The line digraph of the Cayley color graph of a transitive groupoid can be colored so that the groupoid of partial automorphisms is isomorphic to a semidirect product of the original groupoid.

1. Introduction

In [FFY] the line graph of the Cayley color graph of a group was studied. In this paper we follow a similar path to study the line graph of the Cayley color graph of a transitive groupoid.

In Section 2 we recall definitions and results from [Sie] concerning the Cayley color graph of a groupoid and give a few examples. In Section 3 we define the Cayley line graph as a coloring of the line graph of the Cayley graph. The Cayley line graph might not be unique, we can color the edges more than one way. In Section 4 we show that the groupoid of partial automorphisms of the Cayley line graph is isomorphic to a semidirect product of the original groupoid. The semidirect product depends on the choice of the coloring but the coloring always can be chosen trivially to make this semidirect product isomorphic to the original groupoid.

2. Preliminaries

A groupoid G is a small category with inverses. That is, G is a set with a subset $G^{(2)}$ of $G \times G$, a product map $(x, y) \mapsto xy : G^{(2)} \to G$ and an inverse map $x \mapsto x^{-1} : G \to G$ such that:

(a) $(xy)z = x(yz)$ for all $(x, y), (y, z) \in G^{(2)}$;
(b) $(x, x^{-1}) \in G^{(2)}$ for all $x \in G$ and $x^{-1}(xy) = y, (xy)y^{-1} = x$ for all $(x, y) \in G^{(2)}$.

The set $G^{(2)}$ is called the set of composable pairs. The domain and range maps $d, r : G \to U$ are defined by $d(x) = x^{-1}x$ and $r(x) = xx^{-1}$ where $U = \{xx^{-1} \mid x \in G\}$ is the set of units of G. Every groupoid is the disjoint union of transitive groupoids, and every transitive groupoid is the direct product of a group G and a trivial groupoid $A \times A$. More precisely a transitive groupoid G is isomorphic to a groupoid $A \times G \times A$ where (d, h, c) and (b, g, a) are composable whenever $b = c$, in which case their product is (d, bh, a). The inverse of (b, g, a) is (a, g^{-1}, b). The set A can be identified with the unit space $\{(a, e, a) \mid a \in A\}$ of G where e is the identity of G. The group G is isomorphic to the isotropy subgroup $G_u = \{x \mid d(x) = u = r(x)\}$ for any unit u of G. We only work with finite groupoids. Our references for groupoids are [Bro, Ren].

Example 2.1. If $A = \{a, b\}$ then the transitive groupoid $G = A \times \mathbb{Z}_2 \times A$ has eight elements

$$G = \{x, y, x^{-1}, y^{-1}, u = x^{-1}x, v = xx^{-1}, s = y^{-1}x, t = yx^{-1}\}$$

2000 Mathematics Subject Classification: Primary 20L05
Keywords: Cayley color graph, line graph, groupoid
where \(x = (b, 0, a) \) and \(y = (b, 1, a) \). The groupoid can be visualized by an arrow diagram.

\[
\begin{array}{ccc}
 & y & \\
 & \downarrow & \\
 b & \rightarrow & a \\
 & \uparrow & \\
 & x^{-1} & \\
 & \leftarrow & \\
 s & \leftarrow & \\
\end{array}
\]

A subset \(\Delta \) of the groupoid \(G \) *generates* \(G \) if every element of \(G \) can be written as a finite product of elements of \(\Delta \).

A *color digraph* is a directed graph with possible multiple edges and loops together with a color function defined on the set of edges.

The *tail* of a vertex \(v \) in a color digraph is the set tail \((v) \) of vertices that can be reached by a finite directed walk starting at \(v \). We say that \(v \) is a *head* of its tail. Note that a tail may have more than one head, and that a tail contains each of its heads.

