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Abstract

The GPU is an effective architecture for sorting due to its massive parallelism and high memory band-
width. However, for input datasets that exceed global memory capacity, the communication overhead
between host (CPU) and GPU may degrade the overall performance of heterogeneous approaches. Thus, to
achieve performance gains over multi-core parallel CPU algorithms, heterogeneous sorting using the GPU
needs to obviate communication overheads. We provide a detailed overview of current host-GPU data
transfer mechanisms and advance several methods of mitigating the associated performance bottlenecks.
Using these methods, we develop a heterogeneous CPU/GPU sorting algorithm that effectively exploits the
architecture. Furthermore, we demonstrate that, while out-of-place GPU sorting achieves the best perfor-
mance, an in-place sort has the potential to further reduce some host-side bottlenecks, which encourages
several future research priorities. Our approaches mitigate several bottlenecks, as demonstrated on single-
and dual-GPU platforms, achieving speedups up to 3.47× over the parallel reference implementation on the
CPU. We discuss future research for heterogeneous sorting in the multi-GPU NVLink era.
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1. Introduction

Graphics processing units (GPUs) provide a high degree of computational throughput for relatively
low cost and power consumption. However, to effectively use the resources of a GPU, data must first be
transferred from the host (CPU), and this data transfer is frequently a performance bottleneck for General
Purpose Computing on Graphics Processing Units (GPGPU). Currently, this data transfer is performed over
PCIe v.3, with a peak aggregate data transfer rate of 32 GB/s. The new NVLink technology improves this
to a maximum of 300 GB/s [1]. Nevertheless, this communication overhead is likely to remain a bottleneck
for many applications that have large input or output sets, and this bottleneck will be exacerbated on
multi-GPU systems, where the GPUs compete for bandwidth.

The high computational throughput and energy efficiency makes GPUs attractive resources for clusters.
As such, many large-scale clusters are able to reduce the number of nodes by increasing the computational
throughput of each node by using GPUs. This strategy provides three primary benefits. First, it reduces
the network communication overhead between nodes. Second, reducing the number of nodes reduces the
occurrence of expensive node failures [2]. Third, the power consumption per unit performance metric (e.g.,
FLOPS) can be significantly reduced [3]. Overall, the use of GPUs improves scalability and efficiency,
enabling the prospect of near-future exascale systems.

In this work, we examine the problem of sorting on heterogeneous CPU/GPU systems. Given an un-
sorted list, A, of n elements in main memory, we wish to generate a sorted output list, B, using the resources
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of a system containing CPUs and GPU(s). Issues such as achieving a balanced workload between CPUs and
GPU(s) and minimizing data transfer overhead must be considered to achieve good performance. Addition-
ally, it can be difficult to efficiently make use of the high computational throughput and massive parallelism
of GPUs. For example, to achieve good performance on GPUs, the global memory system must be accessed
in blocks (or coalesced) [4].1 Additionally, data transfers between host (CPU) and device (GPU) must be
optimized, as data movement is a frequently cited performance bottleneck [6, 7].

In recent years, CUDA has provided mechanisms that simplify the host-GPU data transfer process.
However, these mechanisms are not well understood, with recent works making incorrect assumptions [8, 7]
or overlooking some associated overheads [9, 10]. As such, it is not clear that any strategy using GPU
resources will outperform a multi-core CPU-only approach. We perform an in-depth investigation of sorting
on heterogeneous CPU/GPU systems and we find that there is a significant, unavoidable host-GPU data
transfer cost that is overlooked by previous works [9]. Our prior work [11] makes the following contributions,
which we elaborate on in this paper:

• We advance a heterogeneous sort that utilizes both multi-core CPUs and many-core GPU(s) and outper-
forms the parallel reference implementation when sorting data that exceeds GPU global memory capacity.

• We demonstrate critical bottlenecks in hybrid sorting, and propose several optimizations that reduce the
load imbalance between CPU and GPU tasks.

• We show that critical data transfer bottlenecks cannot be omitted when evaluating the performance of
heterogeneous sorting, as they can dominate the system response time.

This comprehensive article extends the prior work with the following contributions:

• We discuss a range of host-GPU data transfer methods and determine the performance impact of each.

• We investigate the memory management mechanism, “unified memory”, and demonstrate how, for some
workloads, it can significantly reduce performance.

• Out-of-place sorting requires twice as much space as sorting in-place. Thus, we implement and optimize
an in-place GPU sorting algorithm to determine how it impacts overall heterogeneous sorting time. We
find that, while in-place sorting can potentially reduce the number of batches computed on the GPU (and
thus the number of batches to be merged on the CPU), the benefits of current state-of-the-art out-of-
place sorting algorithms outweigh the impact of reducing global memory usage. With a more efficient in-
place sorting algorithm, however, this approach has the potential to further reduce heterogeneous sorting
bottlenecks. Designing a GPU-efficient in-place sorting algorithm, however, remains an open problem.

• We demonstrate that pipelining merging tasks on the host while the GPU is sorting can help mitigate
some of the final multiway merge overhead. Pipelining merging tasks becomes increasingly important as
the number of sorted batches increase (e.g., when sorting on systems with large main memory capacities).

The paper is organized as follows: Section 2 describes related work on CPU and GPU sorting. In
Section 3 we discuss the performance impacts of host-GPU data transfer methods. Section 4 advances
the algorithm to sort datasets exceeding global memory on heterogeneous CPU/GPU systems. Section 5
evaluates the proposed algorithm as well as our in-place sorting algorithm. In Section 6 we discuss the future
of heterogeneous sorting and conclude the paper.

2. Related Work

Sorting is a well-studied problem due to its utility as an algorithm subroutine [12, 13]. We focus on
sorting large datasets using a heterogeneous platform consisting of CPUs and GPUs. We discuss related work
focused on parallel sorting algorithms, GPU-efficient sorting algorithms, and in-place sorting algorithms, as
the algorithms presented in this work rely on algorithms with these features to achieve high performance on
CPU/GPU systems. We discuss work related to host-GPU data transfers in Section 3.

