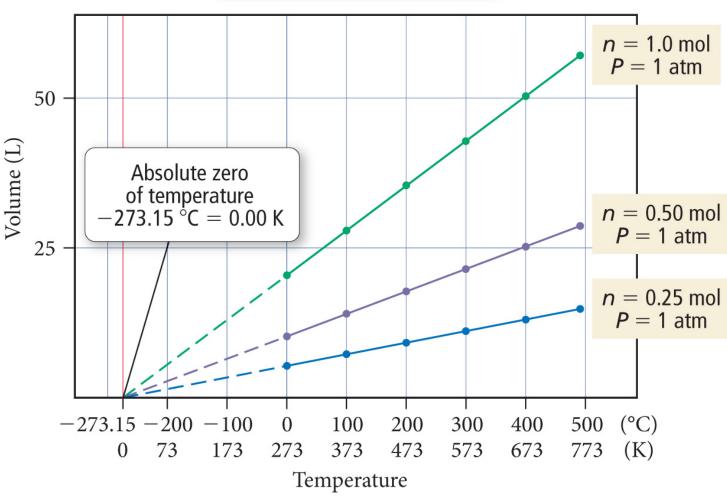
Chapter 5: Gases

5.3: Gas Laws

- The gas laws are a series of relationships between the different properties of gases.
- 1) Boyle's Law: The volume of a gas is inversely proportional to its pressure (at constant temperature).


For a change in volume or pressure at constant temperature:

$$P_1V_1 = P_2V_2$$

Figure 5.10

Charles's Law

As temperature increases, volume increases.

© 2014 Pearson Education, Inc.

Gas Laws (contd.)

2) Charles's Law: The volume of a gas is directly proportional to its absolute temperature (in Kelvin).

For a change in temperature at constant pressure:

$$\frac{\mathbf{V}_1}{\mathbf{T}_1} = \frac{\mathbf{V}_2}{\mathbf{T}_2}$$

Gas Laws (contd.)

- 3) Avogadro's Law: The volume of a gas is directly proportional to the number of moles of gas (n) at constant temperature and pressure.
- The volume of a gas does not depend on the identity of the gas, but only on the number of moles present.

5.4: The Ideal Gas Law

The three gas laws:

- Combining these, we get: V α nT/P
- Rearranging:

R is the ideal gas constant.

A gas that obeys the ideal gas law is called an ideal gas.

5.5: Applications of The Ideal Gas Law

 At standard temperature and pressure, STP (0 °C, 1 atm), the volume of 1 mol of an ideal gas is 22.4 L.

5.5: Applications of The Ideal Gas Law (contd.)

Calculating molar mass:

Molar mass =
$$g/mol = g/n$$

Calculating density:

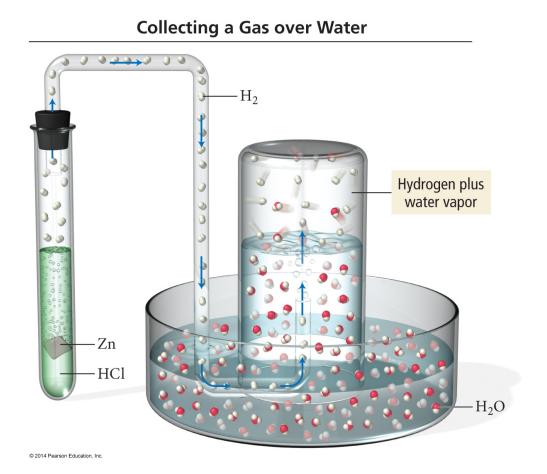
Density = mass / volume = n × molar mass / V

5.6: Mixtures of Gases

Dalton's Law of Partial Pressures:

- Each gas in a mixture exerts a partial pressure.
- The total pressure of a gas is the sum of the partial pressures of each component of the mixture:

$$P_{total} = P_A + P_B + P_C + \dots$$


 The partial pressure of an individual gas depends on the amount of that gas present:

$$P_A = \frac{n_A RT}{V}$$

• or, $P_A = X_A \times P_{total}$

Collecting Gases Over Water

 Gases are often isolated by having them displace water from a container. The collected gas will also contain water vapor.

Collecting Gases Over Water

- The partial pressure of the water vapor is called the vapor pressure, and it depends only on the temperature.
- You must look up the vapor pressure of water at a certain T, and subtract this from the total pressure:

 $P_{gas} = P_{total} - vapor pressure of water$

TABLE 5.4 Vapor Pressure of Water versus Temperature			
Temperature (°C)	Pressure (mmHg)	Temperature (°C)	Pressure (mmHg)
0	4.58	55	118.2
5	6.54	60	149.6
10	9.21	65	187.5
15	12.79	70	233.7
20	17.55	75	289.1
25	23.78	80	355.1
30	31.86	85	433.6
35	42.23	90	525.8
40	55.40	95	633.9
45	71.97	100	760.0
50	92.6		
© 2014 Pearson Education, Inc.			