Problem 1. Show that $(a+b)^2 = a^2 + 2ab + b^2$ for all $a, b \in \mathbb{R}$.

Proof. For all $a, b \in \mathbb{R}$ we have

$$(a + b)^2 = (a + b)(a + b)$$

= $a^2 + ab + ba + b^2$
= $a^2 + ab + ba + b^2$ (since $ab = ba$)
= $a^2 + 2ab + b^2$.

Problem 2. Find two numbers with a sum of 3 and a product of 2.

Proof. Denote the two numbers by a and b. Since the sum of the numbers is 3, we must have

$$a+b=3$$

Since their product is 2, we must have

$$ab = 2.$$

From the first equation we have

a = 3 - b.

Substituting this into the second equation gives

$$(3-b)b=2.$$

This implies

$$(b-1)(b-2) = b^2 - 3b + 2 = 0.$$

Hence $b \in \{1, 2\}$. If b = 1 then a = 2. If b = 2 then a = 1. So the only possibility is that one of the numbers is 1 while the other is 2. These two numbers in fact have a sum of 3 and a product of 2.