1See standard resources [5] for more details on modern GPU architectures.
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Parallel Sorting Algorithms – Over the past several decades, parallelism has become increasingly im-
portant when solving fundamental, computationally intensive problems. Sorting is one such fundamental
problem for which there are several efficient parallel solutions. When sorting datasets on keys of primitive
datatypes, radix sort provides the best asymptotic performance [14] and has been shown to provide the best
performance on a range of platforms [15, 16, 4, 17, 18]. When sorting based on an arbitrary comparator
function, however, parallel algorithms based on Mergesort [19], Quicksort [20], and Distribution sort [21]
are commonly used. Each of these algorithms has relative advantages depending on the application and
hardware platform. See standard references [14, 13] for an overview of these algorithms.

Optimized parallel sorting algorithms are available for both CPU [22, 23, 24] and GPU [25, 26, 17]. The
Intel Thread Building Blocks (TBB) [24] and MCSTL [22] parallel libraries provide highly optimized parallel
Mergesort algorithms for CPUs. Several libraries also provide optimized radix sort algorithms [27, 23].
PARADIS [16] is the fastest on the CPU, but we were unable to obtain the code for evaluation.
In-Place Sorting Algorithms – The restriction that an algorithm operate “in-place” (i.e., without ad-
ditional space) may add significant difficulty when attempting to achieve peak performance on a specific
architecture [13]. As such, the best-performing parallel sorting algorithms (e.g., Mergesort, radix sort) make
use of a copy of the input list during the sorting process [14]. Parallel Quicksort [13], however, can be im-
plemented as an in-place algorithm and has been shown to achieve good performance in practice on a range
of architectures [28]. Quicksort, however, relies on randomization and exhibits irregular memory access
patterns, potentially degrading performance on GPUs [4]. The in-place MSD radix sort has been shown to
perform better when sorting primitive datatypes [29]. However, like Quicksort, in-place MSD radix sort is
not I/O-efficient2. Another class of in-place, parallel sorting algorithms are sorting networks, which have a
high degree of parallelism and regular memory accesses [31]. However, to sort n elements, sorting networks
typically require a factor O(log n) more work than more efficient algorithms 3. To our knowledge, finding a
practical parallel sorting algorithm that has a high degree of parallelism, is I/O-efficient, operates in-place,
and is work optimal remains an important open problem. Despite this, several works have developed fast
in-place sorting algorithms for GPU architectures [33, 34, 35, 36]. No attempts, however, have been made to
optimize these algorithms for recent GPU architectures. Furthermore, we were only able to get the code for
the “GPU-arraysort” algorithm of Awan and Saeed [33], which is designed to sort a large number of small
arrays. Thus, we implement and optimize our own in-place sorting algorithm for the GPU.
GPUs and Hybrid Architectures – GPUs have been shown to yield performance gains over CPUs on
many general-purpose applications [37, 38, 39]. Applications that can leverage large amounts of parallelism
can realize remarkable performance gains using GPUs [40, 41]. However, memory limitations and data
transfers can degrade performance [42].

While sorting on the GPU has received a lot of attention [39, 43, 44, 45, 9, 46], most papers assume
that inputs fit in GPU memory and disregard the cost of data transfers to the GPU4. In the GPU sorting
community, this is reasonable as the overhead of host-GPU data transfers is independent of the sorting
technique used on the GPU. The Thrust library [25] provides radix and Mergesort implementations that are
highly optimized for GPUs and are frequently used as baselines [44]. Several works outperform Thrust [9,
45, 18], but performance gains are limited and the Thrust library is continually improved. We use Thrust for
on-GPU out-of-place sorting, as the impact of using other sorting algorithms will be minimal when including
host-GPU transfer costs.

Fully utilizing the CPUs and GPU(s) is a significant challenge due to the data transfer bottleneck [7,
42, 6, 48], which we discuss in detail in Section 3. Consequently, sorting using a hybrid approach has been
mostly overlooked. Recently, Stehle and Jacobsen [9] proposed a hybrid CPU/GPU radix sort, showing
that it outperforms existing CPU-only sorts. However, we find that this work ignores a portion of the
overheads associated with data transfers. In this work and our previous related work [11] we consider all
potential performance loss due to data transfers to determine the efficacy of CPU/GPU sorting. Shamoto
et al. [6] also consider the issue of sorting on hybrid architectures. However, they focus on distributed-

2I/O efficiency is formally defined in the external memory model [30].
3The well-known AKS sorting network [32] is work-efficient, but is not practical due to very large constant factors.
4Arkhipov et al. [47] provide an extensive survey of sorting algorithms designed for modern GPUs.
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memory systems, requiring different performance considerations, including the significant cost of network
communication overhead. Nevertheless, similar to the results in our previous work [11], they find that pinned
memory allocation can cause significant performance degradation, so they do not explicitly allocate pinned
memory buffers.

3. Host-GPU Data Transfer Methods

Transferring data between main memory and the GPU represents a significant challenge when attempting
to achieve peak performance on heterogeneous CPU/GPU systems. Modern GPUs have significantly less
global memory than RAM available to CPUs, so repeated data transfers are necessary to solve large problems
using the GPU. In recent years, this has become more pronounced, with commercial CPU systems having
access to large main memory (several TiB), while GPU memory sizes remain much smaller (< 50 GiB).

Despite the importance of fast host-GPU memory transfers, the mechanism on modern GPUs is not well
understood. To our knowledge, the only prior work to extensively study host-GPU data transfers is that
of Fujii et al. [48]. They provide a thorough overview of the technology associated with host-GPU memory
transfers and present custom data transfer methods. While their custom transfer methods provide promising
results, it is not clear that they can be easily applied to more recent GPU architectures. As a result of this
lack of study, several recent works either rely on incorrect assumptions [8, 7] or ignore the memory transfer
cost entirely [9, 10]. Che et al. [8] present a thorough set of CPU/GPU benchmarks, though they overlook
data transfer costs by assuming overlapped transfers without considering pinned memory overheads. Ye et
al. [7] show that pipelining asynchronous data transfers improves throughput. However, while asynchronous
transfers require pinned memory buffers [5], they do not discuss the overheads associated with allocation or
host-to-host transfers involving pinned memory. In Section 5 we show that these overheads are significant.