If \(\Delta \) is a set of generators of the groupoid \(G \) then the Cayley color graph \(D = D_\Delta(G) \) of \(G \) with respect to the generating set \(\Delta \) is the color digraph with vertices \(G \) and edges

\[
\{(x, z) \mid x \in G, z \in \Delta, (x, z) \in G^{(2)}\}
\]
such that the edge \((x, z)\) connects \(x \) to \(xz \) and has color \(z \).

Example 2.2. If \(G = A \times \mathbb{Z}_2 \times A \) is the transitive groupoid of Example 2.1 then \(\Delta = \{x, x^{-1}, s\} \) is a generating set and the Cayley color graph has two tails:

\[
x^{-1} \xrightarrow{x^{-1}} u \xleftarrow{s} s \xrightarrow{x^{-1}} y^{-1}
\]

\[
v \xleftarrow{x^{-1}} x \xrightarrow{s} s \xrightarrow{y^{-1}} t
\]

If \(x \) is a vertex of \(D_\Delta(G) \) then tail \((x) = \{xy \mid y \in G\} \) and \(r(x) \) is the unique unit \(u \) of \(G \) for which tail \((x) = \text{tail}(u) \). Every tail is strongly connected and every element of a tail is a head of the tail. A tail contains all the elements of the groupoid whose range is a given unit, so the number of tails is equal to the number of units.

A *partial automorphism* of a Cayley color graph \(D = D_\Delta(G) \) is a bijection between two tails of the graph, that preserves the colors of the edges. Every partial automorphism of \(D \) is implemented by a left multiplication by an element of \(G \) and this representation gives an isomorphism between the partial automorphisms of \(D \) and \(G \).

If \(G = A \times G \times A \) and \(T \) is a tail of \(D \) then the partial automorphisms of \(D \) whose domain and range is \(T \), form a group isomorphic to \(G \).

A *color permuting partial automorphism* of a Cayley color graph \(D_\Delta(G) \) is a bijection \(\alpha \) between two tails of \(D_\Delta(G) \) and a permutation \(\rho \) of \(\Delta \), such that \(\alpha(xz) = \alpha(x)\rho(z) \) for all \(x \in \text{dom}(\alpha) \), \((x, z) \in G^{(2)} \) and \(z \in \Delta \).

Let \(H = \{\pi \in \text{Aut } G \mid \pi(\Delta) = \Delta\} \) be the group containing the automorphisms of \(G \) preserving \(\Delta \). Let \(\iota : H \rightarrow \text{Aut } G \) be the canonical embedding. Recall [Ren] that the semidirect product \(G \ltimes H \) is the groupoid with operations

\[
(x_1, \pi_1)(x_2, \pi_2) = (x_1\pi_1(x_2), \pi_1\pi_2) \quad \text{and} \quad (x, \pi)^{-1} = (\pi^{-1}(x^{-1}), \pi^{-1})
\]

whenever \(x_1 \) and \(\pi_1(x_2) \) are composable. The map \((y, \rho) \rightarrow \beta_{(y, \rho)} \) where \(\beta_{(y, \rho)}(x) = yp(x) \) is an isomorphism between the semidirect product \(G \ltimes H \) and the groupoid \(\text{PAut}^*(D) \) of color permuting partial automorphisms of \(D_\Delta(G) \).
3. Cayley Line Graphs

Definition 3.1. Let $D = D_{\Delta}(G)$ be a Cayley color graph and π_z be a permutation of Δ for all $z \in \Delta$ satisfying $\pi_z \circ \pi_w = \pi_{\pi_z(w)}$ for all $w, z \in \Delta$. The Cayley line graph $L = L_{\pi}(D)$ with respect to π is the color digraph with vertices $\{(x, z) \mid x \in G, z \in \Delta, (x, z) \in G^{(2)}\}$ and edges

$$\{(x, z), w) \mid x \in G \text{ and } z, w \in \Delta \text{ and } (x, z), (z, \pi_z(w)) \in G^{(2)}\}$$

such that the edge $(x, z), w)$ connects vertex (x, z) to vertex $(x, \pi_z(w))$ and has color w.

