidates that need to be processed (the same trade-off discussed for GPUSPATIAL). There is thus
a trade-off between having too few or too many subbins, even when duplicates in the result set are permitted.

Figure 5 shows response time vs. d for our four implementations. Each implementation is configured

with good parameter values based on previous results in this section (see the caption of the figure). The
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Fig. 5: Response time vs. d for scenario S1. For CPU-RTREE we use r = 10 segments/MBB; for GPUSPATIAL
we use 50 cells per spatial dimension; for GPUTEMPORAL we use 10,000 bins; and for GPUSPATIOTEMPORAL
we use 10,000 temporal bins and v = 4 spatial subbins: For GPUSPATIAL we plot an optimistic curve that
ignores kernel re-launch overheads.

first observation is that CPU-RTREE is best across all query distances. Comparing the GPU implementations,
we see that GPUSPATIAL performs better than GPUTEMPORAL and GPUSPATIOTEMPORAL when d < 20, but
that it does not scale well for larger d values. One may wonder whether this lack of scalability comes from the
overhead of re-launching the kernel due to buffer overflows. Figure 5 plots an “optimistic” curve that discounts
this overhead. We see that the same trend, albeit not as extreme, remains. Consequently, GPUSPATIAL’s poor
scalability is intrinsic and not solely due to the need to relaunch kernels due to memory constraints. The
temporal and spatiotemporal indexing methods have consistent response times across query distances. Because
this dataset is sparse, even with large query distances the size of the result set is small. Consequently, the
fraction of the execution time of GPUTEMPORAL and GPUSPATIOTEMPORAL spent identifying and adding
items to the result set is low across all query distances in these experiments. This overhead becomes noticeable
for denser datasets, as seen in upcoming sections. For GPUSPATIOTEMPORAL we could have selected the best
number of subbins for each value of d from Figure 4, which would have improved the results (instead we have
used v = 4 spatial subbins per temporal bin). Nevertheless, we see that GPUSPATIOTEMPORAL outperforms
GPUTEMPORAL, showing that the use of a more complex indexing scheme (i.e., with one more indirection to
implement spatial selectivity) yields performance benefits.

One possible reason for the poor performance of our GPU algorithms relative to the CPU algorithm could

be that their executions are global-memory-bound. Note that a common optimization on the GPU is to ensure
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that global memory accesses are coalesced [36]. Such coalescing is challenging in our case, due to the fact that
our computation is data-dependent. In general, given a query, it is not possible to determine which entries it
will overlap, and thus it is not possible to enforce that these entries be stored contiguously in memory. As a
result, our implementations lead to many uncoalesced accesses. We have measured the effective global-memory
throughput of our algorithms by dividing the total number of bytes loaded from and stored to global memory
on the GPU by the kernel execution time. The throughput of GPUTEMPORAL does not depend on d, while the
throughput of GPUSPATIOTEMPORAL increases slightly as d increases. Regardless, across all our experiments
their global memory throughput is below 15 GiB/s. This is less than 10% of the available global memory
bandwidth, which is above 200 GiB/s on our GPU. The relatively poor performance of our GPU algorithms is
thus not due to a global memory bottleneck on the GPU (even with uncoalesced accesses).

We conclude that one should use an in-memory R-tree on the CPU for small and sparse datasets since the

overhead of using the GPU is too large given that few interactions need to be computed.

5.4 Results for the Merger Dataset

In this section, we present results for our largest dataset, Merger (over 25 million entry segments). The results
from Section 5.3 show that GPUSPATIAL does not fare well for large query distances because it does not use any
temporal selectivity and thus computes too many interactions. With the Merger dataset, this lack of temporal
selectivity is harmful even for small query distances. Consequently, for Merger, GPUSPATIAL leads to response
time much higher than that of the other implementations and we thus omit its results in all that follows.
When running CPU-RTREE on this dataset, regardless of the query distance, we find that storing more than
r = 1 segments per MBB leads to higher response time, which is unlike what is observed for the Random-1M
dataset. A higher r value decreases the time to search the R-tree index, but this benefit is offset by the increase
in candidate set size. With the large dataset, there are simply too many candidates to justify increasing the
overlap in the index. This is an important result. There is a literature devoted to assigning trajectory segments
to MBBs for improving response time [16], [31], [35]. These works, however, do not consider large datasets. Our
results with a large dataset indicates that deciding how to group multiple trajectory segments into MBBs is not
a worthwhile pursuit. On the contrary, our results may even suggest an opposite approach that would splice

individual polylines to increase the size of the dataset (which can be thought of as setting r < 1).
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Fig. 6: Response time vs. the number of subbins (v) for GPUSPATIOTEMPORAL in scenario S2. The number of
temporal bins is 1,000. Different curves are shown for different query distances between d = 0.001 and d = 5.

