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Abstract—We examine heterogeneous sorting for input data
that exceeds GPU global memory capacity. Applications that
require significant communication between the host and GPU
often need to obviate communication overheads to achieve
performance gains over parallel CPU-only algorithms. We
advance several optimizations to reduce the host-GPU com-
munication bottleneck, and find that host-side bottlenecks also
need to be mitigated to fully exploit heterogeneous architec-
tures. We demonstrate this by comparing our work to end-
to-end response time calculations from the literature. Our
approaches mitigate several heterogeneous sorting bottlenecks,
as demonstrated on single- and dual-GPU platforms. We
achieve speedups up to 3.47 x over the parallel reference imple-
mentation on the CPU. The current path to exascale requires
heterogeneous architectures. As such, our work encourages
future research in this direction for heterogeneous sorting in
the multi-GPU NVLink era.

I. INTRODUCTION

Data transfers between the host (CPU) and device (GPU)
have been a persistent bottleneck for General Purpose Com-
puting on Graphics Processing Units (GPGPU). Current
technology uses PCle v.3 for data transfers, with a peak
aggregate data transfer rate of 32 GB/s. NVLink increases
the aggregate bandwidth to up to 300 GB/s [ 1|]. However, the
data transfer rate remains a bottleneck; for example, multi-
GPU platforms will compete for bandwidth in applications
with large host-device data transfers.

Due to their high throughput, accelerators are increasingly
abundant in clusters. Flagship clusters are decreasing the ag-
gregate number of nodes, and increasing per-node resources.
This is important, as: (i) network communication is a bottle-
neck; thus, executing a larger fraction of the computation on
each node instead of distributing the work reduces inter-node
communication overhead [2]]; (#¢) reducing the number of
nodes in a cluster improves node failure rates, which require
expensive recovery strategies, such as checkpointing and
rollback [3]]; (#¢7) accelerators are more energy efficient than
CPUs for some applications [4]. Consequently, increasing
per-node capacity and decreasing node failure rates helps
pave the way to exascale.

We examine the problem of sorting using a heterogeneous
approach, defined as follows: given an unsorted input list, A,
of n elements in main memory, generate a sorted output list,
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B, using the CPUs and GPU(s) on the platform. Depend-
ing on the strategy employed to generate B, the memory
bandwidth between the CPU and main memory may also
become a bottleneck. Thus, it is not clear that multi-core
CPU-only parallel sorting algorithms will not outperform a
hybrid CPU/GPU approach.

Recently, [5]] advanced a state-of-the-art radix sort for the
GPU. They apply their sort to the problem of heterogeneous
sorting. While the results for the on-GPU sorting are im-
pressive, several overheads in the hybrid sorting workflow
appear to be omitted. In this work, we reproduce their results
to determine the extent that missing overheads may degrade
the performance of their heterogeneous sorting pipeline.

This paper has two goals: (i) advance an efficient hybrid
approach to sorting data larger than GPU memory that
maximizes the utilization of both the CPU and GPU; and,
(44) reproduce the method used for computing the end-to-end
time in [5]], and compare it to our end-to-end performance
that includes all overheads. Our contributions are as follows:
o We advance a heterogeneous sort that utilizes both multi-

core CPUs and many-core GPU(s) that outperforms the

parallel reference implementation when sorting data that
exceeds GPU global memory capacity.

o« We demonstrate critical bottlenecks in hybrid sorting,
and propose several optimizations that reduce the load
imbalance between CPU and GPU tasks.

o We show that these bottlenecks cannot be omitted when
evaluating the performance of heterogeneous sorting, as
may be the case in the literature.

e Our heterogeneous sorting optimizations achieve a high
efficiency relative to the modeled baseline lower bound.
Paper organization: Section [II| describes related work on

CPU and GPU sorting. Section [[Tl]advances the hybrid algo-

rithm to sort datasets exceeding global memory. Section

evaluates the proposed algorithm. In Section |[V| we discuss
the future of heterogeneous sorting, and conclude the paper.

II. RELATED WORK

Sorting is a well-studied problem due to its utility as a
subroutine of many algorithms [6]]. In this paper, we focus on
sorting large datasets using a heterogeneous platform con-
sisting of CPUs and GPUs. Such systems are commonplace,



and at present, are the most likely path to exascale [7], [8].
We do not advance a new on-GPU or CPU sorting algorithm.
Rather, we utilize state-of-the-art sorting algorithms within
the broader problem of heterogeneous sorting.

A. Parallel Sorting Algorithms

Over the past several decades, parallelism has become
increasingly important when solving fundamental, computa-
tionally intensive problems. Sorting is one such fundamental
problem for which there are several efficient parallel solu-
tions. When sorting datasets on keys of primitive datatypes,
radix sort provides the best asymptotic performance [9] and
has been shown to provide the best performance on a range
of platforms [[10]—[14]]. When sorting based on an arbitrary
comparator function, however, parallel algorithms based on
Mergesort [|15]], Quicksort [[16], and Distribution sort [|17] are
commonly used. Each of these algorithms has relative advan-
tages depending on the application and hardware platform.
Regarding Mergesort, parallelism is trivially obtained by
concurrently merging the many small input sets. However,
once the number of merge lists becomes small, merge lists
must be partitioned to increase parallelism [18]. Multiway
variants can similarly be parallelized and further reduce the
number of accesses to slow memory at the cost of a more
complex algorithm [[19]], [20]. Quicksort is an algorithm that
is shown to perform well in practice, and can be parallelized
using the parallel prefix sums operation [16]. See [9] for an
overview of these algorithms.