The correspondence can be visualized by the following diagram where the color is written next to the edge, and the name is written on the edge:

groupoid G:

Cayley graph D:

Cayley line graph L:

Example 3.2. If $\Delta = \{z_0, \ldots, z_{n-1}\}$ then both of the definitions
(a) $\pi_{z_0} = \text{id}$;
(b) $\pi_{z_i}(z_j) = z_{i+j \mod n}$;

satisfy $\pi_z \circ \pi_w = \pi_{\pi_z(w)}$ for all $w, z \in \Delta$.

Example 3.3. Let $G = \{x, y, u, v\}$ be the trivial groupoid, that is, $y = x^{-1}$, $v = xy$ and $u = yx$. If $\Delta = \{x, y\}$ then the Cayley graph is:

If $\pi_x = \text{id}$ and $\pi_y = (x \ y)$ as in Example 3.2(b) then the Cayley line graph is:

Example 3.4. Let D be the Cayley color graph of Example 2.2, $\pi_x = \text{id}$, $\pi_{x^{-1}} = (x \ s)$ and $\pi_s = (x \ x^{-1} \ s)$. The Cayley line graph is

Throughout this paper let $L = L_{\pi}(D)$ denote the Cayley line graph of the Cayley color graph $D = D_{\Delta}(G)$ of the transitive groupoid G.

Lemma 3.5. For all $w, z \in \Delta$ we have $\pi_z^{-1} \circ \pi_w = \pi_{\pi_z^{-1}(w)}$.

Proof. $\pi_z^{-1} \circ \pi_w = \pi_z^{-1} \circ \pi_{\pi_z^{-1}(w)} = \pi_z^{-1} \circ \pi_z \circ \pi_{\pi_z^{-1}(w)} = \pi_{\pi_z^{-1}(w)}$. □
Lemma 3.6. If the vertex \((x_0, \delta_0)\) is connected to the vertex \((y, z)\) in \(L\) through \(n\) edges with colors \(\delta_1, \ldots, \delta_n\) then \(z = \pi_{\delta_n} \circ \pi_{\delta_{n-1}} \circ \cdots \circ \pi_{\delta_1} (\delta_0)\).

Proof. Suppose \((x_0, \delta_0)\) is connected to \((y, z)\) through the vertices \((x_1, z_1), \ldots, (x_{n-1}, z_{n-1})\), so we have the following walk:

\[
(x_0, \delta_0) \xrightarrow{\delta_1} (x_1, z_1) \xrightarrow{\delta_2} \cdots \xrightarrow{\delta_n} (x_{n-1}, z_{n-1}) \xrightarrow{\delta_n} (y, z)
\]

Then

\[
z = \pi_{z_{n-1}} (\delta_n) = \pi_{z_{n-2}} (\delta_{n-1}) (\delta_n) = \pi_{z_{n-2}} \circ \pi_{\delta_{n-1}} (\delta_n)
\]

\[
= \cdots = \pi_{\delta_0} \circ \pi_{\delta_1} \circ \cdots \circ \pi_{\delta_{n-1}} (\delta_n).
\]

Definition 3.7. Define \(H_L := \{ \rho \in \text{Aut}(G) \mid \rho(\Delta) = \Delta \text{ and } \rho \circ \pi_z = \pi_{\rho(z)} \text{ for all } z \in \Delta \}\).

Note that \(H_L\) is not empty since it contains the identity.

Example 3.8.
(a) If \(\pi_z\) is the identity for all \(z \in \Delta\) as in Example 3.2(a) then \(H_L = \{\text{id}\}\).
(b) In Example 3.3, \(H_L = \{\text{id}, \rho\} \cong Z_2\) where \(\rho = (x \ y)(u \ v)\).
(c) In Example 3.4, \(H_L = \{\text{id}\}\).

Lemma 3.9. \(H_L\) is a subgroup of \(\text{Aut}(G)\).