The confusion around host-GPU data transfer performance is compounded by the many mechanisms
that are available. While each mechanism has different performance implications, the underlying hardware
primitives remain. One primary feature is pinned (or page-locked) memory, i.e., memory in RAM that is
defined to a locked address that cannot be swapped to disk by the operating system when using virtual
memory. Any data that is transferred between main memory and GPU global memory must be in pinned
memory. This feature is hidden by many data transfer mechanisms, although it is still a necessity. We
discuss the various data transfer mechanisms available in the CUDA API [49].

3.1. Data Transfers and Pinned Memory

The simplest method to perform host-GPU memory transfer is with the cudaMemcpy() function. This
function is called on the CPU with pointers to an address in main memory and global memory on the
GPU, respectively. If the data in main memory is not pinned, the function allocates a temporary pinned
memory buffer, copies the data to it, and then transfers it to the GPU. Therefore, if pinned memory can
be reused, it is beneficial to allocate a pinned memory buffer once and reuse it multiple times, rather than
have cudaMemcpy() allocate a temporary buffer for each data transfer.

The original method for pinned memory allocation in the CUDA API is cudaMallocHost(). The
cudaHostAlloc() function improves the functionality of cudaMallocHost() by allowing allocations for
different purposes (e.g., pinned memory shared between CUDA contexts, or mapped to the CUDA address
space). Both cudaMallocHost() and cudaHostAlloc() can be employed when allocating pinned memory
as a staging area for copying between the host and GPU. Additionally, there is a zero-copy option, where
pageable memory already allocated on the host can be page-locked after allocation (e.g., using malloc()

or new) using cudaHostRegister(). This option is useful when the data to be transferred to the GPU has
already been allocated on the host in pageable memory, and therefore, avoids a superfluous copy from a
pageable to a page-locked buffer.

Figure 1 shows the time to allocate pinned memory using three different methods on Platform1 (de-
tailed in Table 2). We observe that, for all three methods, allocation time increases linearly with the buffer
size. As expected, cudaMallocHost() and cudaHostAlloc() (Figure 1 (a)–(b)) yield the same performance.
cudaHostRegister() on the system is faster than the previous methods. However, cudaHostRegister()
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Figure 1: Pinned memory allocation overheads using three different allocation functions of the CUDA API [49] on Platform1.

must be performed on an existing dataset, which, in the context of sorting, would involve page-locking the
large, unsorted input list, A, which would lead to an unacceptable performance overhead. For instance,
when A is 6 GiB, using cudaHostRegister() takes 1.56s which was shown in previous work [11] to be
longer in duration than the time to sort A on the GPU. Therefore, rather than using cudaHostRegister(),
we allocate a small pinned memory buffer to be reused multiple times by incrementally transferring the data
to/from the GPU. Regardless of the method used, page-locking memory has an unavoidable allocation cost,
which implies that for a large A, the entire buffer cannot be allocated as pinned memory. Therefore, it is
important to carefully allocate pinned memory, particularly for applications where there is a low ratio of
compute to data transfer time, such as sorting large datasets. Indeed, Shamoto et al. [6] find that allocating
large pinned memory buffers reduces the performance of distributed memory sorting on a large CPU/GPU
cluster; consequently, they do not allocate large pinned memory buffers.

3.2. Unified Memory

With CUDA version 6, NVIDIA introduced a streamlined memory management system called Unified
Memory. The Pascal architecture expanded this system with hardware support for page faulting [50] Thus,
on Pascal GPUs, managed or unified memory can be allocated at a capacity much larger than the GPU’s
global memory capacity, and then paged in dynamically when the pages are not resident in global memory
on the GPU. This capability streamlines GPU programming, as the user does not need to manually page
data between the host and GPU. The user can allocate unified memory using cudaMallocManaged(), which
is accessible to both the host and GPU using a single pointer. Because unified memory abstracts away
the issue of host-GPU memory transfers, it seems to solve the data transfer problem. However, like virtual
memory sometimes causing disk accesses [51], some algorithms may result in many host-GPU data transfers.
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The vertical line demarcates where the total memory foot-
print fits within global memory capacity (to the left of the
vertical line). Unified memory performance degrades when
the memory footprint exceeds global memory capacity, and
causes a significant amount of data to be transferred between
host and GPU (right vertical axis). The optimal curve shows
the minimum data that is needed to be transferred if the CPU
performs merging (n elements to and from the GPU).

As an example, consider sorting a large unsorted list, A, using GPU hardware. One way to accomplish
this is to define the memory storing A as unified memory and simply call Thrust radix sort [25] (discussed in
Section 2). The page fault system will automatically perform memory transfers as needed and the entire list
will be sorted. Figure 2 plots the response time vs. input size when using unified memory on Platform1
(Pascal architecture with 16 GB global memory, detailed in Table 2). Sorting out-of-place (as is done by
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Thrust radix sort) requires storing 2n elements in global memory. As expected, using unified memory is
efficient when 2n requires less memory than global memory capacity (the vertical line demarcates the input
size that fits within global memory). However, when n ≥ 1.25×109, Thrust radix sort requires more memory
than global memory capacity, and performance degrades significantly. This is because only a portion of the
data can remain on the GPU, causing many page faults to occur while sorting, as the same data elements
must be transferred to and from the GPU many times. We confirm this behavior by measuring the total
amount of data transferred to/from the host using the nvprof profiler [5] (the blue curve in Figure 2). If,
however, we can perform all sorting on the GPU and all merging on the CPU, we can sort batches that fit in
global memory, requiring only 2n elements be transferred (black dotted line in Figure 2). We conclude that
unified memory may not be practical for all algorithms, such as sorting large datasets and, in Section 4, we
present our heterogeneous sorting approach that transfers a minimal amount of data.

