Chapter1 Introduction to Organic Chemistry:

What is organic chemistry?

Functional Groups in Organic Chemistry:
R means

Group	Structure	Comments
Alkanes	R-H	
Alkenes	$\mathrm{R}_{2} \mathrm{C}=\mathrm{CR}_{2}$	
Alkynes	$\mathrm{R}-\mathrm{C} \equiv \mathrm{C}-\mathrm{R}$	
Alkyl Halides	$\mathrm{R}-\mathrm{X} \mathrm{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{l}$	
Aromatics		
Alcohol	$\mathrm{R}-\mathrm{OH}$	
Ether	R-O-R	
Amine	$\mathrm{RNH}_{2}, \mathrm{R}_{2} \mathrm{NH}$, etc	
Aldehyde Ketone		
Ketone		
Carboxylic Acid		
Ester		
Amide Acyl Halide		
Acyl Halide		
Anhydride	R-C-O-C-R	
Nitrile	$\mathrm{R}-\mathrm{C} \equiv \mathrm{N}$	

Why study organic chemistry?

Organic Chemistry Interactive Notes by jim.maxka@nau.edu

Case Studies from the internet:

Case 1. Antibacterials in Soap.

Triclocarban (also called TCC, Cutisan, Solubacter, and trichlorocarbanilide) is a trivial name for 3-(4-chlorophenyl)- 1-(3,4-dichlorphenyl)urea:

Triclocarban. Click on the structures for a 3D Chime molecular model.

Cl

Triclosan. Click on the structures for a 3D Chime molecular model. consumer goods, including cosmetics, toothpaste, and utensils.

Neither substance is very soluble in water, but both are fat-soluble and easily cross cell membranes. Once inside the cell, triclosan poisons a specific enzyme that many bacteria and funguses need for survival $[2,3]$. Triclosan blocks the active site of an enzyme called enoyl-acyl carrier-protein reductase (ENR for short), preventing the bacteria from manufacturing fatty acids it needs for building cell membranes and other vital functions. Humans don't have this enzyme, so triclosan is harmless to them. One molecule of triclosan permanently disables an ENR molecule, which explains why triclosan has powerful antibiotic action even at very low concentrations. Triclocarban's structural similiarity suggests a similiar mode of action.

The highly specific way that triclosan kills has researchers concerned about its role in fostering antibioticresistant strains of bacteria [2]. Researchers have recently demonstrated that mutations in the bacterial gene that produces ENR can produce triclosan-resistant bacteria. Because triclosan is now so widespread in the environment, it's likely that new antibiotics targeting ENR would be ineffective.

From http://antoine.frostburg.edu/chem/senese/101/consumer/faq/triclosan.shtml

Case 2: Pharmaceuticals: New Antimalerial Drug

Artemisinine $\mathrm{MW}=282$
from http://www.artesunate.com/cqdf/7.htm
A cheap anti-malarial drug based on an ancient Chinese medicine is going into human trials in the United Kingdom. OZ, a synthetic peroxide, is believed to have similar mode-of-action as the most effective antimalarial drug currently available -- artemisinin, a herbal remedy based on the Artemisia annua plant. However, because of the costly and lengthy extraction process from the plant, artemisinins are at least ten times more expensive than the cheap standard antimalarials. Although artemisinin-based combination therapies (ACTs) are currently the best cure for drug resistant malaria, access to ACTs in disease endemic countries has been limited due to their cost. An effective synthetic drug would be superior to the current ACTs as it will not be dependent on the artemisia plant and will likely be much cheaper to manufacture.
From
http://www.scienceblog.com/community/article3690.html

Case 3: Sunscreen chemicals:

4-Methylbenzylidene camphor

Octyl methoxycinnamate

THERE ARE TWO basic types of active ingredients: inorganic and organic. Both afford protection against UV-B rays in the 280- to $320-\mathrm{nm}$ range, the primary culprits in sunburn. Some offer additional protection from UV-A rays in the $320-$ to $400-\mathrm{nm}$ range, which can penetrate more deeply into the skin and do greater long-term damage.
Inorganic sunscreens use titanium dioxide and zinc oxide. They work primarily by reflecting and scattering UV light. The organics include widely used ingredients such as octyl methoxycinnamate (OMC), 4methylbenzylidene camphor (4-MBC), avobenzone, oxybenzone, and homosalate. They work primarily by absorbing UV light and dissipating it as heat.
Recent scientific work by environmental toxicologist Margaret Schlumpf and colleagues at the University of Zurich's Institute of Pharmacology \& Toxicology suggests that OMC and 4-MBC--two widely used organic sunscreens--are potential endocrine disrupters. But industry research and government advisory committee reviews have disputed the work. The Food \& Drug Administration still approves OMC for use in the U.S., though it never approved 4-MBC. The European Union's Scientific Committee for Cosmetic Products \& Non-Food Products continues to approve OMC and 4-MBC.
From MARC REISCH, June 24, 2002 Volume 80, Number 25, CENEAR 8025 p. 38, ISSN 0009-2347 - web site: http://pubs.acs.org/cen/whatstuff/stuff/8025sunscreens.html