Proof. If \(\sigma, \rho \in H_L\) then for all \(z \in \Delta\) we have \(\sigma \circ \pi_z = \sigma \circ \pi_{\rho(z)} = \pi_{\sigma(\rho(z))}\) so \(\sigma \rho \in H_L\). Also

\[
\rho^{-1} \circ \pi_z = \rho^{-1} \circ \pi_{\rho^{-1}(z)} = \rho^{-1} \circ \pi_{\rho^{-1}(z)} = \pi_{\rho^{-1}(z)}
\]

for all \(z \in \Delta\) and so \(\rho^{-1} \in H_L\). \(\square\)

4. Partial automorphisms

Lemma 4.1. If \((y, w)\) and \((y, z)\) are vertices of \(L\) then \(\text{tail}(y, w) = \text{tail}(y, z)\).

Proof. By symmetry, it suffices to show that \((y, z) \in \text{tail}(y, w)\). Write \(w^{-1} = \delta_1 \cdots \delta_n\) as products of elements of \(\Delta\). Then \((y, z)\) can be reached from \((y, w)\) along the following walk:

\[
(y, w) \rightarrow (yw, \delta_1) \rightarrow \cdots \rightarrow (yw\delta_1 \cdots \delta_{n-1}, \delta_n) \rightarrow (y, z)
\]

where the color of the last edge \(\pi_{\delta_n}^{-1}(z)\). \(\square\)
Similar proof shows that tail\((y, z) = tail(r(y), \delta)\) for some \(\delta \in \Delta\). It is easy to see that if \(u\) and \(v\) are different elements of \(G^0\) then tail\((u, \delta)\) and tail\((v, \mu)\) are not the same. Thus the tails of \(L\) are of the form tail\((u, \delta)\) where \(u\) is a unit of \(G\) and \(\delta\) is an arbitrary element of \(\Delta\) whose range is \(u\).

Definition 4.2. A partial automorphism of \(L\) is a bijection \(\alpha\) between two tails of \(L\), that preserves the colors of the edges, that is,

\[
\pi_{\alpha(x,z)}(w) = \alpha(xz, \pi_z(w))_2
\]

for all \(((x, z), w)\) satisfying \((x, z) \in \textrm{dom}(\alpha)\).

\[
(x, z) \xrightarrow{w} (xz, \pi_z(w)) \quad \alpha(x, z) \xrightarrow{w} \alpha(xz, \pi_z(w))
\]

The set of partial automorphisms of \(L\) is denoted by \(\text{PAut}(L)\).

Lemma 4.3. For all \((y, \rho) \in G \times H_L\) the map \(\alpha_{(y, \rho)} : \text{tail}(\rho^{-1}(y^{-1}), \delta) \rightarrow \text{tail}(y, \delta_0)\) defined by

\[
\alpha_{(y, \rho)}(x, z) = (y\rho(x), \rho(z))
\]

is a partial automorphism of \(L\). Furthermore \(\alpha_{(y, \rho)}^{-1} = \alpha_{(y, \rho)}^{-1}\).

Proof. If \((x, z) \in \text{dom}(\alpha_{(y, \rho)})\) then the edge \((\alpha_{(y, \rho)}(x, z), w) = ((y\rho(x), \rho(z)), \pi_z(w))\) ends at

\[
(y\rho(x)\rho(z), \pi_{\rho(z)}(w)) = (y\rho(xz), \rho \circ \pi_z(w)) = \alpha_{(y, \rho)}(xz, \pi_z(w))
\]

so \(\alpha_{(y, \rho)}\) preserves the colors of the edges.

If \((x, z) \in \text{tail}(y, \delta_0)\) then \((x, z) = (y\delta_0 \cdots \delta_n, z)\) for some \(\delta_0, \ldots, \delta_n \in \Delta\). Since \(r(y)\) and \(\delta_0\) are composable, \((\rho^{-1}(y\delta_0 \cdots \delta_n), \rho^{-1}(z))\) is an element of \(\text{tail}(\rho^{-1}(y^{-1}), \delta)\) that is mapped to \((x, z)\) by \(\alpha_{(y, \rho)}\). Thus \(\alpha_{(y, \rho)}\) is surjective. It is easy to check that \(\alpha_{(y, \rho)}\) is injective.

