1. True or false statements.

a) The standard free energy of formation, ΔG°, of H$_2$O(l) is zero. [2 pts]

 FALSE, ΔG° is zero for an **element** in its standard state.

b) In an exothermic reaction heat is transferred from the system to the surroundings. [2 pts]

 TRUE

2. A $-$ sign for ΔG indicates a spontaneous process, and a $+$ sign for ΔS_{univ} indicates a spontaneous process. [2 pts]

3. Which of the following has the **larger** standard entropy (S°) at 25°C, Na(s) or I$_2$(s)? [2 pts]

 I$_2$(s). With both substances being solids, the larger one has greater complexity and hence a larger standard entropy.

4. Predict whether the entropy change is **positive** (more disorder) or **negative** (more order) for the following reactions. [3 pts]

a) C$_2$H$_5$OH (l) \rightarrow C$_2$H$_5$OH (s)
 negative

b) C$_6$H$_{12}$O$_6$ (s) \rightarrow C$_6$H$_{12}$O$_6$ (aq)
 positive

c) N$_2$ (g) (at 80°C) \rightarrow N$_2$ (g) (at 20°C)
 negative

5. Hydrocarbons containing halogens are very useful molecules in synthetic chemistry. Calculate S° for the reaction product (CH$_2$ClCH$_2$Cl) in the equation shown below if $\Delta S_{\text{rxn}}^{\circ}$ is -134.0 J K$^{-1}$. [3 pts]

 Homework Problem

 \[
 \begin{array}{c|c|c}
 \text{species} & S^\circ \text{ (J K}^{-1} \text{ mol}^{-1}) & \\
 \hline
 \text{C}_2\text{H}_4(g) & 219 & \\
 \text{Cl}_2(g) & 223 & \\
 \hline
 \end{array}
 \]

 \[
 \Delta S_{\text{rxn}}^{\circ} = \Sigma n S^\circ \text{(products)} - \Sigma n S^\circ \text{(reactants)}
 \]

 \[
 -134.0 \text{ J/K} = S^\circ(\text{CH}_2\text{ClCH}_2\text{Cl}) - [(1)(219 \text{ J/K mol}) + (1)(223 \text{ J/K mol})]
 \]

 \[
 S^\circ(\text{CH}_2\text{ClCH}_2\text{Cl}) = 308 \text{ J/K mol}
 \]
6. a) Calculate the $\Delta H^\circ_{\text{rxn}}$ for the following reaction:

$$2 \text{ Ca (s)} + \text{ O}_2 (g) \rightarrow 2 \text{ CaO (s)}$$

$\Delta H^\circ_1 [\text{CaO (s)}] = -635.6 \text{ kJ/mol}$

$\Delta H^\circ_2 [\text{Ca}^{2+} (aq)] = -542.96 \text{ kJ/mol}$

Homework Problem

$$\Delta H^\circ_{\text{rxn}} = \Sigma n\Delta H^\circ_1 (\text{products}) - \Sigma n\Delta H^\circ_2 (\text{reactants})$$

$$\Delta H^\circ_{\text{rxn}} = (2)(-635.6 \text{ kJ/mol}) - [0 + 0]$$

$$\Delta H^\circ_{\text{rxn}} = -1271.2 \text{ kJ/mol}$$

b) How much heat is evolved when 5.5 moles of Ca(s) are reacted with excess oxygen. [3 pts]

Homework Problem

$$\frac{1271.2 \text{ kJ}}{2 \text{ mol Ca}} \times 5.5 \text{ mol Ca} = 3495.8 \text{ kJ}$$

7. What is the ΔG of a reaction at 81.0 K with a ΔH of 250.0 kJ and a ΔS of 270.0 J/K? Input your answer in units of kJ. [4 pts] **Homework Problem**

a) $\Delta G = \Delta H - T\Delta S$

$$\Delta G = 250.0 \text{ kJ} - (81.0 \text{ K})(270.0 \text{ J/K}) \times \frac{1 \text{ kJ}}{1000 \text{ J}}$$

$$\Delta G = 228.1 \text{ kJ}$$

b) Is the reaction spontaneous? Yes or No? [2 pts]

No, positive ΔG indicates that the reaction is nonspontaneous in the forward direction.

8. Which of the following *always* corresponds to a *nons spontaneous* reaction in the forward direction? [3 pts]

a) $\Delta H < 0, \Delta S < 0$

b) $\Delta H > 0, \Delta S < 0$

c) $\Delta H > 0, \Delta S > 0$

d) $\Delta H < 0, \Delta S > 0$

e) none of these

9. Predict the signs of ΔG, ΔH, and ΔS for the following phase change at 120°C. [3 pts]

Na (s) \rightarrow Na (l) melting point = 97.6°C

$\Delta G = \Delta H + \Delta S$

We are above the melting point for sodium, so the reaction is spontaneous (ΔG is negative). To melt a solid, heat must be supplied, so ΔH is positive. A liquid is more disordered than a solid, so ΔS is positive.