4. Heterogeneous Sorting

We present our approach to hybrid CPU/GPU sorting, and use CUDA [5] terminology. We sort on the
GPU and merge on the CPU. We divide our unsorted input list A into nb batches of size bs to be sorted on
the GPU. We assume bs evenly divides n (i.e., bs = n

nb
). We merge the nb batches on the CPU to create

the final sorted list, B . Table 1 outlines the parameters and notation we use in this work.

Table 1: Table of notation.

Symbol Description Symbol Description
n Input size. W Working memory for batches to be merged (n

elements).
nb Number of batches to be sorted on the GPU. HtoD Data transfer from the host to device.
nGPU Number of GPUs used. DtoH Data transfer from the device to host.
ns The number of streams used. Stage Pinned memory staging area.
bs Size of each batch to be sorted. MCpy A host-to-host memory copy to or from pinned

memory.
ps Size of the pinned memory buffer. GPUSort Sorting on the GPU.
A Unsorted list to be sorted (n elements). Merge Multiway merge of nb batches.
B Output sorted list (n elements).

4.1. Parallel Merging on the CPU

Our general approach is to sort batches on the GPU and merge them all on the CPU. After all nb

batches have been sorted on the GPU and transferred to the host, we use the GNU parallel mode extensions
multiway merge. Merging the nb batches into the final sorted list B requires O(n log nb) work and O(log nb)
time in the CREW PRAM model [52] using a pairwise or multiway merging approach. We find, however,
that multiway merge performs better than pairwise merging due to cache-efficiency, so we use it for merging
after all batches have been sorted. We also use pairwise merging in one of our pipelining optimizations.

The CPU multiway mergesort is performed out-of-place, so the main memory stores: the unsorted input
list, A, the working memory for the sorted batches computed on the GPU, W , and the sorted output list,
B , totaling ∼ 3n space. The only way to reduce this space complexity on the CPU/host is to perform an
in-place parallel multiway merge. Merging in-place is known to be a challenging problem and leads to a
decrease in performance [53, 46], as threads need their own working memory for merging the segments of
the sublists. Thus, we employ out-of-place merging to achieve good performance.

4.2. Sorting on the GPU

Thrust (out-of-place) – We use the Thrust library [25] to sort batches on the GPU. High-performance
sorting implementations, including Thrust, sort out-of-place, requiring twice the memory of the input list.
This doubles both the memory required on the GPU for each batch to be sorted and the total number
batches, nb, needed to sort the n elements in A. Thus, the memory requirement has a negative impact on
the merging phase, as it will increase the amount of merging on the CPU (merging takes O(n log nb) work).
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Figure 3: Illustrative examples for our approaches. (a) Example of generating nb = 6 on the GPU and then merging the result
with multiway merge on the CPU, if multiway merge requires 3× the time to sort one batch. (b) Pipelining the data transfers
in streams, denoted s1, s2, s3, s4. The pipeline shows incrementally copying data from HtoD using the pinned memory buffer
(lower), and copying the data from DtoH using the pinned memory buffer (upper). Incremental copies (HtoD or DtoH ) are
interleaved with copying on the host. (c) Pipelining merging pairs of sublists on the CPU while the GPU sorts batches. For
illustrative purposes, we assume that the time needed to pairwise merge is half of the time to sort a batch on the GPU. Here,
m1 merges sorted batches b1 and b2, and m2 merges b3, and b4.

Bitonic Mergesort (in-place) – To reduce the amount of merging work executed on the CPU, we ex-
plore the use of an algorithm to sort batches in-place on the GPU. Current state-of-the-art GPU sorting
implementations, such as Thrust, are highly optimized for current architectures and developing an in-place
sorting algorithm that is competitive with these libraries remains a difficult open problem. Our goal is to
investigate the potential performance benefits of in-place sorting in the context of heterogeneous sorting.

When designing algorithms for the GPU, aspects of the architecture must be taken into consideration.
For example, a GPU-efficient algorithm requires a high degree of parallelism as well as coalesced memory
accesses [5] (memory must be accessed in blocks). However, thus far there is no practical sorting algorithm
that is: (i) highly parallel, (ii) in-place, (iii) has blocked memory accesses (i.e., is I/O-efficient [30]), and
(iv) is optimal. To determine the impact of in-place GPU sorting on total response time, we design and
implement a GPU-efficient sorting algorithm that has the first three of the above features (i.e., is not
optimal). One such in-place sorting algorithm is the Bitonic sorting network [46]. It is a simple algorithm
with a large amount of parallelism and performs blocked memory accesses, though it takes a factor O(log n)
more time than the out-of-place algorithm to sort n elements. In Section 5.5, we provide details of our
in-place sorting algorithm and evaluate its impact on performance. We refer to this approach as Bitonic.

4.3. Approaches and Optimizations

Our baseline approach, which we refer to as BLine, assumes that A fits in memory on a single GPU.
We sort A on the GPU by copying the data from the host to the GPU, sorting it, and then transferring the
result to the host, denoted as: A → HtoD → GPUSort → DtoH → B . All data transfers are blocking using
cudaMemcpy, and the default CUDA stream is used. See [5] for details on memory transfers and streams.

4.3.1. Baseline With Multiple Batches

Multiple batches need to be sorted on the GPU when nb > 1. This occurs when A exceeds half of global
memory on the GPU when sorting out-of-place. Figure 3 (a) shows an example with nb = 6 being sorted
on the GPU and then merged on the CPU (using multiway merge). Since merging occurs after all batches
have been sorted, there is load imbalance between the CPU and GPU. Figure 3 (a) illustrates a hypothetical
example where merging all batches requires 3× the time required to sort a batch on the GPU. While, in
the PRAM model, merging on the host requires O(n log nb) work (using either pairwise or multiway merge),
and sorting one batch requires O( n

nb
log n

nb
) work, the asymptotic performance is inadequate to compute the

load imbalance between CPU and GPU tasks due to differing architectures and overheads. The baseline
approach that uses multiple batches is denoted as BLineMulti. It uses blocking data transfers, and the
default CUDA stream. The workflow is as follows: A → HtoD → GPUSort → DtoH → W → Merge → B .
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4.3.2. Pipelining Data Transfers