We do not show results for GPUTEMPORAL as they are similar to those for the Random-1M dataset. For
this dataset, using 1,000 temporal bins leads to the lowest response time, which is consistent across all query
distances. For GPUTEMPORAL, a result set buffer was allocated to store 5 x 107 elements. Figure 6 shows
response time vs. number of subbins for GPUSPATIOTEMPORAL, where 1,000 temporal bins are used. For
GPUSPATIOTEMPORAL, the allocated size of the buffer for the result set is 4 x 107 elements, which is lower
than the size of the buffer for GPUTEMPORAL, as there is additional space required to store the index. Curves
are shown for several d values. We observe that using v = 16 subbins leads to good results across all query
distances, and this value is in fact best for most query distances we have attempted. While Figure 4 shows a
dependency between v and d for the Random-1M dataset, this dependency does not exist for a large dataset with
many interactions. The implication is that picking a good v value is likely straightforward for such datasets.

Figure 7 compares the performance of CPU-RTREE and GPUTEMPORAL and GPUSPATIOTEMPORAL (recall
that GPUSPATIAL is omitted due to high response time). Each method is configured with good parameter
values based on previous results in this section as described in the caption. GPUSPATIOTEMPORAL outperforms
GPUTEMPORAL across the board, with response times at least 17.6% faster. At low query distances CPU-
RTREE yields the lowest response times. It is overtaken by GPUSPATIOTEMPORAL at d ~ 1. At d = 0.001
the response time for the CPU implementation is 9.70 s vs. 41.75 s for GPUSPATIOTEMPORAL (the GPU
implementation is 203.8% slower). At d = 5 these response times become 184.4 s, and 119.61 s, respectively

(the GPU implementation is 54.2% faster). Note that the increase in response time for GPUTEMPORAL and
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Fig. 7: Response time vs. d for our implementations for scenario S2. For CPU-RTREE we use r = 1

segments/MBB; for GPUTEMPORAL, we use 1,000 bins; for GPUSPATIOTEMPORAL, we use 1,000 temporal
bins and v = 16 spatial subbins. We indicate three distance thresholds relevant for the study of the habitability
of the Milky Way. Red: close encounters between stars and planetary systems [37]; Blue: supernova events on
habitable planetary systems [3], and Magenta: studying the effects of gamma ray bursts on habitable planets
[38]. Both the Red and Blue lines are close to the vertical axis.

GPUSPATIOTEMPORAL for query distances d > 4 is due to the overhead of communication between the host
and the GPU. For these large query distances, the result set is too large to fit in the buffer allocated on the GPU,
thus requiring multiple kernel invocations. The expectation is for this overhead to be reduced in the future as
bandwidth between the host and the GPU improves and as GPU memory becomes larger.

As in the previous section, we compute effective global memory throughputs. For both algorithms the
throughput decreases as d increases, and across all experiments the throughput of GPUTEMPORAL, resp.
GPUSPATIOTEMPORAL, is below 16 GiB/s, resp. 10 GiB/s. As for the Random-1M dataset, only a small fraction
of the available global memory bandwidth is used, due to the compute-bound moving distance calculations.

Overall, we conclude from these results that the GPU implementation outperforms CPU-RTREE when using

large datasets or when sulfficiently large query distances are considered.

5.5 Results for the Random-dense Dataset

We now present results for the Random-dense dataset. Recall that for the small Random-1M dataset, using r = 10
segments per MBB leads to good response time across all query distances, while for the larger Merger dataset
using r = 1 was best due to the large number of interactions. The size of Random-dense is in between that of
Random-1M and Merger, and we find empirically that using » = 4 leads to low response time across all query

distances. As in the previous section, we do not show results for GPUSPATIAL due to very high response time.
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Fig. 8: Fraction of queries that use the entries provided by subbins vs. the number of subbins (v).

We do not show results for GPUTEMPORAL because they are similar to those for the two previous datasets:
using 1,000 temporal bins leads to the lowest response time, which is consistent across all query distances.

As for the Merger dataset, the response time of GPUSPATIOTEMPORAL for the Random-dense dataset is not
sensitive to the number of subbins in use. However, we found that with this dataset the use of subbins for
reducing response time is only possible for small query distances (d = 0.001,0.01,0.03). This is because the
dataset is smaller than Merger and because with larger values of d, the queries are more likely to fall within
multiple subbins (in which case the algorithm degenerates to a purely temporal scheme). Figure 8 shows the
fraction of queries that utilized the entries provided by the subbins for d = 0.001,0.01,0.03, i.e., the fraction
of queries for which GPUSPATIOTEMPORAL does not degenerate to GPUTEMPORAL. Only the smallest query
distance, d = 0.001, permits usage of the spatiotemporal index across a sizable fraction of the number of
subbins. For instance for d = 0.03 and v = 2, just over 60% of the queries use the spatiotemporal index over
the pure temporal index, and when v = 4, the entries provided by the spatiotemporal index are not used.