Highly optimized implementations of parallel sorting
algorithms are available for both CPU [19]-[21] and
GPU [13]], [22], [23]. The Intel Thread Building Blocks
(TBB) [21] and MCSTL [19]] parallel libraries provide
highly optimized parallel Mergesort algorithms for CPUs.

Several libraries also provide optimized radix sort algo-
rithms [20]], [24]. The PARADIS algorithm [11]] has been
shown to provide the best performance on the CPU, but we
were unable to obtain the code for evaluation.

B. GPUs and Hybrid Architectures

GPUs have been shown to provide significant performance
gains over traditional CPUs on many general-purpose ap-
plications [25]-[28]. Applications that can leverage large
amounts of parallelism can realize remarkable performance
gains using GPUs [29]], [30]. However, memory limitations
and data transfers can become bottlenecks [31].

While sorting on the GPU has received a lot of atten-
tion [S[], [28]], [32]-[35]], most papers assume that inputs fit
in GPU memory and disregard the cost of data transfers to
the GPU. In the GPU sorting community, this is reasonable
as the overhead of CPU-GPU transfers is independent of
the sorting technique used on the GPU. The Thrust li-
brary [22] provides radix and Mergesort implementations
that are highly optimized for GPUs and are frequently used
as baselines [33]]. Several works present implementations

that outperform Thrust [5]], [14]], [34]], although their perfor-
mance gains are limited and the Thrust library is continually
updated and improved. We use Thrust for on-GPU sorting,
as the impact of performance gains will have a small overall
impact when accounting for CPU-GPU transfers.

Fully utilizing the CPUs and GPU(s) is a significant
challenge, as data transfer overheads are frequently a bottle-
neck [31]], [36]]. As such, sorting using a hybrid CPU/GPU
approach has been mostly overlooked. Recently, Stehle and
Jacobsen [5] proposed a hybrid CPU/GPU radix sort, show-
ing that it outperforms existing CPU-only sorts. However,
as we show in Section this work ignores a significant
portion of the overheads associated with data transfers. In
this work, we consider all potential performance loss due to
data transfers to determine the efficacy of CPU/GPU sorting.

III. HETEROGENEOUS SORTING

We present our approach to hybrid CPU/GPU sorting. We
use NVIDIA CUDA [37]] terminology when discussing GPU
details. The approach we present relies on sorting on the
GPU and merging on the CPU. We divide our unsorted input
list A into n; sublists of size b, that we call batches, to
be sorted on the GPU. When describing our approach, we
assume by evenly divides n (i.e., by = nﬂb). We merge the 7,
batches on the CPU to create the final sorted list, B. Table[l]
outlines the parameters and notation we use in this work.

Table I: Table of notation.

Description

n Input size.

ny Number of batches/sublists to be sorted on the GPU.
nGprU Number of GPUs used.

Ng The number of streams used.

bs Size of each batch to be sorted.

Ps Size of the pinned memory buffer.

A Unsorted list to be sorted (n elements).

B Output sorted list (n elements).

w Working memory for sublists to be merged (n elements).
HtoD Data transfer from the host to device.
DtoH Data transfer from the device to host.
Stage Pinned memory staging area.
MCpy A host-to-host memory copy to or from pinned memory.

GPUSort | Sorting on the GPU.

Merge Multiway merge of n; batches.

A. Parallel Merging on the CPU

Sorting sublists occurs on the GPU and merging occurs on
the CPU. After all n; batches have been sorted on the GPU
and transferred to the host, we use the parallel multiway
merge from the GNU library. Merging the logn; batches
into the final sorted list B requires O(nlogn,) work and
O(logny) time in the CREW PRAM model. Preliminary
results indicate that multiway merge is more cache-efficient
than pairwise merging. We use the multiway merge for
merging after all batches have been produced. However, as
discussed below, we will use pair-wise merges in one of our
pipelining optimizations, in addition to the multiway merge.



B. Sorting on the GPU

We use the Thrust library [22] to sort sublist batches on
the GPU. As with many high-performance sorting imple-
mentations, Thrust sorts out-of-place, requiring double the
memory of the input list to perform the sort. This doubles
the memory required on the GPU for each batch to be sorted,
and thus doubles the total number batches, n;, needed to sort
the n elements in A. Thus, the memory requirement has a
negative impact on the merging procedure, as it will increase
the total amount of merging work to be performed on the
CPU, as merging requires O(nlogn;) work (Section [III-A).

