Multiplicity and symmetry of positive solutions to semi-linear elliptic problems with Neumann boundary conditions

Christophe Troestler
(Joint work with D. Bonheure & C. Grumiau)

Institut de Mathématique
Université de Mons

Variational and Topological Methods: Theory, Applications, Numerical Simulations, and Open Problems, June 6–9, 2012
The Lane-Emden problem

Let $\Omega \subseteq \mathbb{R}^N$ be open and bounded, $N \geq 2$, and $2 < p < 2^* := \frac{2N}{N-2}$. We consider

$$\begin{cases}
-\Delta u + u = |u|^{p-2}u, & \text{in } \Omega \\
\partial_\nu u = 0, & \text{on } \partial \Omega.
\end{cases}$$

Solutions are critical points of the functional

$$E_p : H^1(\Omega) \to \mathbb{R} : u \mapsto \frac{1}{2} \int_\Omega |\nabla u|^2 + u^2 - \frac{1}{p} \int_\Omega |u|^p$$

$$\partial E_p(u) : H^1(\Omega) \to \mathbb{R} : v \mapsto \int_\Omega \nabla u \nabla v + uv - \int_\Omega |u|^{p-2}uv$$

Notation: $1 = \lambda_1 < \lambda_2 < \cdots$ denote the eigenvalues of $-\Delta + 1$

E_i denote the corresponding eigenspaces

Remark: 0 is always a (trivial) solution.
Outline

1. $p \approx 2$: ground state solutions
2. $p \approx 2$: positive solutions
3. p large: symmetry breaking of the ground state
4. p large: bifurcations from 1
5. p large: multiplicity results (radial domains)
$p \approx 2$: ground state solutions

$\begin{align*}
-\Delta u + u &= |u|^{p-2}u \quad \text{in } \Omega, \\
 u &= 0 \quad \text{on } \partial \Omega.
\end{align*}$

- The ground state solution is positive and is even w.r.t. any hyperplane leaving Ω invariant (when Ω is convex). In particular, it is radially symmetric on a ball.

- Uniqueness of the positive solution when Ω is a ball.

- If Ω is strictly starshaped and $p \geq 2^*$, no solution exists.
Existence of ground state solutions \((p < 2^*)\)

Theorem (Z. Nehari, A. Ambrosetti, P.H. Rabinowitz)

For any \(p \in]2, 2^[, there exists a ground state solution to \((\mathcal{P}_p)\). It is a one-signed function.*

Sketch of the proof.

- The functional \(E_p\) possesses a mountain pass structure.
- \(\exists u_0 \neq 0, E_p(u_0) = \inf_{u \neq 0} \max_{\lambda > 0} E_p(\lambda u)\)
 \[= \inf_{u \in \mathcal{N}_p} E_p(u)\]
 where \(\mathcal{N}_p\) is the Nehari manifold of \(E_p\).
- For any sign-changing solution \(u\): if \(u^\pm \neq 0, u^\pm \in \mathcal{N}_p\) and \(E_p(u^\pm) < E_p(u)\), where \(u^\pm := \pm \max\{\pm u, 0\} \).
Theorem (D. Bonheure, V. Bouchez, C. Grumiau, C. T., J. Van Schaftingen, ’08)

For p close to 2 and any $R \in O(N)$ s.t. $R(\Omega) = \Omega$, ground state solutions to (\mathcal{P}_p) are symmetric w.r.t. R.

E.g. if Ω is radially symmetric, so must the ground state solution be.

Remark that the seminal method of moving planes is not applicable.
Uniqueness of the positive solution

Theorem

1 is the unique positive solution for p small.
Uniqueness of the positive solution

Theorem

1 is the unique positive solution for p small.

Let $v := P_{E_1} u_p$ (constant function) and $w := P_{E_1^\perp} u_p$.

\[\lambda_2 \int_{\Omega} w^2 \leq \int_{\Omega} |\nabla w|^2 + w^2 \]

\[= \int_{\Omega} |u_p|^{p-1} w = \int_{\Omega} ((v + w)^{p-1} - v^{p-1}) w \]

\[= \int_{\Omega} (p-1)(v + \vartheta_p w)^{p-2} w^2 \quad (\vartheta_p \in]0, 1[) \]

\[\leq (p-1)(|v| + \|w\|_{\infty})^{p-2} \int_{\Omega} w^2 \leq (p-1)K^{p-2} \int_{\Omega} w^2. \]

As $\lambda_1 = 1 < \lambda_2$, for $p \approx 2$, $w = 0$ and then $u_p = v = 1$.
A priori bounds for positive solutions

Lemma

Positive solutions (u_p) *are bounded in* L^∞ *as* $p \approx 2$.