Given the density of the dataset, for larger values of d, only a fraction of the queries can be solved per
kernel invocation as there is insufficient memory space for the result set. Since Random-dense has half as many
entries as Merger, we can increase the size of the buffer on the GPU for the result set. For GPUTEMPORAL, and
GPUSPATIOTEMPORAL, the size of the buffers are increased to 9.8 x 107, and 9.2 x 107 items, respectively.

This increase in buffer size for Random-dense lowers the number of kernel invocations, and thus leads to
decreases in response time. For instance, at d = 0.09 (which requires the greatest number of kernel invocations),

the spatiotemporal index, with v = 2, using the larger buffer for the result set leads to a response time that is
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Fig. 9: Response time (left vertical axis) and fraction of entries within distance d of the query (right vertical axis)
vs. d for CPU-RTREE, GPUTEMPORAL, and GPUSPATIOTEMPORAL for scenario S3. For the CPU we show
results for » = 4. 1,000 temporal bins are used for both the temporal and spatiotemporal indexing methods.
v = 2 spatial subbins are used for the spatiotemporal indexing method.

59.63% lower than that with the initial buffer. Although we could not run experiments with a larger buffer size
for scenario S2 (due to the size of the Merger dataset), we would expect similar performance gains.

Figure 9 shows response time vs. d for CPU-RTREE and with the larger buffer sizes for GPUTEMPORAL and
GPUSPATIOTEMPORAL. The query distance range spans a wide range of result set sizes. We span a range of
scenarios with respect to the number of entries that are within the query distance, as shown on the right vertical
axis. When d = 0.001, = 0% of the entries are within the query distance, and when d = 0.09, 73.9% of the
entries are within the query distance. CPU-RTREE outperforms the GPU implementations only for very small
query distances d < 0.02. For d > 0.05, GPUSPATIOTEMPORAL performs slightly worse than GPUTEMPORAL.
This suggests that for dense datasets and large query distances, a purely temporal indexing scheme performs
best. At d = 0.05, GPUTEMPORAL is 380% faster than CPU-RTREE (with r = 4).

The effective global memory throughput of our algorithms decreases as d increases and is low (below 15
GiB/s for both algorithms), showing once again that our implementations are compute-bound.

Comparing Figures 7 (Merger) and 9 (Random-dense) shows that the range of query distances for which the
GPU method is preferable to the CPU method is much larger for the Random-dense dataset (consider the query
distances for relevant application scenarios — the red, blue, and magenta vertical lines). In the astrophysics
domain datasets denser than the Random-dense dataset are relevant (i.e., to study the galactic regions at R < 8

kpc). For such datasets a GPU approach will provide even more improvement over a CPU implementation.
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Fig. 10: Ratio of GPU to CPU response times for various datasets and query distances. Values below the y = 1
line indicate improvements over CPU-RTREE.

6 CONCLUSIONS

We have proposed indexing methods and search algorithms for distance threshold similarity searches over
spatiotemporal trajectory datasets on the GPU. To summarize our results, Figure 10 shows the ratio of the
response times of the GPU implementations to the CPU implementation for our 3 datasets for selected query
distances. The main observation is that although the CPU is preferable for small and sparse datasets, the GPU
leads to significant improvements for large and/or dense datasets (unless query distances are very small). For
dense datasets and/or large query distances the parallelism afforded by the GPU is beneficial and the overhead
of using the GPU is a small fraction of the total response time. However, when the dataset is sparse and/or
the query distance is small, this overhead precludes performance gains when using the GPU. Large and dense
datasets are routine in many applications, including our driving application domain. Overall, a spatiotemporal
indexing method that achieves both temporal and spatial selectivity, without resorting to an index tree, is
effective on the GPU. Future trends for GPU technology (faster host-GPU bandwidth, increased memory, etc.)
should provide increasing advantages over CPU implementations. Finally, our experiments show that for the
in-memory R-tree CPU implementation, the well-studied question of how to split a trajectory and store it in
multiple MBBs may not be pertinent for large datasets as storing a single segment per MBB is appropriate. In
fact one may even attempt to splice segments and increase dataset size so as to trade-off higher index-tree search
time for lower index overlap. This result should apply to other similarity searches, such as kNN searches.

An interesting avenue for future research is to explore analytical modeling techniques for predicting, for
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a dataset and a set of queries, whether a GPU execution of the search would be worthwhile. Because search

performance is data-dependent, the challenge is to identify salient metrics that can drive accurate response time

models. Another future direction is to investigate hybrid implementations of the distance threshold search that

uses both the CPU and GPU for query processing. Finally, a broader future direction is to apply our indexing

techniques to other spatial/spatiotemporal trajectory searches.
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