C. Trade-Offs and Space Complexity

The memory requirements of the hybrid algorithm include
the unsorted input list (A), working memory for the sorted
sublists computed on the GPU (W), and the sorted output
list (B), yielding ~ 3n space. The space requirements for
the GPU are not counted here, as all memory on the GPU is
considered to be used temporarily. The only way to reduce
the space complexity on the CPU is to perform an in-
place parallel multiway merge. Merging in-place is known
to be a challenging problem and leads to a decrease in
performance [35]], [38], as threads need their own working
memory for merging the segments of the sublists. Further-
more, merging cache-efficiently, in-place, and in parallel
remains an open problem. Thus, in this work, we employ
out-of-place merging to achieve peak performance.

D. Approaches and Optimizations

Our baseline assumes that A fits in memory on a single
GPU. We simply sort A on the GPU by copying the
data from the host to the GPU, sort the data, and then
transfer the result to the host, denoted as: A — HtoD —
GPUSort — DtoH — B. All data transfers are blocking
using cudaMemcpy, and the default CUDA stream is used.
For further details on CUDA memory transfers and streams,
see [37]]. We refer to this approach as BLINE.

1) Baseline With Multiple Batches: When A is larger than
GPU global memory (n, > 1), the batches, once sorted,
need to be merged on the host. Figure [T] shows an example
with 6 batches (n, = 6) being sorted on the GPU and
then merged on the CPU (using a multiway merge). Since
merging occurs after all batches have been sorted, there
is load imbalance between the CPU and GPU. Figure [I]
illustrates a hypothetical example where merging all batches
requires 3x the time required to sort a batch on the GPU.
While merging on the host requires O(nlogny,) work, and
sorting one batch requires O(%log%) work, the asymptotic
performance is inadequate to compute the load imbalance
between CPU and GPU tasks, due to differing architectures,
and overheads that dominate on-GPU sorting.

In the baseline approach with multiple batches, we use
blocking data transfers and the default CUDA stream. The
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Figure 1: Example of generating n, = 6 on the GPU and
then merging the result with multiway merge on the CPU,
if multiway merge requires 3 x the time to sort one batch.

workflow is as follows: A — HtoD — GPUSort — DtoH
— W — Merge — B. This is denoted as BLINEMULTI.

2) Pipelining Data Transfers: When sorting data larger
than global memory, n, > 1, we can overlap data transfers
when sorting sublists. To maximize bidirectional bandwidth
utilization over PCle, data can be simultaneously sent to
the GPU (HtoD), and sent to the host (DfoH). To pipeline
data transfers, different CUDA streams must be used. Trans-
ferring data in a stream requires using cudaMemcpyAsync
which uses pinned memory allocated with cudaMallocHost.
Pinned memory allows for faster transfer rates, but it is
expensive to allocate. Pinned memory buffers are typically
used as a staging area to incrementally copy data to or from
a larger buffer. As a result, the host must copy data between
pinned memory and a larger buffer. Here, the larger buffer
is either the unsorted list, A, or the working memory, W,
that will be used for the multiway merge (or B directly if
np = 1). When using a single GPU (ngpy = 1) each stream
is assigned a number of batches to sort, n,/ns (assuming
ns even divides n;). For multi-GPU systems, the number of
batches to sort per stream is ny/(nsnGpu)-

The workflow when n; > 1 is as follows: A — Stage —
HtoD — GPUSort — DtoH — Stage — W — Merge — B.
For completeness, when n, = 1 and no overlapping of data
transfers, the workflow is as follows: A — Stage — HtoD
— GPUSort — DtoH — Stage — B. In this case, BLINE
is used (no data transfer overlap possible).

Figure [2] illustrates pipelining in two different contexts:
host-only operations, and data transfers. First, four streams,
S1,...,84, are able to simultaneously copy their data from
HtoD (bottom) and DroH (top). This relies on allocating
pinned memory buffers for each stream. The buffer is
typically allocated to be smaller than the batch size, b,.
In Figure [2| the pinned memory buffer size is ps = bs/3.
Thus, we incrementally copy data in either direction using
pinned memory as a staging area. This allows for the fine
interleaving of data transfers shown in Figure

Operations in Figure 2| are identical in duration. In prac-
tice, the time to perform the individual operations will vary.
Load imbalance between copying on the host to/from pinned
memory (MCpy) or data transfers (HtoD, or DtoH), will
impact the number of streams needed to most efficiently
overlap these operations. If memory copies in/out of pinned
memory are a bottleneck, then more streams can be used for
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Figure 2: Illustrative example of pipelining the data transfers
in streams, denoted s1, .. ., s4. Pipeline shows incrementally
copying data from HtoD using the pinned memory buffer
(lower), and copying the data from DroH using the pinned
memory buffer (upper). Incremental copies (HfoD or DtoH)
are interleaved with copying on the host. Red cells show
data transfers and gray cells show host-side operations.

simultaneous data transfers; likewise, if the data transfers are
a bottleneck, then fewer streams should be utilized. We refer
the method of pipelining data transfers as PIPEDATA.

Data transfer performance cannot be improved beyond
pipelining HtoD and DtoH. In contrast, if host-to-host MCpy
to/from pinned memory in Stage is a bottleneck when using
std::memcpy, we can parallelize this step on the host. We
denote parallelizing the MCpy in Stage as PARMEMCPY.