When sorting data larger than global memory (nb > 1), we can overlap host-GPU data transfers with
an optimization we denote as PipeData. Data can be simultaneously sent to the GPU (HtoD), and sent to
the host (DtoH ). To pipeline data transfers, different CUDA streams must be used. Transferring data in a
stream requires using cudaMemcpyAsync which uses pinned memory that is allocated with cudaMallocHost
or another method (Section 3.1). Pinned memory buffers are used as a staging area to incrementally copy
data from and to the unsorted list, A, and the working memory W , respectively. When using a single GPU
(nGPU = 1) each stream is assigned a number of batches to sort, nb/ns (assuming ns even divides nb). On
multi-GPU systems, the number of batches to sort per stream is nb/(nsnGPU ). The workflow when nb > 1
and PipeData is used is: A → Stage → HtoD → GPUSort → DtoH → Stage → W → Merge → B .

Figure 3 (b) shows pipelining for: (i) host-only operations; and (ii) data transfers. First, four streams,
s1–s4, are able to simultaneously copy their data from HtoD (bottom) and DtoH (top). This relies on
allocating pinned memory buffers for each stream. The buffer is typically allocated to be smaller than the
batch size, bs. In Figure 3 (b), the pinned memory buffer size is ps = bs/3. Thus, we copy data in either
direction using pinned memory as a staging area, allowing for the interleaving of data transfers.

The time to execute the different operations in the pipeline will vary, unlike those in Figure 3 (b). The
time spent copying data in/out of the pinned memory staging area on the host (MCpy) and data transfers
(HtoD or DtoH ) may be unbalanced, affecting the number of streams needed to efficiently overlap these
operations. If memory copies in/out of pinned memory are a bottleneck, then more streams can be used for
simultaneous data transfers; or, if the data transfers are a bottleneck, then fewer streams should be used.
Data transfer performance cannot be improved beyond pipelining HtoD and DtoH . In contrast, if host-to-
host MCpy to/from pinned memory in Stage is a bottleneck when using std::memcpy, we can parallelize
this step on the host. We denote parallelizing the MCpy in Stage as ParMemCpy.

4.3.3. Pipelining The Merge Phase

While the GPU is sorting batches, the host exclusively performs memory operations, such as memory
copies to and from the GPU (HtoD , and DtoH ), and host-to-host copies of data to and from pinned memory
in the Stage phase. Thus, we can decrease the load imbalance shown in Figure 3 (a) between GPU (sorting)
and CPU (merging), by starting the merge stage before all batches are sorted (in addition to overlapping
CPU/GPU work). This is important as nb increases, since the amount of CPU merging work increases.
Once two batches are sorted and transferred back to the host, we can perform pairwise merges on the CPU,
reducing the amount of work done by the final multiway merge. For instance, in Figure 3 (c), m1 merges
b1 and b2, and m2 merges b3 and b4. Thus, the final multiway merge will consist of 4 total sublists: the two
merged sublists from m1 and m2, and, b5 and b6. Comparatively, using BLineMulti, the CPU does not
begin merging until all batches are sorted, requiring that the final multiway merge combine 6 batches.

An important observation is that after the last batch is sorted on the GPU, all pairwise merging should
be finished, such that the pairwise merges do not delay the final multiway merge. As such, we utilize two
heuristics to compute the number of pairwise pipelined merges to perform: (1) When nGPU = 1: bnb−1

2 c.
This ensures that when nb is even, the last two pairs of batches are not pairwise merged, and when nb is
odd, the last batch is not merged. (2) When nGPU ≥ 2: b nb

2nGPU
c. Because batches are sorted faster with 2

or more GPUs, there is less time for pairwise merging on the host. Thus, fewer merges can occur before the
multiway merge phase, as a function of nGPU .

We do not pipeline merging of any sublists that are the product of a previous pipelined merge (e.g., the
output of m1 in Figure 3 (c)). We find that attempting to pipeline additional merges results in delaying the
multiway merging procedure, and thus degrades performance. We refer to our approach that pipelines both
pairwise merges and data transfers (Section 4.3.2) as PipeMerge.

4.3.4. Summary of Approaches and Optimizations

BLine is the baseline for sorting a single batch (nb = 1) on the GPU using blocking for data transfers.
BLineMulti is the baseline approach when sorting multiple batches on the GPU and performs a single
multiway merging on the CPU once all batches are sorted. PipeData uses pinned memory and CUDA
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streams to pipeline the data transfers to/from the device to overlap transfers and utilize more bidirectional
bandwidth over PCIe. PipeMerge extends PipeData by concurrently sorting on the GPU and merging on
the CPU to reduce the overhead of the multiway merge at the end. ParMemCpy additionally parallelizes
memory copies on the host to and from the pinned memory staging buffers.

5. Experimental Evaluation

Experimental Methodology – We utilize two platforms for our experiments shown in Table 2, where
Platform2 contains two GPUs. All code is compiled using the GNU GCC host compiler with the O3
optimization flag. We use OpenMP for parallelizing host operations. We consider the performance of two
components of our heterogeneous sort: sorting on the GPU and pairwise merging on the CPU. We measure
the full end-to-end response time including all overheads (e.g., transferring data between CPU and GPU,
copying data between buffers). Some of our approaches (described in the previous section) make use of an
explicitly allocated pinned memory buffer. For all experiments, unless otherwise noted, we use a pinned
memory buffer size ps = 106 elements. In Sections 5.2 and 5.3 we show that this buffer size has a negligible
allocation cost and is sufficiently large to enable efficient memory transfers.