- **Integration & Hölder:** $\int_\Omega u_p^{p-1} = \int_\Omega u_p \leq |\Omega|$ (recall $u_p > 0$).
- **Brezis-Strauss:** from the bound on $\int_\Omega u_p^{p-1}$, we deduce a bound on $\|u_p\|_{W^{1,q}(\Omega)}$, $1 \leq q < N/(N-1)$.
- **Sobolev embedding:** (u_p) bounded in $L^r(\Omega)$, $1 < r < N/(N-2)$.
- **Bootstrap:** $\|u_p\|_{W^{2,r}(\Omega)}$ is bounded for some $r > N/2$ when $p \approx 2$.
A priori bounds for positive solutions

Proposition

Let $2 < \bar{p} < 2^*$. There exists $C_{\bar{p}} > 0$ such that any positive solution to (P_p) with $2 < p \leq \bar{p}$ satisfies $\max\{||u||_{H^1}, ||u||_{L^\infty}\} \leq C_{\bar{p}}$.
A priori bounds for positive solutions

Proposition

Let \(2 < \bar{p} < 2^*\). There exists \(C_{\bar{p}} > 0\) such that any positive solution to \((P_p)\) with \(2 < p \leq \bar{p}\) satisfies \(\max\{\|u\|_{H^1}, \|u\|_{L^\infty}\} \leq C_{\bar{p}}\).

It remains to obtain a bound for \(2 < p < \bar{p} < 2^*\) in \(L^\infty\). Blow up argument (Gidas-Spruck). Suppose on the contrary that there is a sequence \((p_n) \subseteq [p, \bar{p}]\) and \((u_{p_n})\) s.t.

\[
u_{p_n}(x_{p_n}) := \|u_{p_n}\|_{L^\infty} \to +\infty \quad \text{and} \quad p_n \to p^* \in [p, \bar{p}].
\]

(Drop index \(n\).) Define

\[
u_p(y) := \mu_p u_p(\mu_p^{(p-2)/2}y + x_p)
\]

where \(\mu_p := 1/\|u_p\|_{L^\infty} \to 0\).

Note: \(\nu_p(0) = \|\nu_p\|_{L^\infty} = 1\).
A priori bounds for positive solutions

The rescaled function v_p satisfies

$$-\Delta v_p + \mu_p^{p-2} v_p = v_p^{p-1} \quad \text{on } \Omega_p := (\Omega - x_p) / \mu_p^{(p-2)/2}$$

with NBC. By elliptic regularity, (v_p) is bounded in $W^{2,r}$ and $C^{1,\alpha}$, $0 < \alpha < 1$ on any compact set. Thus, taking if necessary a subsequence,

$$v_n \to v^* \quad \text{in } W^{2,r} \text{ and } C^{1,\alpha} \quad \text{on compact sets of } \Omega^* = \mathbb{R}^N \text{ or } \mathbb{R}^{N-1} \times \mathbb{R}_{>a}.$$

One has $v^* \geq 0$, $v^*(0) = 1 = \|v\|_{L^\infty}$ and v^* satisfies

$$-\Delta v^* = (v^*)^{p^*-1} \quad \text{in } \mathbb{R}^N \quad \text{or} \quad \begin{cases} -\Delta v^* = (v^*)^{p^*-1} & \text{in } \mathbb{R}^{N-1} \times \mathbb{R}_{>a} \\ \partial_N v^* = 0 & \text{when } x_N = a \end{cases}$$

Liouville theorems imply $v^* = 0$.

\[\square\]
Theorem

As \(p \to 2^* \), least energy solutions go to 0 everywhere except around a single peak located at a point \(Q^* \in \partial \Omega \) where the boundary is most curved.
Corollary

1 cannot remain the ground state for all \(p \).
Corollary

1 cannot remain the ground state for all p.

Lemma

1 cannot remain the ground state solution for $p > 1 + \lambda_2$.

Proof. The Morse index of 1 is the sum of the dimension of the eigenspaces corresponding to negative eigenvalues λ of

$$\begin{cases}
-\Delta v + v = (p - 1)v + \lambda v, & \text{in } \Omega, \\
\partial_{\nu} v = 0, & \text{on } \partial\Omega.
\end{cases}$$

i.e. eigenvalues of $-\Delta + 1$ less than $p - 1$. When $p > 1 + \lambda_2$, the Morse index of the solution 1 is > 1.
p large: symmetry breaking of the ground state

Proposition (Lopez, ’96)

On radial domains, the ground state is either constant or (e.g. when $p > 1 + \lambda_2$) not radially symmetric.
\(p \) large: symmetry breaking of the ground state

Proposition (Lopez, ’96)

On radial domains, the ground state is either constant or (e.g. when \(p > 1 + \lambda_2 \)) not radially symmetric.

Proposition

When \(\Omega \) is a ball or an annulus, the Morse index of a non-constant positive radial solution is at least \(N + 1 \).