3) Pipelining The Merge Phase: While the GPU is sort-
ing batches, the host exclusively performs memory-intensive
operations, such as memory copies to and from the GPU
(HtoD, and DtoH), and host-to-host copies of data to and
from pinned memory in the Stage phase. Thus, there is
an opportunity to decrease the load imbalance shown in
Figure |1| between GPU (sorting) and CPU (merging), by
starting the merge stage before all batches are sorted (in
addition to overlapping CPU/GPU work). This is important
as np increases, since the amount CPU merging work
increases. Once two batches are sorted and transferred back
to the CPU, we can perform pair-wise merges in parallel,
reducing the amount of work done by the final multiway
merge. For instance, in Figure |3} m, merges b; and bs, and
mg merges bs and by. Thus, the final multiway merge will
consist of 4 total sublists: the two merged sublists from mq
and ms, and, b5 and bg. Comparatively, using BLINEMULTI,
the CPU does not begin merging until all batches are sorted,
requiring that the final multiway merge combine 6 batches.

How should pairs of sorted batches be merged? An
important observation is that after the last batch is sorted
on the GPU, all pair-wise merging should be finished, such
that the pair-wise merges do not delay the final multiway
merge. As such, we utilize the heuristics below to compute
the number of pair-wise pipelined merges to perform:

e« When ngpy = 1: L"hT*lJ This ensures that when ny
is even, the last two pairs of batches are not pair-wise

bs

‘ b1 b2 b3 b4 bS
S

Figure 3: Pipelining merging pairs of sublists on the CPU

while the GPU sorts batches. For illustrative purposes, we

assume that the time needed for a pair-wise merge is half

of the time to sort a batch on the GPU. Here, m; merges
sorted batches by and b, and my merges b3, and by.

Merge

merged, and when n;, is odd, the last batch is not merged.
e« When ngpy > 2: L%Z”PUJ Because batches are sorted
faster with 2 or more GPUs, there is less time for pair-
wise merging on the host. Thus, fewer merges can occur

before the multiway merge phase, as a function of ngpy.

We do not pipeline merging any sublists that are the
product of a previous pipelined merge (e.g., the output of m;
in Figure 3)), and only merge pairs of sublists that are of size
bs. We find that merging sublists in an “online” fashion (i.e.,
as they are produced on the GPU), or using a merge tree to
determine optimal merges, results in delaying the multiway
merging procedure, and thus degrades performance. We refer
to our approach that pipelines both pair-wise merges and
data transfers (Section as PIPEMERGE.

4) Summary of Approaches and Optimizations:
*BLINE- Baseline for sorting a single batch (n, = 1) on
the GPU using blocking calls on the host for data transfers.
*BLINEMULTI- Same as BLINE when sorting multiple
batches on the GPU, and multiway merging on the CPU.
Used to compare against the pipelined approaches.
*PIPEDATA- Pipeline the data to/from the device to overlap
data transfers and utilize more bidirectional bandwidth over
PCle. This uses pinned memory and CUDA streams.
*PIPEMERGE- Concurrently merge pairs of sorted batches
on the CPU, and sorting on the GPU to reduce the overhead
of the multiway merge at the end, in addition to PIPEDATA.
*PARMEMCPY- Parallelize memory copies on the host
between larger and pinned memory staging buffers.

1V. EXPERIMENTAL EVALUATION

We evaluate the performance of the heterogeneous sorting
approaches. We measure the performance impact of each
of the optimizations described in Section and compare
overall results with state-of-the-art CPU sorting algorithms.

A. Input Dataset

In previous works, performance is evaluated for a range
of input distributions due to the inherent sensitivities of
many sorting algorithms to the input characteristics [[11].
However, the performance of our hybrid sorting is dominated
by memory transfer time, which is independent of input dis-
tribution. Also, our approach can use any sorting algorithm



Table II: Details of hardware platforms.

CPU GPU
Platform Model Cores Clock Memory Model Cores Memory Software
PLATFORM1 | 2xXeon E5-2620 v4 2x8 2.1 GHz | 128 GiB | Quadro GP100 3584 16 GiB CUDA 9
PLATFORM2 | 2xXeon E5-2660 v3 | 2x10 | 2.6 GHz | 128 GiB | 2xTesla K40m | 2 x 2880 12 GiB CUDA 7.5
on the GPU, allowing us to use a data-oblivious sorting 10° - — 16
! ] . . - GNUn:lo7 —_ TBBn:lo7 14 —@— GNU n=10°
algorithm if needed. Therefore, we perform all experiments 10 === GNUn=10"  — TBBn=10’ —e— GNUn=10'
. . . . 103 == GNUn=10 —— TBBn=10 12| =—@=— GNUn=10°
using uniformly distributed datasets and do not evaluate the ~ _ 1, L Swn= Jomineatll e o =107
.. . . . L 10 X std::so —e— std::gsor =] erfect
sensitivity of our approach to the data distribution. We use 2 ls T8
the 64-bit floating point datatype. This provides a worst-case = X\"--“—F\ & 6
. . . \-1\
scenario for our hybrid GPU sort, since GPUs have more w0 ¢ :
capacity dedicated to 32-bit than 64-bit operations [[1]. Also, 1072 0
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16

64-bit elements require more data transfer per operation,
further degrading our hybrid approach.