In prior work that focuses on GPU-only sorting, performance is evaluated for a range of input distribu-
tions due to the sensitivities of sorting algorithms to the input characteristics [16]. However, the performance
of our hybrid sorting is dominated by memory transfers, which is independent of input distribution. Also,
our approach can use any sorting algorithm on the GPU, allowing us to use a data-oblivious sorting algo-
rithm if needed. Therefore, we perform all experiments using uniformly distributed data and do not evaluate
the sensitivity of our approach to the data distribution. We use the 64-bit floating point datatype in all
experiments. This provides a conservative scenario for our hybrid GPU sort, since modern GPUs have more
capacity dedicated to 32-bit than 64-bit operations [1]. Also, 64-bit elements require more data transfer per
operation, further degrading the performance of our hybrid approach.

Table 2: Details of hardware platforms.

CPU GPU
Platform Model Cores Clock Memory Model Memory Software

Platform1 2×Xeon E5-2620 v4 2×8 2.1 GHz 128 GiB Quadro GP100 16 GiB CUDA 9
Platform2 2×Xeon E5-2660 v3 2×10 2.6 GHz 128 GiB 2×Tesla K40m 12 GiB CUDA 9

5.1. Reference Implementation, Sorting, and Pair-wise Merging Benchmarks

Reference Implementation – As a baseline comparison, we benchmark widely used parallel sorting
libraries for the CPU. Since our hybrid approach uses libraries for both sorting and merging (except when
using our in-place GPU sorting implementation), using a state-of-the-art CPU sorting library provides a
comparable baseline. We compare the performance of our approaches to the GNU library’s parallel extension
algorithms [22, 23]. The library uses OpenMP to specify the number of threads, and is simply called with the
following syntax __gnu_parallel::sort(A, A + n). We configure each platform with 16 (Platform1) or
20 (Platform2) threads when executing the parallel sort. For additional detail, see our previous work [11].
CPU vs. GPU Sorting – To determine the relative performance of sorting on the CPU and GPU, we
compare the CPU reference implementation to sorting on the GPU with Thrust. We include all overheads
due to memory allocation and data transfers. Figure 4 plots the average response time of BLine and the
reference implementation on Platform2 and indicates that, when we include all overheads, sorting on the
GPU does not significantly outperform the CPU. The response time ratio between sorting on the CPU and
GPU is between 1.22 and 1.32 for the input sizes shown. However, when sorting larger inputs we must sort
batches on the GPU and merge on the CPU.
Cost of Pairwise Merging – The PipeMerge optimization uses a pairwise merge to pipeline merges
while the GPU is still sorting batches (Section 4.3.3). We use the GNU parallel mode extensions to merge
two sorted lists using the following syntax __gnu_parallel::merge(b1, b1+bs, b2, b2+bs, m1), where b1 and
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b2 are sorted batches, bs is the batch size, and m1 is an output buffer for the merged result. Figure 5 plots
the response time when merging on Platform1. These results show the speedup on up to 16 threads/cores
when merging two sorted lists achieves a speedup of 8.14× on 16 cores. A moderate speedup is expected,
as merging only requires O(n) work, and is memory-bound. Once all batches are sorted, we perform a final
parallel multiway merge using the parallel mode extensions (benchmarks omitted).

5.2. Heterogeneous Sorting in the Literature

Stehle and Jacobsen [9] advanced a GPU radix sort that achieves significant performance gains over state-
of-the-art algorithms. The authors apply their radix sort to heterogeneous sorting, whereby data larger than
GPU global memory can be sorted using a hybrid approach. The authors sort batches of the input list on
the GPU and then merge the results using a multiway merge on the CPU (similarly to our approach). The
heterogeneous sort in [9] focuses on overlapping data transfers to reduce the bottleneck between the CPU
and GPU. While the paper shows promising results for heterogeneous sorting, the “end-to-end” performance
that they present omits several key bottlenecks. In Section 5 of [9], the end-to-end time is computed using
the following components: (i) the time to transfer the unsorted batches from CPU to GPU, (ii) the sorted
batches from GPU to CPU, (iii) the time to sort on the GPU; and, (iv) the time to merge on the host.

The end-to-end response time provided in [9] does not include any of the costs and overheads associated
with pinned memory. This includes (i) allocating pinned memory, (ii) transferring data from pageable mem-
ory to pinned memory (and vice-versa); and, (iii) synchronization time required when using asynchronous
memory transfers. Omitting these costs may impact the performance trade-offs of the heterogeneous sort
shown in [9], and thus how competitive their algorithm is relative to their reference implementation. As
demonstrated in Section 3, allocating a large pinned memory buffer takes a significant amount of time.
Specifically, allocating a buffer of size ps = n = 8 × 108 (5.96 GiB) with cudaMallocHost() takes 2.19 s
(Figure 1 (a)), which is longer than the sum of the time components in the end-to-end response time of
sorting 6 GB of key/value pairs in Figure 8 of [9].

To demonstrate the impact of pinned memory allocation on performance, Figure 6 plots three response
time components: pinned memory allocation, transfer + sort, and Merge, along with the total time, when
using PipeData for sorting n = 109, where bs = n/2 = 5 × 108, thus nb = 2, and ns = 2. Since the data
transfers and computation are overlapped, we cannot report them individually, so they are reported together
as “transfer + sort” (specifically, this includes GPUSort , HtoH , HtoD and, DtoH ). When we allocate a single
large buffer (ps = n/2 = 5× 108, left white bars in Figure 6), we find that the total time to allocate pinned
memory is 2.79 s, which is almost as much time as needed to perform data transfers and sort. With a smaller
pinned memory buffer (ps = 106, middle red bars), the allocation overhead is negligible, though the transfer
+ sort increases slightly. Applying the ParMemCpy optimization (right green bars) decreases data transfer
overheads, making the transfer + sort time even faster than when using a large buffer. Consequently, using
a small pinned memory buffer, and performing parallel memory copies is able to obviate the overhead of
both pinned memory allocation and the overhead associated with many host-to-host copy operations.
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5.3. Sorting Data Larger Than Global Memory

We present the results for heterogeneous sorting of data larger than GPU global memory on two plat-
forms. We endeavor to fill the capacity of main memory on the host (128 GiB on both platforms in this
subsection). Since our heterogeneous sorting approach requires approximately 3n space (described in Sec-
tion 4.1), the maximum input size is roughly one third of the total main memory (n ≈ 5× 109).