Based on: A. Aftalion, F. Pacella, Qualitative properties of nodal solutions of semilinear elliptic equations in radially symmetric domains, CRAS, 339(5), ’04.

Let \(u \) be non-constant positive radial solution of \((P_p)\). We have to show that

\[
L v := -\Delta v + v - (p - 1)|u|^{p-2} v
\]

with NBC possesses \(N + 1 \) negative eigenvalues.
p large: symmetry breaking of the ground state

u radial $\Rightarrow \partial_{x_i} u = 0$ on $\partial \Omega$ and on Ω_i.

\[\Omega_i^- \quad \Omega_i^+ \]
\[x_i \]
\(p \) large: symmetry breaking of the ground state

\[u \text{ radial} \Rightarrow \partial_{x_i} u = 0 \text{ on } \partial \Omega \text{ and on } \Omega_i. \]

Let \(\bar{x} \in \Omega_i^+ \text{ s.t. } \partial_{x_i} u(\bar{x}) \neq 0. \text{ Let } D \text{ be the connected component of } \{\partial_{x_i} u(\bar{x}) \neq 0\} \text{ containing } \bar{x}. \ D \subseteq \Omega_i^+. \]
p large: symmetry breaking of the ground state

u radial $\Rightarrow \partial_{x_i} u = 0$ on $\partial \Omega$ and on Ω_i.

Let $\bar{x} \in \Omega_i^+$ s.t. $\partial_{x_i} u(\bar{x}) \neq 0$. Let D be the connected component of $\{\partial_{x_i} u(\bar{x}) \neq 0\}$ containing \bar{x}. $D \subseteq \Omega_i^+$.

$L(\partial_{x_i} u) = 0$, on D; \quad $\partial_{x_i} u = 0$, on ∂D.

\[
\begin{align*}
\Omega_i^- & \quad \Omega_i^+ \\
D & \quad x_i
\end{align*}
\]
p large: symmetry breaking of the ground state

\(u \) radial \(\Rightarrow \partial_{x_i} u = 0 \) on \(\partial \Omega \) and on \(\Omega_i \).

Let \(\bar{x} \in \Omega_i^+ \) s.t. \(\partial_{x_i} u(\bar{x}) \neq 0 \). Let \(D \) be the connected component of \(\{ \partial_{x_i} u(\bar{x}) \neq 0 \} \) containing \(\bar{x} \). \(D \subseteq \Omega_i^+ \).

\[
L(\partial_{x_i} u) = 0, \quad \text{on} \ D; \quad \partial_{x_i} u = 0, \quad \text{on} \ \partial D.
\]

\[\Rightarrow \lambda_1(L, D, \text{DBC}) = 0\]

\[\Rightarrow \lambda_1(L, \Omega_i^+, \text{DBC}) \leq 0\]
\(p \) large: symmetry breaking of the ground state

\(u \) radial \(\Rightarrow \partial_{x_i} u = 0 \) on \(\partial \Omega \) and on \(\Omega_i \).
Let \(\bar{x} \in \Omega_i^+ \) s.t. \(\partial_{x_i} u(\bar{x}) \neq 0 \). Let \(D \) be the connected component of \(\{ \partial_{x_i} u(\bar{x}) \neq 0 \} \) containing \(\bar{x} \). \(D \subseteq \Omega_i^+ \).

\[
L(\partial_{x_i} u) = 0, \quad \text{on } D; \quad \partial_{x_i} u = 0, \quad \text{on } \partial D.
\]

\(\Rightarrow \lambda_1(L, D, \text{DBC}) = 0 \)

\(\Rightarrow \lambda_1(L, \Omega_i^+, \text{DBC}) \leq 0 \)

\(\Rightarrow \mu_i := \lambda_1(L, \Omega_i^+, \text{DBC on } \Omega_i \text{ and NBC on } \partial \Omega_i^+ \setminus \Omega_i) < 0 \)
p large: symmetry breaking of the ground state

u radial $\Rightarrow \partial_{x_i} u = 0$ on $\partial \Omega$ and on Ω_i.