B. Experimental Methodology

We utilize two platforms for our experiments shown in
Table |lI} where PLATFORM?2 contains two GPUs. All code
is compiled using the GNU GCC host compiler with the
O3 optimization flag. We use OpenMP for parallelizing host
operations. Results are averaged over 3 trials.

C. Reference Implementation

As a baseline comparison, we benchmark widely used
parallel sorting libraries for the CPU. Since our hybrid
approach uses libraries for both sorting and merging, using
a state-of-the-art CPU sorting library provides a comparable
baseline. We compare the performance of our approaches
using the GNU library’s parallel extensions, previously
called the Multi-Core Standard Template Library [[19], [20].
The parallel extension library uses OpenMP to specify the
number of threads. Figure [4] (a) shows the scalability of the
multi-core sorting algorithm (response time vs. the number
of threads) on a log scale for 4 different input sizes of n,
up to 10%. We also show the scalability of sorting using the
Intel Thread Building Blocks library [21]]; however, we find
that it is slower than the GNU parallel library for large input
sizes, and thus do not use it for our baseline comparison. The
sequential C++ STL std::sort and std::qsort are also plotted,
with results showing that std::qsort is slower than std::sort
by roughly a factor of 2. Furthermore, std::sort and the GNU
parallel sort with 1 thread yield nearly identical performance.
Figure [ (b) shows the speedup of the 4 input sizes for the
GNU parallel library sort. On PLATFORM 1, speedups range
from 3.17 (n = 10%) to 10.12 (n = 10°) with 16 threads.
Since we sort large inputs, the speedup of the reference
implementation is consistent with the larger speedup above.
We repeat this experiment on PLATFORM2 with similar
results. For our reference implementation, we configure each
platform with 16 (PLATFORM1) or 20 (PLATFORM?2) threads
when executing the STL parallel sort to maximize speedup.

Threads Threads

(@ (b)

Figure 4: (a) Sorting scalability on PLATFORM1 using 1-16
threads on log scale. Sequential std::sort and std::gsort are
shown. std::gsort is roughly half as fast as std::sort. As ex-
pected, std::sort and its parallel variant have nearly identical
performance. Larger input sizes yield greater scalability (b).

D. Hybrid Approach Components

We consider the performance two components of our het-
erogeneous sort: sorting on the GPU and pair-wise merging
on the CPU. We measure end-to-end response time including
all overheads (i.e., transferring data between CPU and GPU).

1) Sorting on the GPU: To determine the relative per-
formance of sorting on the CPU and GPU, we compare
our reference sort using parallel std::sort with end-to-end
sorting on the GPU using Thrust. We include all overheads
due to memory allocation and data transfers (CPU to GPU
and back). Figure [5] shows the performance of sorting on the
GPU using BLINE as a function of input size, n, where the
memory requirements of sorting n do not exceed the GPU’s
global memory (n, = 1) on PLATFORM2. Results indicate
that, when we include all overheads, sorting on the GPU
does not significantly outperform CPU sorting. The ratio of
the response time between sorting on the CPU and GPU (red
line in Figure 5)) is between 1.22 and 1.32 for the input sizes
shown. Thus, the GPU yields a respectable performance gain
over the parallel reference implementation if batching is not
required (n, = 1), and no merging on the CPU is necessary.
However, when sorting larger inputs, we must sort the data
in batches and merge on the CPU, necessitating more data
transfers and potentially degrading performance. We show
similar results on PLATFORM1 in a later figure.

2) Pair-wise Merging on the CPU: PIPEMERGE uses this
pairwise merge to pipeline merges while the GPU is still
sorting batches (Section [II-D). Figure [ plots the (a) re-
sponse time and (b) speedup up to 16 threads when merging
two sorted lists using the GNU parallel mode extensions on
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Figure 6: Merge scalability using 1-16 threads on PLAT-
FORM . Each sorted sublist is 0.5 x 10° elements (n/2).

PLATFORM1. We only show a single input size as we only
merge batches on the order of n = 10%. On 16 cores, the
parallel merge achieves a speedup of 8.14x. A moderate
speedup is expected, as merging only requires O(n) work,
and is memory-bound. Once all batches are sorted, we then
perform a final parallel multiway merge using the parallel
mode extensions (benchmarks are omitted).

E. Heterogeneous Sorting in the Literature

Recently, Stehle and Jacobsen [5]] advanced a GPU radix
sort that achieves significant performance gains over state-
of-the-art algorithms. The authors apply their radix sort
to heterogeneous sorting, whereby data larger than GPU
global memory can be sorted using a hybrid approach. In
summary, the authors sort sublists of the input list on the
GPU and then merge the results using a multiway merge
on the CPU (similarly to our approach). The heterogeneous
sort in [5]] focuses on overlapping data transfers to reduce
the bottleneck between the CPU and GPU. While the paper
shows very promising results for heterogeneous sorting, the
“end-to-end” performance that they present omits several
key bottlenecks in the heterogeneous sorting workflow.

In Section 5 of [5], the end-to-end time is computed
using the following components: (i) the time to transfer
the unsorted sublists from CPU to GPU, (ii) the sorted
sublists from GPU to CPU, (iii) the time to sort on the
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Figure 7: End-to-end performance of sorting 5.96 GiB (our
work) and 6 GB (related work) showing HtoD, DtoH, and
GPUSort on PLATFORM1. Related work values estimated
from the CUB bar plot in Figure 8 of [5].