Single GPU Performance – On Platform1, we employ a large batch size (bs = 5×108) and evaluate
the performance of the approaches described in Section 4.3.4. For PipeData, and PipeMerge, we set the
number of streams ns = 2 so that we can overlap sending and receiving data between the host and GPU.
Each stream that executes a batch needs its own buffer on the GPU that stores the data to be sorted and
sent back to the CPU; furthermore, recall that sorting requires a temporary buffer. Thus, the total global
memory required is 2bsns. For a fixed value of n, setting ns > 2 may allow for more overlap of data transfers,
but this reduces the batch size, increasing the amount of merging to be performed by the CPU.

Figure 7 (a) plots the response time vs. n on Platform1. Across all input sizes, our approaches
outperform the parallel CPU reference implementation, including BLineMulti, which does not overlap
data transfers or CPU and GPU execution. At the smallest and largest input sizes n = 109, and n = 5×109,
we achieve speedups over the reference implementation of 3.47×, and 3.21×, respectively, using our fastest
approach: PipeMerge with ParMemCpy. Comparing BLineMulti to PipeData, we find that pipelining
the data transfers improves performance. At n = 5 × 109 BLineMulti has an average response time of
31.2 s, while PipeData requires 25.55 s (22% faster).

PipeMerge marginally improves the performance over PipeData by merging some of the batches
before the final multiway merge. The final multiway merge requires O(nlognb) work, so small changes
in the total number of batches does not dramatically impact the performance of the multiway merge.
Comparing PipeData with and without ParMemCpy, we observe that using ParMemCpy reduces end-
to-end response time by 13%. We attribute this to the following: (i) the host-to-host memory copy operations
to/from pinned memory are a bottleneck that can be reduced by parallelizing the operation; (ii) a single
core cannot saturate the memory bandwidth of the copy operation, and there is bandwidth available to
main memory, despite performing other concurrent memory-intensive operations; and (iii) the quintessential
viewpoint in the literature that DtoH and HtoD bottlenecks are responsible for poor performance in GPGPU
applications may inadvertently overlook host-side bottlenecks. For instance, the end-to-end time calculation
described in the literature in Section 3 disregards the host as a bottleneck in heterogeneous sorting. If it was
not a bottleneck, then parallelizing host-to-host memory copies would be inconsequential to performance.
Dual-GPU Performance – The GPU on Platform2 has less global memory, so we perform all experi-
ments using bs = 3.5 × 108 (not bs = 5× 108). We evaluate our sorting approaches for input sizes, n, that
are multiples of bs, so the input sizes we use are not identical across platforms. All observations regarding
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single-GPU performance on Platform1 are consistent with Platform2. Figure 7 (b) plots results for
both 1 and 2 GPUs. We observe that using two GPUs outperforms all of the single-GPU configurations. At
the smallest and largest input sizes n = 1.4× 109, and n = 4.9× 109, we achieve speedups over the parallel
CPU reference implementation of 1.89×, and 2.02×, respectively, using PipeMerge with ParMemCpy.

Comparing single-GPU (nGPU = 1) and dual-GPU (nGPU = 2) response times, we see that the relative
difference between the performance of the approaches when nGPU = 2 is smaller than when nGPU = 1. We
attribute this to the fact that the PCIe bus is shared between both GPUs. Thus, even with BLineMulti,
when nGPU = 2 we are able to saturate more of the PCIe bandwidth and the performance advantage of
using two streams is less pronounced in comparison to using two streams when nGPU = 1.

5.4. Pairwise Merging a Larger Number of Batches

On systems with larger main memory capacities, larger datasets can be sorted, requiring more batches.
As the number of batches increase, this also increases the time needed to execute the final multiway merge.
In such cases, mitigating some of the multiway merge overhead by pipelining pairwise merges on the host
has a more significant impact on overall response time than observed in Figure 7. To verify this, we measure
the time to perform the multiway merge phase with PipeData and PipeMerge, as we increase the number
of batches, nb. We decrease the size of each batch, bs, for a fixed input size of n = 4× 109 which increases
the number of batches, nb. The multiway merge phase using PipeData requires 5.07 s (nb = 8) and 15.21 s
(nb = 400), whereas these times are 4.56 s and 13.79 s with PipeMerge, respectively. Therefore, across a
varied number of batches, PipeMerge can be used to decrease the final multiway merge overhead.

5.5. In-place GPU Sorting

As mentioned in Section 4.2, high performance sorting libraries sort out-of-place, and thus, on the GPU,
we need 2× the space to sort each batch. Consequently, we double the total number of batches that we
need to merge in comparison to using an in-place sort. One way to reduce the number of batches is to sort
large batches on the GPU using an in-place sort. We design and implement an in-place sorting algorithm
for the GPU to understand a potential trade-off between additional work on the GPU and fewer total
batches (less CPU work). However, current state-of-the-art GPU sorting libraries are highly optimized
and designing a GPU-efficient in-place sorting algorithm remains a difficult open problem. Thus, while we
expect existing sorting libraries (e.g., Thrust) to significantly outperform our in-place algorithm, we use
our in-place sort to evaluate potential benefits of in-place sorting for our heterogeneous sorting algorithm.
The goal is to determine both the relative performance between Bitonic and existing state-of-the-art GPU
sorting algorithms, as well as the impact of in-place sorting on our hybrid sort for large input sizes.
Algorithm Overview – Given a batch of size nb on the GPU, our in-place sorting algorithm, Bitonic,
operates as follows. Lists of size M = 1024 are sorted using a fast shared-memory sorting algorithm (we
use the shearsort implementation used by Karsin et al. [18]). Pairs of lists are then merged using a Bitonic
merge network [31]. Bitonic merging is performed using only compare-and-swap (CAS) operations and is
thus completely in-place. For details on the Bitonic mergesort algorithm, see standard references [13, 31].
We note that the bitonic mergesort algorithm is not work-efficient, as it requires a factor O(log n) more work
than optimal. This additional work may significantly degrade GPU sorting performance. However, using
this in-place sort, we can sort larger batches, reducing the amount of merging performed on the CPU.
Optimizations – The bitonic mergesort network has some properties that make a large number of GPU-
specific optimizations unnecessary.5 For example, bitonic mergesort is data oblivious: the memory access
pattern is independent of the input permutation. This results in few branches and low divergence. Addi-
tionally, aside from the base case (merging small lists), memory accesses are in contiguous memory, making
global memory accesses coalesced. Thus, when merging large lists, standard GPU-specific optimizations will
not improve performance. We do, however, optimize the step of sorting or merging small lists. As described
above, we sort blocks of size M using the shearsort implementation of Karsin et al. [18]. This shearsort
operates completely in shared memory and sorts by considering the list of M = 1024 elements as a 32× 32

