Problem 1. Show that $(a+b)^{2}=a^{2}+2 a b+b^{2}$ for all $a, b \in \mathbb{R}$.
Proof. For all $a, b \in \mathbb{R}$ we have

$$
\begin{aligned}
(a+b)^{2} & =(a+b)(a+b) \\
& =a^{2}+a b+b a+b^{2} \\
& =a^{2}+a b+b a+b^{2} \quad(\text { since } a b=b a) \\
& =a^{2}+2 a b+b^{2} .
\end{aligned}
$$

Problem 2. Find two numbers with a sum of 3 and a product of 2 .
Proof. Denote the two numbers by a and b. Since the sum of the numbers is 3 , we must have

$$
a+b=3 .
$$

Since their product is 2 , we must have

$$
a b=2 .
$$

From the first equation we have

$$
a=3-b .
$$

Substituting this into the second equation gives

$$
(3-b) b=2 .
$$

This implies

$$
(b-1)(b-2)=b^{2}-3 b+2=0 .
$$

Hence $b \in\{1,2\}$. If $b=1$ then $a=2$. If $b=2$ then $a=1$. So the only possibility is that one of the numbers is 1 while the other is 2 . These two numbers in fact have a sum of 3 and a product of 2 .