GPU; and, (iv) the time to merge on the host. Since the
authors overlap data transfers and computation, we make
the following observations.

e To overlap computation and data transfer between the
CPU and GPU, CUDA streams must be used which
require pinned memory (described in Section [[II-D). This
can degrade performance, depending on how much pinned
memory is allocated [37].

o A small amount of pinned memory is typically allocated
and reused multiple times to amortize the cost of alloca-
tion. This is similar to how the driver allocates temporary
pinned memory when performing cudaMalloc. Thus, data
is incrementally transferred to/from the device using this
temporary staging area. For example, when copying from
the GPU to CPU, a subset of the total data being copied
is copied from the GPU into pinned memory on the CPU,
and from there it is copied into a larger memory buffer
for the CPU (that is typically pageable).

« Since memory copies are asynchronous when copying
to/from the GPU using the pinned memory buffer, there
is synchronization overhead for each copy.

The end-to-end response time provided in [5]] does not in-
clude any of the costs and overheads associated with pinned
memory. This includes () allocating pinned memory, (%)
transferring data from pageable memory to pinned memory
(and vise-versa); and, (ii4) synchronization time required
when using asynchronous memory transfers. Omitting these
costs may impact the performance trade-offs of the hetero-
geneous sort shown in [5]. Furthermore, these overheads
may reduce performance, and thus how competitive their
algorithm is relative to their reference implementation.

1) Comparison of End-to-End Performance Calculations:
The Missing Overhead Problem: Figure 8 in [J5] shows the
time to perform their end-to-end sort of 6 GB of key/value
pairs (375 million 64-bit keys). They show performance
for naive approaches as well as their heterogeneous sorting
technique. Their platform consists of a Titan X (Pascal
architecture) connected via PCle. In their plot, Stehle and
Jaconsen show that the data transfers HtoD, and DtoH,



require more time than sorting. Using our platform that
is most similar to theirs (PLATFORM1), we reproduce the
experiment they use to show their naive approach: they sort
6 GB of key/value pairs using the CUB [|13]] sorting library.
To reproduce this, we measure the time to transfer 5.96 GiB
(n = 8 x 10%) of data from HtoD, and DtoH. While we do
not sort key/value pairs, we measure the time to sort double
precision floats with Thrust, which requires comparable time
(i.e., both perform radix sort on a comparable number of
elements). We allocate a pinned memory buffer of size
ps = 10° 8-byte elements for fast memory transfers to and
from the GPU. Thus, we incrementally copy a chunk of the
unsorted input of size p, into the pinned memory buffer and
then transfer it to the GPU, and similarly, we incrementally
transfer the sorted list from the GPU into a pinned memory
buffer and then into the final buffer of size n. The host-
to-host copy (pageable to pinned, or pinned to pageable) is
performed using std::memcpy.

Figure [/| plots the response time for the three time
components that comprise the end-to-end time in [5]]. Since
our total data sizes are roughly equivalent (6 GB vs. 5.96
GiB), the time needed to perform data transfers are con-
sistent with the data transfer times in the “CUB” bar in
Figure 8 of [5]]. Our HtoD and DtoH times are 0.536 s and
0.484 s respectively, whereas theirs are 0.542 s and 0.477 ﬂ
In summary, our data transfer times are consistent. Since the
sorting workloads, algorithms (Thrust vs. CUB), and GPUs
(Titan X vs. Quadro GP100) differ, a precise comparison
cannot be made, though our results are similar. This shows
that the “end-to-end” time in [5] only includes the three
runtime components shown in Figure

With a pinned memory buffer of size ps = 10°, allocation
requires 0.01 s; therefore, copying between the smaller
pinned memory and larger pageable memory buffers is a
more significant overhead. One way to avoid many host-
to-host memory copies is to allocate a pinned memory
buffer for the entire dataset (ps = n); however, we find
that this results in performance loss due to the overhead
of allocating so much pinned memory. Allocating a pinned
memory buffer of size p, = n = 8 x 108 takes 2.2 s, which
is longer than the sum of the time components in Figure
Thus, allocating one large pinned memory buffer leads to
unacceptable performance.

In Figure [§] we plot the average response time vs. n. Note
that the response time in Figure [7| is when n = 8 x 108
(=6 GiB). The input sizes used in the experiments for
Figure [§]all fit within GPU global memory on PLATFORMI,
so ny = 1 and we only execute one batch (i.e., no merging
is required on the host). We measure response time using
BLINE, because we only transfer one batch to the GPU,
sort, and then return the result. This is the same methodology
used by the naive approach in [5]. Using the method used

ITimes estimated from Figure 8 in [5].
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Figure 8: Average response time vs. n for various com-
ponents of the BLINE sorting approach (i.e., n, = 1) on
PLATFORM . Purple and yellow circles denote data transfer
times from the literature [S[], which are consistent with our
measurements at n = 8 x 108,

by [5] to compute end-to-end response time, we obtain the
red curve in Figure[§] However, if we include all components
that contribute to the runtime of BLINE, we obtain a much
larger total response time (the green line in Figure [3).
This indicates that the end-to-end time in [\5] omits key
overheads. Hereafter, we provide results using entire end-
to-end response time, which includes overheads omitted
by [5]. We show how to reduce these overheads through
our techniques and optimizations.