5See documentation [5] for details on optimization techniques.
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matrix. Each row of the matrix is sorted in alternating order, and then each column is sorted in ascending
order. This process is repeated log (32) = 5 times, and, after a final sorting of rows in ascending order,
the list is sorted. For more details on the shearsort algorithm, see [54]. We use several optimizations to
improve the performance of shearsort in GPU shared memory. First, each thread sorts a row by loading it
into registers and sorting it entirely in registers. Second, to avoid bank conflicts, we transpose the matrix
before and after sorting columns. Finally, while each warp of 32 threads sorts a 32 × 32 matrix, we define
thread-blocks of 128 threads and logically divide shared memory to improve GPU occupancy.
GPU Sorting Performance – To determine the practical implications of the work-inefficiency of our
in-place GPU sorting algorithm, we compare its performance to that of current state-of-the-art out-of-place
GPU sorting algorithms for a range of input sizes. For these experiments, we ignore the overheads associated
with data transfers or merging on the CPU, and focus only on the time spent by the GPU to sort a single
batch. Due to the inefficiencies discussed above, we expect our in-place sort to be significantly slower than
existing out-of-place implementations.

The results in Figure 8 indicate that Thrust significantly outperforms our in-place Bitonic sorting net-
work, Bitonic. This is expected, as Thrust is highly optimized for each NVIDIA GPU architecture.
Furthermore, Bitonic is not work-efficient, performing an extra log(n) work to sort n elements. Thus,
overall, on Platform2, Bitonic is between 2.71× and 8.97× slower than the Thrust out-of-place radix
sort. However, if the data transfer and CPU merging costs are large enough to mitigate the cost of sorting
on the GPU, it may be worthwhile to use a slower in-place sort to reduce the number of batches to be
merged on the CPU. Thus, to determine the overall performance of Bitonic, we consider how its in-place
nature impacts the total heterogeneous sorting time.
Heterogeneous Sorting Performance – While Bitonic is significantly slower than the sort available
in the Thrust library, it is completely in-place, allowing us to sort larger inputs on the GPU. This has the
potential to improve the end-to-end performance of heterogeneous CPU/GPU sorting. Thus, we compare
end-to-end response time when sorting large inputs using Thrust and Bitonic to sort batches on the GPU,
for varying batch sizes. Figure 9 plots both the end-to-end response time, as well as the time spent sorting,
for n = 230, on Platform2 for BLineMulti. These results indicate that, because Bitonic is slower than
Thrust, the end-to-end response time when using Bitonic becomes dominated by time spent sorting on
the GPU. Although Bitonic can operate with a larger maximum batch size (bs = 230) and decrease the
time spent merging, the time spent sorting with Bitonic increases at a faster rate. We attribute this to
the extra O(log n) work performed by Bitonic. Thrust is more efficient than Bitonic; therefore, the total
response time when sorting with Thrust decreases as we increase the batch size.

As observed in Figure 7, the PipeMerge and ParMemCpy optimizations significantly impact overall
performance when sorting large inputs. Therefore, we also compare end-to-end performance when sorting
with Thrust and Bitonic while using these optimizations. Figure 10 plots the overall response time when
sorting n = 230 elements on Platform2 with PipeMerge and ParMemCpy, for varying batch sizes. The
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results are similar to Figure 9, where Thrust outperforms Bitonic. Thus, we conclude that without a faster
and more efficient in-place sort for the GPU, we cannot realize the benefits of using larger batch sizes.

6. Discussion and Conclusions

Data transfers between the host and the GPU require the use of a pinned memory address space. Creating
and managing this buffer can cause significant overheads, even when it is performed implicitly with unified
memory. Explicitly managing pinned memory buffers provides several benefits, such as reduced allocation
overhead, overlapping data transfers, and improved transfer rates (a factor ∼2× throughput increase over
naive transfer methods). In the context of heterogeneous CPU/GPU sorting, we find that effective use of
pinned memory allows us to significantly improve sorting performance over a CPU-only approach. While
our baseline GPU-only approach, BLine, outperforms the CPU-only reference implementation, our other
optimizations (e.g., pipelining pairwise merges, parallelizing host-host memory copies) significantly improve
performance. On the largest input size, n = 5 × 109, our fastest approach achieves a speedup of 3.21× on
Platform1 (1 GPU), compared with the CPU-only reference implementation.

Merging the sorted batches on the CPU remains a bottleneck. To further mitigate this bottleneck,
a sorting algorithm that has a lower memory footprint is needed. While our in-place sorting algorithm,
Bitonic, is both highly parallel and I/O efficient, it is not work-efficient. Therefore, out-of-place sorting
still yields the best performance, despite the overhead associated with doubling the number of batches that
need to be merged. An interesting direction of future work is to develop practical GPU sorting algorithms
that achieve a better trade-off between space complexity and work efficiency. Currently, this is an open
question, particularly in the parallel algorithms community.

New interconnects such as NVLink [55] may worsen the load imbalance between CPU and GPU tasks.
Increasing on-GPU sorting performance and host-GPU data transfer rates will increase the CPU merging
bottleneck, as the GPUs will remain idle for a larger fraction of the total end-to-end time. Sorting using
multi-GPU systems with newer host-GPU interconnects will need to address merging using the GPUs.
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