Let $\bar{x} \in \Omega_i^+$ s.t. $\partial_{x_i} u(\bar{x}) \neq 0$. Let D be the connected component of $\{\partial_{x_i} u(\bar{x}) \neq 0\}$ containing \bar{x}. $D \subseteq \Omega_i^+$.

$$L(\partial_{x_i} u) = 0, \quad \text{on } D; \quad \partial_{x_i} u = 0, \quad \text{on } \partial D.$$

$\Rightarrow \lambda_1(L, D, \text{DBC}) = 0$

$\Rightarrow \lambda_1(L, \Omega_i^+, \text{DBC}) \leq 0$

$\Rightarrow \mu_i := \lambda_1(L, \Omega_i^+, \text{DBC on } \Omega_i \text{ and NBC on } \partial \Omega_i^+ \setminus \Omega_i) < 0$

If $\psi_i > 0$ is the first eigenfunction of L on Ω_i^+ with DBC on Ω_i and NBC on $\partial \Omega_i^+ \setminus \Omega_i$, its odd extension ψ_i^* to Ω satisfies

$$L(\psi_i^*) = \mu_i \psi_i^*, \quad \text{on } \Omega, \quad \partial_{\nu} \psi_i^* = 0, \quad \text{on } \partial \Omega.$$
p large: symmetry breaking of the ground state

u radial $\Rightarrow \partial_{x_i} u = 0$ on $\partial \Omega$ and on Ω_i.

Let $\bar{x} \in \Omega_i^+$ s.t. $\partial_{x_i} u(\bar{x}) \neq 0$. Let D be the connected component of $\{\partial_{x_i} u(\bar{x}) \neq 0\}$ containing \bar{x}. $D \subseteq \Omega_i^+$.

$$L(\partial_{x_i} u) = 0, \quad \text{on } D; \quad \partial_{x_i} u = 0, \quad \text{on } \partial D.$$

$\Rightarrow \lambda_1(L, D, \text{DBC}) = 0$

$\Rightarrow \lambda_1(L, \Omega_i^+, \text{DBC}) \leq 0$

$\Rightarrow \mu_i := \lambda_1(L, \Omega_i^+, \text{DBC on } \Omega_i \text{ and NBC on } \partial \Omega_i^+ \setminus \Omega_i) < 0$

If $\psi_i > 0$ is the first eigenfunction of L on Ω_i^+ with DBC on Ω_i and NBC on $\partial \Omega_i^+ \setminus \Omega_i$, its odd extension ψ_i^* to Ω satisfies

$$L(\psi_i^*) = \mu_i \psi_i^*, \quad \text{on } \Omega, \quad \partial \nu \psi_i^* = 0, \quad \text{on } \partial \Omega.$$

All $\psi_j^*, j \neq i$ vanish on the axis $x_i \Rightarrow$ the family $(\psi_j^*)_{j=1}^N$ is lin. indep.
\(p \) large: symmetry breaking of the ground state

\(u \) radial \(\Rightarrow \partial_{x_i} u = 0 \) on \(\partial \Omega \) and on \(\Omega_i \).

Let \(\bar{x} \in \Omega_i^+ \) s.t. \(\partial_{x_i} u(\bar{x}) \neq 0 \). Let \(D \) be the connected component of \(\{ \partial_{x_i} u(\bar{x}) \neq 0 \} \) containing \(\bar{x} \). \(D \subseteq \Omega_i^+ \).

\[
L(\partial_{x_i} u) = 0, \quad \text{on } D; \quad \partial_{x_i} u = 0, \quad \text{on } \partial D.
\]

\(\Rightarrow \lambda_1(L, D, \text{DBC}) = 0 \)

\(\Rightarrow \lambda_1(L, \Omega_i^+, \text{DBC}) \leq 0 \)

\(\Rightarrow \mu_i := \lambda_1(L, \Omega_i^+, \text{DBC on } \Omega_i \text{ and NBC on } \partial \Omega_i^+ \setminus \Omega_i) < 0 \)

If \(\psi_i > 0 \) is the first eigenfunction of \(L \) on \(\Omega_i^+ \) with DBC on \(\Omega_i \) and NBC on \(\partial \Omega_i^+ \setminus \Omega_i \), its odd extension \(\psi_i^* \) to \(\Omega \) satisfies

\[
L(\psi_i^*) = \mu_i \psi_i^*, \quad \text{on } \Omega, \quad \partial_v \psi_i^* = 0, \quad \text{on } \partial \Omega.
\]

All \(\psi_j^*, j \neq i \) vanish on the axis \(x_i \) \(\Rightarrow \) the family \((\psi_j^*)_{j=1}^N \) is lin. indep.

None of the \((\psi_j^*)_{j=1}^N \) is a first eigenfunction.
p large: symmetry breaking of the ground state

Theorem (Lopes, ’96)

On radial domains, ground state solutions are symmetric w.r.t. any hyperplane containing a line L passing through the origin.

Theorem (J. Van Schaftingen, ’04)

On radial domains, ground state solutions are foliated Schwarz symmetric.

There exists a unit vector d s.t. u depends only on $r = |x|$ and $\vartheta = \arccos(\frac{x}{|x|} \cdot d)$ and is non-increasing in ϑ.
$p \approx 2$: ground state solutions
$p \approx 2$: positive solutions
Symmetry breaking
Bifurcations
Multiplicity

p large: non radially symmetric ground state

For $p = 5.5$, $p = 6.5$, and $p = 8$, the non-radially symmetric ground states are illustrated. Each figure shows a 3D plot of the ground state solution for different values of p. The accompanying 2D plots demonstrate the non-radial symmetry of these solutions.
Symmetry breaking at exactly $p = 1 + \lambda_2$?