Case 4: Artificial Sweetners

Aspartame

Aspartame is synthesized from aspartic acid and phenylalanine. The body breaks down aspartame into these amino acids along with a small amount of methanol. Methanol is metabolized to formaldehyde and formic acid.
Formaldehyde is classified by the World Health Organization as a probable human carcinogen and is the major source of controversy over aspartame's safety.
However, Walters says, people with the rare genetic disorder phenylketonuria (PKU) lack an enzyme for properly metabolizing phenylalanine, so they need to regulate their aspartame intake. In the U.S., all products containing aspartame must, by law, carry a warning for PKU patients.

Neotame

Neotame, a new FDA-approved sweetener derived from aspartame, has a structure that prevents the peptide bond between phenylalanine and aspartic acid from breaking, making it safer for PKU patients.
By VICTORIA GILMAN, June 21, 2004, Volume 82, Number 25,p. 43, Chemical \& Engineering News, ISSN 0009-2347 Copyright © 2004 - web http://pubs.acs.org/cen/whatstuff/stuff/8225sweete ners.html

Orbitals and Bonding. Review of atomic orbitals.:
Draw an s orbital:
Nu

For the s orbital: Where is an electron likely to be found?
Draw the 3 p orbitals:

Nu
Nu
Nu

For p orbitals: Where is an electron likely be found? Where is an electron not likely be found? Which orbital is more stable? What is the meaning of expanded shells?

AUFBAU Principal:
Using s and p orbitals, we can describe most of the properties of the non-metallic atoms and some metals.
Let's get reacquainted around the periodic table:
The top row: $\begin{array}{cc}\mathrm{H} & \mathrm{He} \\ 1 \mathrm{~s} & 1 \mathrm{~s}\end{array}$
$\begin{array}{lcccccccc}\text { The main row: } \mathrm{Li} & \mathrm{Be} & \mathrm{B} & \mathrm{C} & \mathrm{N} & \mathrm{O} & \mathrm{F} & \mathrm{Ne} \\ {\left[1 s^{2}\right]} & 2 \mathrm{~s} & 2 \mathrm{~s} & 2 p & 2 p & 2 p & 2 p & 2 p & 2 p\end{array}$
The next row:

	Na	Mg	Al	Si	P	S	Cl	Ar
$\left[1 s^{2} 2 s^{2} 2 p^{6}\right]$	$3 s$	$3 s$	$3 p$					

Next: some metals: $\mathrm{Cr}, \mathrm{Mn}, \mathrm{Ni}, \mathrm{Cu}, \mathrm{Zn} \quad \mathrm{Br}$ $[A r] 4 s^{2} 3 d^{10} \quad 4 p$
Next: more metals: Pd, Ag, Sn I $[K r] 5 s^{2} 4 d^{10} \quad 5 p$
Finally: more metals: Os, $\mathrm{Pt}, \mathrm{Hg}, \mathrm{Pb}$
VALENCE and the Octet Rule: The number of electrons (Group \#) or the \# of deficient electrons to the closed shell (octet) will give an approximation of how many other atoms can be attached to this atom.
Go through the top row.
The main row.
The $3^{\text {rd }}$ row..
What are the main differences between the main row and the next row?
General Bonding Rules for neutral molecules.

Atom	H	B	C	N	O	$\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$
Bonds						
Examples						

This is simplified, we will look at charged molecules after Lewis Structures.

Lewis Structures:

Basic Concepts for drawing molecules correctly:

1. Total \# of electrons = Sum(\# of electrons from each atom) Anion => add ${ }^{--}$; Cation $=>$ subtract e-
2. Arrange atoms, unique atom almost always in the center.
3. Arrange electrons to make octets around all "main row" atoms. Row 3 can expand octets.
4. Match the electron count with total number of electrons and assign formal charge.
5. The least formal charge is the best structure. Other structures may be possible:

Resonance.
Electron counting. How many electrons? Then fill in the bonds and lone pairs.
H H
H
H
H C C H
H H

.
H

C \quad C
$\begin{array}{llll}\mathrm{H} & \mathrm{C} & \mathrm{C} & \mathrm{H}\end{array}$

H

Charged Molecules
General Bonding Rules for charged molecules.