F. Sorting Data Larger Than Global Memory

We present the results for heterogeneous sorting of data
larger than GPU global memory our two platforms. We
endeavor to fill the capacity of main memory on the host
(128 GiB on both platforms). However, since our hetero-
geneous sorting approach requires approximately 3n space
(described in Section [[II-C)), the maximum input size we
consider is roughly one third of the total main memory
on the platforms (n =~ 5 x 10%). We evaluate overall
performance using two sets of experiments as follows.

Experiment 1: On PLATFORM 1, we employ a large batch
size (b, = 5 x 10%) and evaluate the performance of the
approaches described in Section [[[I-D4] For PIPEDATA, and
PIPEMERGE, we set the number of streams n, = 2 so
that we can overlap sending and receiving data between the
CPU and GPU. Each stream that executes a batch needs its
own buffer on the GPU that stores the data to be sorted
and sent back to the CPU; furthermore, recall that sorting
requires a temporary buffer, thus needing 2b, total space.
Therefore, b, is selected to maximize usage of GPU global
memory capacity, while considering n, and the memory
requirements of sorting. Hence, the total memory required
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Figure 9: Response time vs. n for our approaches on
PLATFORMI.

on the GPU is ~ 2b,n,. For a fixed value of n, setting
ns > 2 may allow for more overlap of data transfers, but
this necessitates smaller batch sizes, and thus increased the
amount of merging to be done on the CPU.

Figure [9] plots the response time vs. n on PLATFORMI,
which has a GP100 GPU (details in Table [[). Across all
input sizes, our approaches outperform the parallel CPU
reference implementation, including BLINEMULTI, which
does not overlap data transfers or CPU and GPU execution.
At the smallest and largest input sizes n = 10, and
n = 5 x 109, we achieve speedups over the reference
implementation of 3.47x, and 3.21 x, respectively, using our
fastest approach: PIPEMERGE with PARMEMCPY.

Comparing BLINEMULTI to PIPEDATA, we find that
pipelining the data transfers improves performance. At n =
5x10° BLINEMULTI has an average response time of 31.2 s,
while PIPEDATA requires 25.55 s (22% faster).

PIPEMERGE marginally improves the performance over
PIPEDATA by merging some of the batches before the final
multiway merge. This is an anticipated result, as the final
multiway merge requires O(nlogn;) work, so small changes
in the total number of batches does not dramatically impact
the performance of the multiway merge. However, if our
platform had more memory (and we increase n), the number
of batches, n;, would significantly increase and we would
expect the performance of the multiway merge to degrade.
We expect that, in this case, pipelining merges would have a
more significant impact on overall performance. Comparing
PIPEDATA with and without PARMEMCPY, we observe that
using PARMEMCPY reduces end-to-end response time by
13%. We attribute this to the following: (i) the host-to-
host memory copy operations to/from pinned memory are a
bottleneck that can be reduced by parallelizing the operation;
(i) a single core cannot saturate the memory bandwidth of
the copy operation, and there is memory bandwidth avail-

=>&= BLineMulti (ngpy = 1) == BLineMulti (ngpy = 2)
+ PipeData (ngpy = 1) - -‘ PipeData (ngpy = 2)
PipeMerge (ngpy = 1) PipeMerge (ngpy = 2)
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—e— Ref. Impl.: 20 threads
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Figure 10: Response time vs. n on PLATFORM2, using 1
(solid lines) and 2 (dashed lines) GPUs.

able, despite performing other concurrent memory-intensive
operations; and (ii7) the quintessential viewpoint in the
literature that DroH and HroD bottlenecks are responsible for
poor performance in GPGPU applications may inadvertently
overlook host-side bottlenecks. For instance, the end-to-end
time calculation described in the literature in Section [V-E]
disregards the host as a bottleneck in heterogeneous sorting.
If it was not a bottleneck, then parallelizing host-to-host
memory copies would be inconsequential to performance.

Experiment 2: The GPU on PLATFORM?2 has less global
memory, so we perform all experiments using b, = 3.5x 10%
(not b, = 5 x 10%). We evaluate our sorting approaches for
input sizes, n, that are multiples of by, so the input sizes we
use are not identical across platforms. All of the observations
regarding performance on PLATFORM1 above are consistent
with single-GPU performance on PLATFORM?2, although we
are able to show dual-GPU results as well. Figure [TI0] plots
results for both 1 and 2 GPUs. We observe that using two
GPUs outperforms all of the single-GPU configurations. At
the smallest and largest input sizes n = 1.4 x 10°, and
n = 4.9 x 10°, we achieve speedups over the parallel CPU
reference implementation of 1.89x, and 2.02x, respectively,
using PIPEMERGE with PARMEMCPY.