The linearisation of the equation around $u = 1$,

$$Lv := -\Delta v + v - (p - 1)v$$

is not invertible iff $p = 1 + \lambda_i, \ i \geq 2$.
Symmetry breaking at exactly $p = 1 + \lambda_2$?

The linearisation of the equation around $u = 1$,

$$Lv := -\Delta v + v - (p - 1)v$$

is not invertible iff $p = 1 + \lambda_i, \ i \geq 2$.

Eigenfunctions of $-\Delta + 1$ with NBC have the form:

$$u(x) = r^{-\frac{N-2}{2}} J_{\nu}(\sqrt{\mu}r) P_k\left(\frac{x}{|x|}\right), \quad \text{where} \ \nu = k + \frac{N-2}{2},$$

$r = |x|$, and $P_k : \mathbb{R}^N \to \mathbb{R}$ is an harmonic homogenous polynomial of degree k for some $k \in \mathbb{N}$. To satisfy the boundary conditions:

$$\sqrt{\mu}R \text{ is a root of } z \mapsto (k - \nu)J_{\nu}(z) + z\partial J_{\nu}(z) = kJ_{\nu}(z) - zJ_{\nu+1}(z).$$

$$\Rightarrow \lambda_i = 1 + \mu$$
Symmetry breaking at exactly $p = 1 + \lambda_2$?

In particular, a basis of E_2 is

$$x \mapsto r^{-\frac{N-2}{2}} J_{N/2}(\sqrt{\mu}r) \frac{x_j}{|x|}, \quad j = 1, \ldots, N.$$

There is single function (up to a multiple) that is invariant under rotation in (x_2, \ldots, x_N).
Symmetry breaking at exactly $p = 1 + \lambda_2$?

In particular, a basis of E_2 is

$$x \mapsto r^{-\frac{N-2}{2}} J_{N/2}(\sqrt{\mu} r) \frac{x_j}{|x|}, \quad j = 1, \ldots, N.$$

There is single function (up to a multiple) that is invariant under rotation in (x_2, \ldots, x_N).

Theorem (Ambrosetti-Prodi)

Let X and Y two Banach spaces, $u^* \in X$, and a function $F : \mathbb{R} \times X \rightarrow Y : (p, u) \mapsto F(p, u)$ such that $\forall p \in \mathbb{R}, F(p, u^*) = 0$. Let $p^* \in \mathbb{R}$ be such that $\ker(\partial_u F(p^*, u^*)) = \text{span}\{\varphi^*\}$ has a dimension 1 and $\text{codim}(\text{Im}(\partial_u F(p^*, u^*))) = 1$. Let $\psi : Y \rightarrow \mathbb{R}$ be a continuous linear map such that $\text{Im}(\partial_u F(p^*, u^*)) = \{y \in Y : \langle \psi, y \rangle = 0\}$.

Christophe Troestler (UMONS)
Symmetries and symmetry breaking of solutions with NBC
June 6–9, 2012
18 / 36
Symmetry breaking at exactly \(p = 1 + \lambda_2 \)?

Theorem (Ambrosetti-Prodi (cont’d))

If \(a := \langle \psi, \partial_{p,u} F(p^*, u^*)[\varphi^*] \rangle \neq 0 \), then \((p^*, u^*)\) is a bifurcation point for \(F \). In addition, the set of non-trivial solutions of \(F = 0 \) around \((p^*, u^*)\) is given by a unique \(C^1 \) curve \(p \mapsto u_p \). The local behavior of the branch \((p, u_p)\) for \(p \) close to \(p^* \) is as follows.

- If \(b := -\frac{1}{2a} \langle \psi, \partial_{u}^2 F(p^*, u^*)[\varphi^*, \varphi^*] \rangle \neq 0 \) then the branch is transcritical and

\[
 u_p = u^* + \frac{p - p^*}{b} \varphi^* + o(p - p^*).
\]

\[
 u \uparrow
\]

\[
 p^* \quad p
\]
Symmetry breaking at exactly $p = 1 + \lambda_2$?

Theorem (Ambrosetti-Prodi (cont’d))

If $a := \langle \psi, \partial_{p,u} F(p^*, u^*)[\varphi^*] \rangle \neq 0$, then (p^*, u^*) is a bifurcation point for F. In addition, the set of non-trivial solutions of $F = 0$ around (p^*, u^*) is given by a unique C^1 curve $p \mapsto u_p$. The local behavior of the branch (p, u_p) for p close to p^* is as follows.