Atom	H^{+}	$\mathrm{C}+$	C^{-}	N^{+}	N^{-}	O^{+}	O^{-}
Bonds							
Examples							

Consider these charged structures:
$\mathrm{O} \quad \mathrm{H}^{(+}$

C
H
H
H
H^{+})
N

C

H
H
H
We will consider individual atomic charges in the next chapter.
The first organic reaction. In the 1860's, a German chemist Friedrich Wöhler found that if he heated the salt, ammonium cyanate, he made something that smelled familiar. He verified it was what he thought it was.
Draw proper structures for the following reaction: $\mathrm{NH}_{4}^{+} \mathrm{OCN}^{-} \rightarrow \mathrm{H}_{2} \mathrm{NCONH}_{2}$

	H	\oplus			Θ		0			
						heat				
H	N	H	0	C	N		H	C		H
									N	
	H H H									

urea

Now some more application.
Draw lone pairs and bonds for these molecules.

Fusing valence bond theory and Lewis structures.
The simple neutral hydrogen forms of the elements:

Element	Compound	Element
H	O	Compound
Li	P	
Be	Al	
B	Si	
C	P (trivalent)	
N	P (pentavalent)	

Sigma and Pi bonds.

Sigma bonds form the framework of molecules.
Which of the following are sigma bonds?

Identify the sigma bonds in the structures above.
What happens when you break a sigma bond?

Pi bonds are formed outside the main framework of the molecule.
Which of the following are pi bonds?

Identify the pi bonds in the structures above. What happens when you break a pi bond?
Where do the terms sigma and pi bonds come from?
Using toothpicks and paper clips make some sigma and pi bonds.

Here is summary picture showing both sigma and pi bonds in ethylene.

graphic from http://home.att.net/~cat6a/carb bonds-I.htm
Pi Bonds Give Special Properties to Organic Molecules

atomic p orbitals above graphics from: http://invsee.asu.edu/nmodules/Carbonmod/pibond.html

Organic Chemistry Interactive Notes by jim.maxka@nau.edu Hybridization: a simple labeling system that explains molecular shape and reactivity. To assign hybridization count the number of areas of electron density around an atom. Because of the limitation of the octet rule: we consider the case of 2,3 and 4 areas. This leads to the possibility of 2,3 , or 4 bonds for C. Here are the energy levels of the $2^{\text {nd }}$ row.

Atomic orbitals in 2nd row

$2 p$

\qquad

2s

For 4 sigma bonds, we would need $s+p+p+p=s p^{3}$
Consequently, there would be the possibility of \qquad pi bonds.

For 3 sigma bonds, we would need $s+p+p=s p^{2}$ Consequently, there would be the possibility of \qquad pi bonds.

For 2 sigma bonds, we would need $s+p=s p$ Consequently, there would be the possibility of \qquad pi bonds.

Shapes can be predicted by the same theory. Count the areas of electron density around the following atoms A. These are the basic shapes. Linear 180°; trigonal planar 120°; tetrahedral 109.5^{0}.
$x-A-x$

Now for some real structures:

Note LP count as attachments (like sigma bonds)
Double/triple bonds don't count: only sigma bonds.
Figuring out hybridization is straight forward. For the $2^{\text {nd }}$ row, we have one $2 s$ orbital and $32 p$ type orbitals. $2 s$ is more stable than p, so it is always included in the new hybrid orbital. We use hybrids to describe bonding between 2 atoms, 3 atoms, and 4 atoms. Hybrid orbitals are just the mix of the s and the p orbitals.

Organic Chemistry Interactive Notes by jim.maxka@nau.edu For 4 attachments, $s+p+p+p$, called $s p^{3}$. All possible s and p orbitals are used. This is called saturated. For $s p^{3}$, we have 1 part s and 3 parts p.
The percentage of $s=$
The percentage of $p=$ \qquad .

Figure used with permission: http://www.cem.msu.edu/~reusch/VirtualText/intro3.htm\#strc8 Also see:http://alumni.imsa.edu/~ishmael/bonding/hy/sp3.html Describe the shape and structure of CH_{4}.

Describe the shape and structure of NH_{3}.

Describe the shape and structure of $\mathrm{H}_{2} \mathrm{O}$.
For 3 attachments, $s+p+p=$.
2 parts p and 1 part s. The percentage of $s=$ \qquad The percentage of $p=$ \qquad . σ bond (single bond)

Double bond

Figure used without permission:
http://chem.ufl.edu/~chm2040/Notes/Chapter 12/multiple.html
See also: http://alumni.imsa.edu/~ishmael/bonding/hy/sp2.html

Draw and describe the bonding in BH_{3}.