Comparing single-GPU (ngpy = 1) and dual-GPU
(ngpu = 2) response times, we see that the relative
difference between the performance of the approaches when
ngpy = 2 is smaller than when ngpy = 1. We attribute
this to the fact that the PCle bus is shared between both
GPUs. Thus, even with BLINEMULTI, when ngpy = 2 we
are able to saturate more of the PCle bandwidth and the per-
formance advantage of using two streams is less pronounced
in comparison to using two streams when ngpy = 1.



G. Lower Bound Performance Analysis

We develop a simple analytical model to determine the
efficiency of our methods. This model yields a lower bound
on the performance of our approaches. We then compare
our results to this lower bound to determine implementation
efficiency and identify potential performance improvements.

Lower Limit Baseline Model — 1 GPU: The simplest
case is when all of the data can fit in global memory
(i.e., unlimited GPU memory). Therefore, the baseline case
when bs; = 1 provides us with a lower limit on the sorting
response time (i.e., peak throughput). We model this case
by using the number of sorted elements per second on
BLINE where no batching occurs. We measure this lower
limit on PLATFORM2 by selecting the response time from
Figure [5] when n is large, but fits in GPU global memory
(n =7 x 10%). We omit modeling results on PLATFORM1.

We develop our model using the BLINE approach because
all of the other techniques use multiple streams to overlap
data transfers (i.e., ngy > 1) and require merging on the
CPU. Our simple model is intended to provide us with an
estimate of the peak sorting throughput for the simplest case
where no merging is required, thus we elect to use a model
derived from BLINE. Note, that peak throughput may be
outperformed by the approaches that overlap data transfers.

Lower Limit Baseline Model — 2 GPUs: We extend
our simple model to include 2 GPUs by assuming the
system with 2 GPUs is connected to the host via PCle and
thus we perform a single merge on the CPU (n;, = 2).
Each GPU sorts n/2 elements, so merging the two batches
is unavoidable. To compute the peak sorting throughput,
we execute BLINE on two GPUs with n = 1.4 x 107,
bs =n/2="Tx 108, and ns; = 1. Thus, each GPU sorts one
batch and returns it to the host for subsequent merging. The
value of n is selected such that the GPU’s global memory
is nearly at capacity, thus maximizing sorting throughput.

Figure plots the response time vs. n for the 1- and
2-GPU models, and the PIPEDATA results from Figure @}
We compare against PIPEDATA because the other techniques
make use of host-side optimizations that are not included in
BLINE, from which the models are derived. In both 1 and
2 GPU cases, at n = 1.4 x 10° we find that PIPEDATA
outperforms the lower limit baseline model (blue curves).
This is because overlapping the data in streams leads to
a performance improvement despite the overhead of the
multiway merge at the end. However, at n > 2.1 x 107,
we observe that the performance of PIPEDATA begins to
degrade as a result of the cost of merging on the CPU
after all of the batches have been computed on the GPU.
Despite the overhead of the merge phase, at n = 4.9 x 107,
the slowdown of PIPEDATA in comparison to the model is
only 0.93x and 0.88x when ngpy = 1 and ngpy = 2,
respectively. Thus, overlapping data transfers in streams can
offset some of the cost of merging on the CPU in both single-
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Figure 11: Lower limit baseline models compared to
PIPEDATA on 1-2 GPUs on PLATFORM2.

and multi-GPU configurations. Note that the slowdown is
worse for the 2-GPU system. We attribute this to the PCle
bandwidth being limited and shared between both GPUs. If
the bandwidth becomes saturated at various times during the
sorting pipeline, per-stream sorting throughput will degrade,
causing the observed slowdown.

V. DISCUSSION AND CONCLUSIONS

By examining heterogeneous sorting in the literature, we
determine that the HroD, and DtoH data transfers are not
the only non-negligible overheads. There are several host-
side bottlenecks that are the result of utilizing bidirectional
bandwidth by overlapping data transfers. These overheads
are caused by the use of pinned memory, which is necessary
when overlapping data transfers. Using pinned memory has
the added benefit of improved data transfer rates, with
throughput improvements of up to a factor ~2x over copies
without pinned memory (e.g., cudaMemcpy). Our pinned
memory data transfers occur at ~12 GB/s, which is 75%
of the peak PCle v.3 bandwidth of 16 GB/s.

Our work alleviates host-side bottlenecks by pipelining
pair-wise merges before the final multiway merge, and paral-
lelizing the memory copies into and out of the pinned mem-
ory staging areas. While BLINE outperforms the reference
implementation, the optimizations we propose yield a signif-
icant performance improvement over BLINE. On the largest
input size, n = 5 x 10, (requiring batching), our fastest
approach achieves a speedup of 3.21x on PLATFORMI1 (1
GPU), compared with the CPU reference implementation.

We show that host-side operations are a bottleneck when
exploiting GPUs, including host-to-host memory copies,
pipelined pair-wise merging, and final merging on the CPU.
While NVLink will reduce the bottleneck between CPU
and GPU, other bottlenecks remain or may even worsen.
Increasing the GPU sorting and data transfer rates will
further imbalance CPU and GPU workloads, thus increasing



the CPU merging bottleneck. Sorting in the NVLink era
using multi-GPU systems needs to address the problem of
merging using the GPUs, such that the CPU does not need
to carry out all merging tasks.
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