- If $b := -\frac{1}{2a} \langle \psi, \partial_{u}^2 F(p^*, u^*)[\varphi^*, \varphi^*] \rangle \neq 0$ then the branch is transcritical and

 $$u_p = u^* + \frac{p - p^*}{b} \varphi^* + o(p - p^*).$$

In our case,

$$a = -\int_\Omega \varphi_2^2 = -1 \quad \text{and} \quad b = -\frac{1}{2} \lambda_2 (\lambda_2 - 1) \int_\Omega \varphi_2^3 = 0.$$
Symmetry breaking at exactly \(p = 1 + \lambda_2 \)?

Theorem (Ambrosetti-Prodi (cont’d))

- If \(b = 0 \), let us define

\[
c := -\frac{1}{6a} \left(\langle \psi, \partial_u F(p^*, u^*)[\varphi^*, \varphi^*, \varphi^*] \rangle
+ 3 \langle \psi, \partial_u^2 F(p^*, u^*)[\varphi^*, w] \rangle \right)
\]

where \(w \in X \) is any solution of the equation

\[
\partial_u F(p^*, u^*)[w] = -\partial_u^2 F(p^*, u^*)[\varphi^*, \varphi^*].
\]

If \(c \neq 0 \) then

\[
u_p = u^* \pm \left(\frac{p - p^*}{c} \right)^{1/2} \varphi^* + o(|p - p^*|^{1/2}).
\]

In particular, the branch is supercritical if \(c > 0 \) and subcritical if \(c < 0 \).
Symmetry breaking at exactly $p = 1 + \lambda_2$?

In our case,

$$c = \frac{1}{6} \lambda_2(\lambda_2 - 1) \left(- (\lambda_2 - 2) \int_{B_R} \varphi_2^4 - 3 \lambda_2 (\lambda_2 - 1) \int_{B_R} \varphi_2^2 w \right)$$

where $(-\Delta + 1 - \lambda_2)w = \varphi_2^2$ with NBC on B_R.

Symmetry breaking at exactly $p = 1 + \lambda_2$?

In our case,

$$c = \frac{1}{6} \lambda_2 (\lambda_2 - 1) (- (\lambda_2 - 2) \int_{B_R} \varphi_2^4 - 3 \lambda_2 (\lambda_2 - 1) \int_{B_R} \varphi_2^2 w)$$

where $(-\Delta + 1 - \lambda_2) w = \varphi_2^2$ with NBC on B_R.

$$= \frac{1}{6} \bar{\mu}_2 R^{-(N+2)} (1 + \bar{\mu}_2 \frac{R^2}{\bar{\mu}_2}) \left((\beta - \alpha) \frac{\bar{\mu}_2}{R^2} + \beta + \alpha \right)$$

where $\alpha := \int_{B_1} \bar{\varphi}_2^4$, $\beta := -3 \bar{\mu}_2 \int_{B_1} \bar{\varphi}_2^2 \bar{w}$,

$$(-\Delta - \bar{\mu}_2) \bar{w} = \bar{\varphi}_2^2$$

with NBC on B_1,

$\bar{\varphi}_2$ and $\bar{\mu}_2 > 0$ are the second eigenfunction and eigenvalue of $-\Delta$ with NBC on B_1 s.t. $|\bar{\varphi}_2|_{L^2} = 1$.
Symmetry breaking at exactly $p = 1 + \lambda_2$?

We numerically have

<table>
<thead>
<tr>
<th>N</th>
<th>α</th>
<th>β</th>
<th>$\beta - \alpha$</th>
<th>$\beta + \alpha$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.5577</td>
<td>0.5884</td>
<td>0.0306</td>
<td>1.1461</td>
</tr>
<tr>
<td>3</td>
<td>0.4632</td>
<td>0.3096</td>
<td>-0.1536</td>
<td>0.7728</td>
</tr>
<tr>
<td>4</td>
<td>0.4222</td>
<td>0.1694</td>
<td>-0.2528</td>
<td>0.5916</td>
</tr>
<tr>
<td>5</td>
<td>0.4171</td>
<td>0.0858</td>
<td>-0.3313</td>
<td>0.5029</td>
</tr>
<tr>
<td>6</td>
<td>0.4421</td>
<td>0.0250</td>
<td>-0.4171</td>
<td>0.4671</td>
</tr>
</tbody>
</table>
Symmetry breaking at exactly \(p = 1 + \lambda_2 \) ?