For 2 attachments, $s+p=$
2 parts p and 1 part s. The percentage of $s=$ \qquad The percentage of $p=$ \qquad .

sp hybridized carbon atoms
Figure used with permission: http://www.cem.msu.edu/~reusch/VirtualText/intro3.htm\#strc8 See also: http://alumni.imsa.edu/~ishmael/bonding/hy/sp2.html

Describe the bonding in $\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}$

Describe the bonding in $\mathrm{H}-\mathrm{C} \equiv \mathrm{N}$:
Describe the bonding in: $\mathrm{C} \equiv \mathrm{O}$:
The systematic consequences of hybridization.
Comparison of bond types. You need to know relative values.

Systematic name	Ethane	Ethene	Ethyne
Hybrid orbitals of C	$s p^{3}$	$s p^{2}$	$s p$
Structural formula	$\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{3}$	$\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}$	$\mathrm{H}-\mathrm{C}=\mathrm{C}-\mathrm{H}$
C-C Bondlength pm	154	134	120
C-H Bondlength pm	112	110	106
bond angle $(\mathrm{H}-\mathrm{C}-\mathrm{C})^{\circ}$	110	121	180
C-C BE kcal/mol	88	150	200
C-H BE kJcalmol	100	110	130

Indicate weak to strong. Indicate short to long?
H H
H
H
$\mathrm{H} \quad \mathrm{C} \quad \mathrm{C} \quad \mathrm{H}$
H H
H
c c
H
C
C $\quad \mathrm{H}$

H

Valence Bond Model of Molecular Bonding

Overlap of two half-filled Hydrogen 1s orbitals
 σ bond of H_{2}

Hybrid orbitals are very useful and are in the common language of organic chemistry. Valence bond orbitals are simple to understand. But neither of these models are mathematically correct. So, we need a better model.

Molecular Orbitals

Atomic orbitals come together to make molecular orbitals. Here are some basic rules:

1. Start with the atomic orbitals and electrons.
2. Sum of atomic orbitals and the \# of electrons. For every atomic orbital, there is a Molecular orbital. \# of electrons in the molecule = \# of electrons from atoms
3. Build the orbitals from most stable to least stable from bottom up.
4. Fill the electrons in the orbitals according to Hund's Rule using Pauli Exclusion Principle..
5. For neutral even number electron systems, there are as many filled orbitals as unfilled.

Construct an MO picture of H_{2}. Label the new orbitals drawn.
H ---- H
\qquad Bonding or anitbonding
H 1s \qquad

1s \qquad H

Bonding or anitbonding
H ---- H
Here is the MO diagram for the sigma and sigma* orbitals for H_{2}.

Graphic from: http://www.meta-synthesis.com/webbook/39 diatomics/diatomics.html

Bond order.
The bond order is based on the number of bonding orbitals (pi and sigma) minus the number of antibonding orbitals (pi* or sigma*).
H_{2} has a bond order = \qquad
Is H_{2} a stable molecule? Why or why not?

Next, we consider the situation with He_{2}.

Graphic from: http://www.meta-synthesis.com/webbook/39 diatomics/diatomics.html What is the bond order for He_{2} ?
Is He_{2} predicted to be stable or not?
Draw the MO diagram for $\mathrm{He}_{2}{ }^{++}$
 molecules with p orbitals, the highest energy occupied molecular orbitals (HOMO) is always a pi orbital and lowest energy unoccupied orbital (LUMO) is always pi*. There are many orbitals too stable to react. The reactive orbitals are classified as HOMO and LUMO.

How many orbitals are left out. Are they bonding?

Graphic modified from: http://www.meta-synthesis.com/webbook/39 diatomics/diatomics.html
Draw the Lewis Structure for ethylene.
H
H

C $\quad C$

H
H
How many sigma bonds?
How many pi bonds?
How do the VB and MO analyses differ?

1. Learn the functional groups. Make notecards. Review functional groups 2 times a week.
2. Have a clear idea of fhe difference of s and p orbitals in shape and energy.
3. Memorize the valence rules for neutral and charged atoms in the tables on pps.5-6.
4. Be able to draw simple Lewis Structures for neutral and charged molecules.
5. Have a clear idea of fhe difference of sigma and pi orbitals in shape and energy.
6. Be able to recognize and construct hybrid orbitals on $2^{\text {nd }}$ row elements.
7. Based on a Lewis structure, be able to determine the hybridization of atoms.
8. Rationalize how the properties of simple C-H compounds correspond to hybridization
9. Understand the difference between the valence bond and the molecular orbital model.
10. Be able to draw a simple molecular orbital structure of diatomic molecules.
11. Be able to assign sigma and pi orbitals from shapes and pictures.
12. Be able to predict the bond order of molecules and interpret the stability or instability of the bonds
13. Work problems from the back of the chapter 1 :
1.21-1.48 (if it gets too tedious, skip some of the multipart -a,b,c,etc.-)