If \((x, z) \in \text{dom}(\alpha_{(y, \rho)}^{-1})\) then

\[
\alpha_{(y, \rho)}^{-1}(x, z) = \alpha_{(\rho^{-1}(y^{-1}), \rho^{-1})}(x, z) = (\rho^{-1}(y^{-1})\rho^{-1}(x), \rho^{-1}(z)) = (\rho^{-1}(y^{-1}x), \rho^{-1}(z)) = \alpha_{(y, \rho)}(x, z).
\]

Lemma 4.4. If \(\alpha \in \text{PAut}(L)\), \((x, \delta)\) and \((t, \delta)\) are vertices of \(L\), and \(r(x) = r(t)\) then

\[
\alpha_{(x, \delta)}(t, z) = \pi_{\alpha_{(x, \delta)}(t, z)}(\mu) \quad \text{where} \quad z = \pi_{\delta}(\mu).
\]

Proof. Since \(t = x(x^{-1}t)\), \((x, \delta)\) is connected to \((t, z)\) through edges say with colors \(\delta_1, \ldots, \delta_n\). By Lemma 3.6, \(z = \pi_{\delta} \circ \pi_{\delta_1} \circ \cdots \circ \pi_{\delta_{n-1}}(\delta_n)\) and so \(z = \pi_{\delta}(\mu)\) where \(\mu = \pi_{\delta_1} \circ \cdots \pi_{\delta_{n-1}}(\delta_n)\). Since \(\alpha\) preserves the colors of the edges, \((x, \delta)\) is connected to \((t, z)\) through edges with colors \(\delta_1, \ldots, \delta_n\) and so

\[
\alpha_{(x, \delta)}(t, z) = \pi_{\alpha_{(x, \delta)}(t, z)}(\mu) \quad \text{where} \quad z = \pi_{\alpha_{(x, \delta)}(t, z)}(\mu).
\]

Lemma 4.5. If \(\alpha \in \text{PAut}(L)\) and \((x, z), (x, w) \in \text{dom}(\alpha)\) then \(\alpha(x, z)_1 = \alpha(x, w)_1\).

Proof. Since \(L\) has no sources, there is a vertex \((y, \delta)\) of \(L\) that is connected to both \((x, z)\) and \((x, w)\) by single edges. So \(\alpha(x, z)_1 = \alpha(y, \delta)_1\alpha(y, \delta)_1 = \alpha(x, w)_1\).
Proposition 4.6. Every partial automorphism α of L is $\alpha_{(y,\rho)}$ for some $(y,\rho) \in \mathcal{G} \times H_L$.

Proof. Let u be the unique unit of \mathcal{G} such that $\text{tail}(u,\delta) = \text{dom}(\alpha)$ for some $\delta \in \Delta$. By the previous lemma

$$y := \alpha(u,\delta)_1$$

is independent of the choice of δ.

Let $z \in \Delta$. Since \mathcal{G} is transitive, we can find $t \in \mathcal{G}$ such that $u = r(tz)$. The definition

$$\rho(z) := \alpha(t, z)_2$$

is independent of the choice of t since by Lemma 4.4, $\alpha(t, z)_2 = \pi_{\alpha(u,\delta)_2}(\pi^{-1}_\delta(z))$.

We now extend ρ to \mathcal{G}. If $x \in \mathcal{G}$ then $x = z_1 \cdots z_n$ for some $z_1, \ldots, z_n \in \Delta$. Define

$$\rho(x) = \rho(z_1) \cdots \rho(z_n).$$

We need to check that this definition is independent of the choice of the z_i's. Suppose we also have $x = w_1 \cdots w_m$, for some $w_1, \ldots, w_m \in \Delta$. Choose $t \in \mathcal{G}$ and $\mu \in \Delta$ such that $u = r(tx)$ and $(x,\mu) \in \mathcal{G}^{(2)}$. Then we have the following walks in L