Conjecture

When \(R \) is large enough or \(N = 2, 1 \) is the ground state of

\[
(P_p) \begin{cases}
-\Delta u + u = |u|^{p-2}u, & \text{in } B_R \\
\partial_\nu u = 0, & \text{on } \partial B_R.
\end{cases}
\]

iff \(p \leq 1 + \lambda_2 \).
Lemma

When \(p > 2 \) is increasing,

1. a bifurcation sequence start from 1 \(\text{iff} \) \(p \) crosses \(1 + \lambda_i \);
2. this is actually a continuum if \(\lambda_i \) has odd multiplicity.
Krasnoselskii-Boehme-Marino theorem (1/2)

Theorem (Krasnoselskii-Boehme-Marino)

Let $F : I \times H \to K : (t, u) \mapsto F(t, u)$ be a continuous function, where $I \subseteq \mathbb{R}$ is an interval, and H and K are Banach spaces, such that $F(\lambda, 0) = 0$ for any $\lambda \in I$.

- If F is of class C^1 in a neighborhood of $(\lambda, 0)$ and $(\lambda, 0)$ is a bifurcation point of F then $\partial_u F(\lambda, 0)$ is not invertible.
- Let assume that for each $(\lambda, u) \in I \times H$,

$$F(\lambda, u) = L(\lambda, u) - N(\lambda, u), \quad L(\lambda, \cdot) = \lambda 1 - T \quad \text{and} \quad N(\lambda, u) = o(\|u\|),$$

with T linear, T and N compact, and the last equality being uniform on each compact set of λ.

If λ_* is an eigenvalue of T with odd multiplicity, then $(\lambda_*, 0)$ is a global bifurcation point for $F(t, u) = 0$.

Krasnoselskii-Boehme-Marino theorem (2/2)

Theorem (Krasnoselskii-Boehme-Marino (cont’d))

Let assume that H is a Hilbert space and that for each $(\lambda, u) \in I \times \mathbb{R}$, $F(\lambda, u) = \nabla_u h(\lambda, u)$ where

$$h(\lambda, u) = \frac{1}{2} \langle L(\lambda, u), u \rangle - g(\lambda, u),$$

$$L(\lambda, \cdot) = \lambda I - T,$$

and

$$\nabla g(\lambda, u) = o(\|u\|),$$

with T linear and symmetric, $g(\lambda, \cdot) \in C^2$ for all λ, and the last equality being uniform on each compact set of λ.

If λ_* is an eigenvalue of T with finite multiplicity and $h(\lambda, \cdot)$ verifies the Palais-Smale condition for each λ, then $(\lambda_*, 0)$ is a bifurcation point for $F(t, u) = 0$.
p large: transcritical radial bifurcations

$\lambda_{i,\text{rad}}$ eigenvalues that possess a radial eigenfunction (simple in H^1_{rad}).

Proposition

On balls, two branches radial solutions in $C^{2,\alpha}(\Omega)$ of

$$
(P_p) \begin{cases}
-\Delta u + u = |u|^{p-2}u, & \text{in } \Omega \\
\partial_{\nu} u = 0, & \text{on } \partial \Omega.
\end{cases}
$$

start from each $(p, u) = (1 + \lambda_{i,\text{rad}}, 1)$, $i > 1$. Locally, these branches form a unique C^1-curve. Moreover, for i large enough independent of the measure of Ω, the bifurcation is **transcritical**.
Proof. \(\Omega = B_R \). Using Ambrosetti-Prodi theorem, one has to show

\[
b = -\frac{1}{2} \lambda_i (\lambda_i - 1) \int_{B_R} \varphi_{i,\text{rad}}^3 \neq 0.
\]

Given that radial eigenfunctions are given by constant spherical harmonics \((k = 0, \nu = (N - 2)/2) \), this amounts to

\[
\int_0^R \left(r^{-\frac{N-2}{2}} J_\nu(r \sqrt{\bar{\mu}_{i,\text{rad}}}/R) \right)^3 r^{N-1} \, dr \neq 0 \quad \text{i.e.} \quad \int_0^\infty t^{1-\nu} J_\nu^3(t) \, dt \neq 0
\]

where \(\lambda_{i,\text{rad}} = 1 + \bar{\mu}_{i,\text{rad}}/R^2 \). This is true for large \(i \) because

\[
\int_0^\infty t^{1-\nu} J_\nu^3(t) \, dt = \frac{2^{\nu-1} (3/16)^{\nu-1/2}}{\pi^{1/2} \Gamma(\nu + 1/2)} > 0.
\]
Numerical computations indicate that

\[\forall z \in]0, +\infty[, \quad \int_0^z t^{1-\nu} J_\nu^3(t) \, dt > 0, \quad \nu = (N-2)/2, \]

and therefore that radial bifurcations are transcritical for all \(i \).
Corollary

The branches consist of positive functions.

Sketch: If it was not the case, there would be a point solution along the branch with a double root, hence $= 0$. There is no bifurcation from 0.
p large: positive transcritical radial bifurcations

Corollary

The branches consist of positive functions.