$$(y, \delta) \rightarrow \cdots \rightarrow (t, z_1) \rightarrow \cdots \rightarrow (tz_1 \cdots z_{n-1}, z_n) \rightarrow \cdots \rightarrow (tx,\mu)$$

which are mapped by α to the walks

$$(\alpha(y, \delta) \rightarrow \cdots \rightarrow \mu_1, \rho(z_1)) \rightarrow \cdots \rightarrow \mu_n, \rho(z_n)) \rightarrow \cdots \rightarrow \nu_1, \rho(w_1)) \rightarrow \cdots \rightarrow \nu_m, \rho(w_m)) \rightarrow \alpha(tx,\mu)$$

for some $\mu_1, \ldots, \mu_n, \nu_1, \ldots, \nu_m \in \mathcal{G}$. Hence we have

$$\mu_1 \rho(z_1) \cdots \rho(z_n) = \alpha(tx,\mu)_1 = \nu_1 \rho(w_1) \cdots \rho(w_m).$$

By Lemma 4.5, $\mu_1 = \nu_1$ and so $\rho(z_1) \cdots \rho(z_n) = \rho(w_1) \cdots \rho(w_m)$.

We show that ρ is an automorphism of \mathcal{G}. If $(w, z) \in \mathcal{G}^{(2)}$ then we can find a $t \in \mathcal{G}$ such that $u = r(tw) = r(twz)$. The edge $((t, w), \pi^{-1}_w(z))$ connects vertex (t, w) to (tw, z). Taking the image under α shows that $\alpha(t, w) = \alpha(t, w)_1, \delta(w))$ is connected to $\alpha(tw, z)_1, \delta(z))$ by an edge with color $\pi^{-1}_w(z)$ and so $(\delta(w), \delta(z)) \in \mathcal{G}^{(2)}$. It follows easily now that ρ is multiplicative. Since $\rho = \pi_{\alpha(u,\delta)_2} \circ \pi^{-1}_\delta$ is a permutation of Δ, $\rho : \mathcal{G} \rightarrow \mathcal{G}$ is surjective. Since \mathcal{G} is finite, ρ must be injective.

We show that $\rho \in H_L$. Since $\rho(\Delta) = \Delta$, we only need to check that $\rho \circ \pi_z = \pi_\rho(z)$ for all $z \in \Delta$. If $u = r(tz)$ for some $t \in \mathcal{G}$ then $\rho(z) = \pi_{\alpha_u(\delta)_2}(\pi^{-1}_\delta(z))$ and so

$$\pi_{\rho(z)} = \pi_{\alpha_u(\delta)_2} \circ \pi^{-1}_\delta(z) = \pi_{\alpha_u(\delta)_2} \circ \pi^{-1}_\delta \circ \pi_z = \rho \circ \pi_z.$$

It remains to show that $\alpha = \alpha_{(y,\rho)}$. To check that α and $\alpha_{(y,\rho)}$ have the same domain, write $u = u_1 \cdots u_n$ as a product of elements of Δ. Then

$$y \rho(u) = \alpha(u, u_1)_1 \rho(u_1) \cdots \rho(u_n)$$

$$= \alpha(u, u_1)_1 \alpha(u, u_1)_2 \rho(uu_1, u_2) \cdots \alpha(uu_1 \cdots u_{n-1}, u_n)_2$$

$$= \alpha(u, u_1)_1 = y$$
and so
\[
\text{dom}(\alpha_{(y,\rho)}) = \text{tail}(\rho^{-1}(y^{-1}), \delta) = \text{tail}(r(\rho^{-1}(y^{-1})), \delta) = \text{tail}(\rho^{-1}(y^{-1}), \delta) = \text{tail}(u, \delta) = \text{dom}(\alpha).
\]
If \((x, z) \in \text{dom}(\alpha)\) then \(ux = x = x_1 \cdots x_n\) for some \(x_1, \ldots, x_n \in \Delta\) so we have
\[
\alpha_{(y,\rho)}(x, z) = (y\rho(x), \rho(z)) = (\alpha(u, x_1), \rho(x_1), \ldots, \rho(x_n), \alpha(x, z))
\]
\[
= (\alpha(u, x_1), \alpha(u, x_1), \alpha(u, x_1), \alpha(u, x_1), \ldots, \alpha(u, x_n), \alpha(x, z))
\]
\[
= (\alpha(u, x_1), \alpha(u, x_2), \alpha(u, x_2), \alpha(u, x_2), \ldots, \alpha(u, x_n), \alpha(x, z))
\]
\[
= \cdots
\]
\[
= (\alpha(u, x_1 \cdots x_n, z), \alpha(x, z)) = (\alpha(x, z), \alpha(x, z))
\]
\[
= \alpha(x, z).
\]