Sketch: If it was not the case, there would be a point solution along the branch with a double root, hence $= 0$. There is no bifurcation from 0. □

Theorem

Radial bifurcations obtained for the $C^{2,\alpha}(\Omega)$-norm are unbounded and do not intersect each other. Moreover, along bifurcations starting from $(1 + \lambda_{i,\text{rad}}, 1)$, the solutions always possess the same number of intersections with 1.

Sketch: The number of crossings with 1 stays constant because otherwise a non-constant radial solution u s.t. $u - 1$ has a double root would exists. Since the branches do not intersect each other, Rabinowitz’s principle says they must be undounded.
p large: multiplicity results (radial domains)

Theorem

Assume Ω is a ball.

- In dimension 2, for any $n \in \mathbb{N}_0$, there exists $p_n > 2$ such that, for any $p > p_n$, at least n positive solutions exist.
- In dimension ≥ 3, for any $2 < p < 2^*$ and $n \in \mathbb{N}_0$, at least n different positive solutions exist if the measure of the ball Ω is large enough.
p large: multiplicity results (radial domains)

Theorem

Assume Ω is a ball.

- In dimension 2, for any $n \in \mathbb{N}_0$, there exists $p_n > 2$ such that, for any $p > p_n$, at least n positive solutions exist.

- In dimension ≥ 3, for any $2 < p < 2^*$ and $n \in \mathbb{N}_0$, at least n different positive solutions exist if the measure of the ball Ω is large enough.

Theorem

On balls, there exists a degenerate positive radial solution for some p provided that the measure of Ω is large enough.
\[p \geq 2^* \]

Theorem (Serra & Tilli, ’11)

Assume \(a \in L^1(]0, R[) \) is increasing, not constant and satisfies \(a > 0 \) in \(]0, R[\), then for any \(p \in]2, +\infty[\), \(-\Delta u + u = a(|x|)|u|^{p-2}u \) with NBC possesses a positive radially increasing solution.

Trick: work on the space of radially increasing functions.
Proposition

Assume Ω is a ball of radius R. If u is a radial solution of (P_p) such that $u(0) < 1$, then $\|u\|_{L^\infty} \leq \exp(1/2)$.
Proposition

Assume \(\Omega \) is a ball of radius \(R \). If \(u \) is a radial solution of \((P_p)\) such that \(u(0) < 1 \), then \(\|u\|_{L^\infty} \leq \exp(1/2) \).

Proof. In radial coordinates, the equation writes

\[
-u'' - \frac{N - 1}{r} u' + u = u^{p-1}.
\]

Multiplying by \(u' \), we get

\[
\frac{d}{dr} h(r) = - \frac{N - 1}{r} u'^2(r) \leq 0,
\]

where

\[
h(r) := \frac{u'^2(r)}{2} + \frac{u^p(r)}{p} - \frac{u^2(r)}{2}.
\]

In particular, this means that \(h(r) \leq h(0) \) for any \(r \).
\(p \geq 2^* \)

Proof (cont’d). The assumption \(u(0) < 1 \) implies

\[
h(0) = \frac{u^p(0)}{p} - \frac{u^2(0)}{2} = u^2(0)\left(\frac{u^{p-2}(0)}{p} - \frac{1}{2} \right) \leq 0.
\]

Thus

\[
\|u\|_{L^\infty} \leq \left(\frac{p}{2} \right)^{1/(p-2)} \leq \exp(1/2).
\]

\(\square \)
\(p \geq 2^* \)

Theorem

Assume \(\Omega \) is a ball. Then, for any \(n \in \mathbb{N}_0 \), there exists \(p_n \) s.t., for any \(p \in [p_n, +\infty[\), \((\mathcal{P}_p)\) has at least \(n \) positive radially symmetric solutions.
$p \geq 2^*$

Theorem

Assume Ω is a ball. Then, for any $n \in \mathbb{N}_0$, there exists p_n s.t., for any $p \in [p_n, +\infty[$, (\mathcal{P}_p) has at least n positive radially symmetric solutions.

Sketch: Radial bifurcations are transcritical, thus, as $p \approx 1 + \lambda_{i,\text{rad}},$

$$u_p = 1 + \frac{p - 1 - \lambda_{i,\text{rad}}}{b} \varphi_{i,\text{rad}} + o(p - 1 - \lambda_{i,\text{rad}}).$$

Along the left or right branch $u_p(0) < 1$. This latter property persists along the whole branch. Thus all u belonging to that branch must satisfy $\|u\|_{L^\infty} \leq \exp(1/2)$. Since 1 is the only solution for $p \approx 2$, the branch must exist for all p large. □
| $p \approx 2$: ground state solutions | $p \approx 2$: positive solutions | Symmetry breaking | Bifurcations | Multiplicity |

Thank you for your attention.