Theorem 4.7. If \(L = L_\pi(D_{\Delta}(\mathcal{G}))\) then \(\mathcal{G} \times, H_L \cong \text{PAut}(L)\).

Proof. We saw that the map \((y, \rho) \mapsto \alpha_{(y,\rho)}\) is onto and \(\alpha_{(y,\rho)^{-1}} = \alpha_{(y,\rho)^{-1}}\). It is multiplicative since if \((x, \sigma), (y, \rho) \in \mathcal{G} \times, H_L\) are composable and \((x, z) \in \text{dom}(\alpha_{(y,\rho)})\) then
\[
\alpha_{(x,\sigma)(y,\rho)}(x, z) = \alpha_{(x\sigma(y),\sigma \rho)}(x, z) = (x\sigma(y)\sigma(\rho(x)), \sigma(\rho(z)))
\]
\[
= (x\sigma(y\rho(x)), \sigma(\rho(z))) = \alpha_{(x,\sigma)}(y\rho(x), \rho(z))
\]
\[
= \alpha_{(x,\sigma)}(x, z).
\]
It remains to show that \((y, \rho) \mapsto \alpha_{(y,\rho)}\) is injective. Suppose \(\alpha_{(y,\rho)} = \alpha_{(x,\sigma)}\). There is a unique unit \(u \in \mathcal{G}\) such that \((u, \delta) \in \text{dom}(\alpha_{(y,\rho)}\)). Hence
\[
(y, \rho(\delta)) = (y\rho(u), \rho(\delta)) = \alpha_{(y,\rho)}(u, \delta)
\]
\[
= \alpha_{(x,\sigma)}(u, \delta) = (x\sigma(u), \sigma(\delta))
\]
\[
= (x, \sigma(\delta))
\]
and so \(y = x\). If \(z \in \Delta\) and \(u = r(tz)\) then
\[
\rho(z) = \alpha_{(y,\rho)}(t, z)_2 = \alpha_{(x,\sigma)}(t, z)_2 = \sigma(z).
\]
Thus \((y, \rho) = (x, \sigma)\).

Corollary 4.8. If \(\pi_z\) is the identity for all \(z \in \Delta\) as in Example 3.8(a) then \(\text{PAut}(L) \cong \mathcal{G}\).

Note that \(H_L\) is a subgroup of \(H = \{\pi \in \text{Aut}(\mathcal{G}) \mid \pi(\Delta) = \Delta\}\) and so \(\text{PAut}(L) \cong \mathcal{G} \times, H_L\) is isomorphic to a subgroupoid of the groupoid \(\text{PAut}^*(D) \cong \mathcal{G} \times, H\) of color permuting partial automorphisms of \(D\).

Example 4.9. In Example 3.3, \(H_L = H\) and \(\mathcal{G} \times, H_L \cong \text{PAut}(L) \cong \{a, b\} \times \mathbb{Z}_2 \times \{a, b\}\). Note that the Cayley line graph \(L\) is not a Cayley color graph since the number of vertices of \(L\) is not the same as the number of elements of \(\text{PAut}(L)\).
REFERENCES

Email: nandor.sieben@nau.edu

DEPARTMENT OF MATHEMATICS, NORTHERN ARIZONA UNIVERSITY, FLAGSTAFF, AZ 86011-5717