case

The proof

The

Nonexistence

The and

Elliptic boundary value problems with critical and supercritical nonlinearities. Part 2.

Mónica Clapp

Universidad Nacional Autónoma de México

Flagstaff, June 2012

The end

Introduction

The problem

• We consider the problem

$$(\wp_p)$$
 $\begin{cases} -\Delta u = |u|^{p-2} u & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}$

where

The supercritic

Nonexistence Existence

The end

Introduction

The problem

• We consider the problem

$$(\wp_p)$$
 $\begin{cases} -\Delta u = |u|^{p-2} u & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}$

where

• $\Omega \subset \mathbb{R}^N$ is a bounded smooth domain, $N \geq 3$,

The supercrit

Nonexistence

The end

Introduction

The problem

• We consider the problem

$$(\wp_p) \quad \left\{ \begin{array}{ll} -\Delta u = |u|^{p-2} u & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{array} \right.$$

where

- $\Omega \subset \mathbb{R}^N$ is a bounded smooth domain, $N \geq 3$,
- $p = 2^* := \frac{2N}{N-2}$ is the critical Sobolev exponent and

The end

Introduction

The problem

• We consider the problem

$$(\wp_p) \quad \left\{ \begin{array}{ll} -\Delta u = |u|^{p-2} u & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{array} \right.$$

where

- $\Omega \subset \mathbb{R}^N$ is a bounded smooth domain, $N \geq 3$,
- $p = 2^* := \frac{2N}{N-2}$ is the critical Sobolev exponent and
- $p > 2^*$ is supercritical.

The proof

The supercritic

Nonexistend

The end

Coauthors

Jorge Faya (Universidad Nacional Autónoma de México)

Angela Pistoia (Università di Roma "La Sapienza")

The end

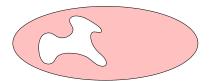
The critical case

The Bahri-Coron theorem

• Bahri-Coron, 1988: If $\tilde{H}_*(\Omega;\mathbb{Z}/2) \neq 0$, then

$$\left(\wp_{2^*,\Omega}\right) \quad \left\{ egin{array}{ll} -\Delta u = \left|u
ight|^{2^*-2} u & ext{in } \Omega, \\ u = 0 & ext{on } \partial\Omega, \end{array}
ight.$$

has a positive solution.



The en

The critical case

The Bahri-Coron theorem

• Bahri-Coron, 1988: If $\tilde{H}_*(\Omega;\mathbb{Z}/2) \neq 0$, then

$$\left(\wp_{2^*,\Omega}\right) \quad \left\{ egin{array}{ll} -\Delta u = \left|u
ight|^{2^*-2} u & ext{in } \Omega, \\ u = 0 & ext{on } \partial\Omega, \end{array}
ight.$$

has a positive solution.

Problem

Are there multiple solutions in general domains (which are not small perturbations of a given one)?

Nonexistence

The end

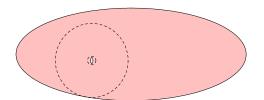
The critical case

Another look at Coron's theorem

• Coron, 1984: If Ω is annular-shaped, i.e.

$$\Omega \supset \{x : 0 < a \le |x| \le b\}, \qquad 0 \notin \Omega,$$

and $\frac{b}{a}$ is large enough, then $(\wp_{2^*,\Omega})$ has a positive solution.



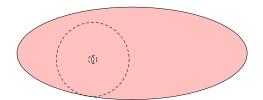
The critical case

Another look at Coron's theorem

• Coron, 1984: If Ω is annular-shaped, i.e.

$$\Omega \supset \{x : 0 < a \le |x| \le b\}, \qquad 0 \notin \Omega,$$

and $\frac{b}{a}$ is large enough, then $(\wp_{2^*,\Omega})$ has a positive solution.



 The solution, as well as those of Ge-Musso-Pistoia, look like radial solutions in the annulus. Nonexisten

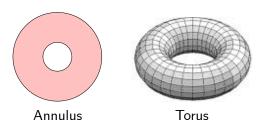
Existence

The end

The critical case

Highly symmetric domains

 Recall that in symmetric domains with infinite orbits, like the following ones



there are infinitely many solutions.

The

supercritic problem

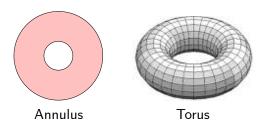
Existence

The end

The critical case

Highly symmetric domains

 Recall that in symmetric domains with infinite orbits, like the following ones



there are infinitely many solutions.

• **QUESTION:** Is it true that, if Ω contains a domain of this type, problem $(\wp_{2^*,\Omega})$ has multiple solutions?

The critical

Case The pro

Tile pro

supercritic

Nonexisten Existence

The end

The critical case

Multiplicity in domains with finite symmetries

Given

Mónica Clapp

Introduction

The critical

case

The proof

The supercritic

Nonexistend

The end

The critical case

Multiplicity in domains with finite symmetries

- Given
 - ullet a closed subgroup Γ of O(N),

Nonexistence

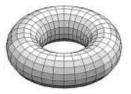
Existence

The end

The critical case

Multiplicity in domains with finite symmetries

- Given
 - a closed subgroup Γ of O(N),
 - a bounded Γ -inv. domain D s.t. $\#\Gamma x = \infty$ for all $x \in D$.



Torus

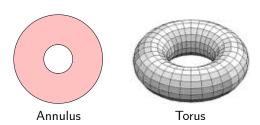
Nonexistence

The end

The critical case

Multiplicity in domains with finite symmetries

- Given
 - a closed subgroup Γ of O(N),
 - a bounded Γ -inv. domain D s.t. $\#\Gamma x = \infty$ for all $x \in D$.



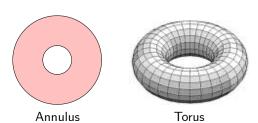
• We consider domains Ω such that

The end

The critical case

Multiplicity in domains with finite symmetries

- Given
 - a closed subgroup Γ of O(N),
 - a bounded Γ -inv. domain D s.t. $\#\Gamma x = \infty$ for all $x \in D$.



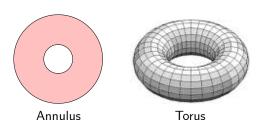
- ullet We consider domains Ω such that
 - $\Omega \supset D$,

The end

The critical case

Multiplicity in domains with finite symmetries

- Given
 - a closed subgroup Γ of O(N),
 - a bounded Γ -inv. domain D s.t. $\#\Gamma x = \infty$ for all $x \in D$.



- ullet We consider domains Ω such that
 - $\Omega \supset D$,
 - Ω is G-invariant under some closed subgroup G of Γ .

The en

The critical case

Multiplicity in domains with nontrivial topology

Theorem (C.-Faya, preprint 2012)

There exists (ℓ_m) nondecreasing, depending only on Γ and D, s.t.: If $\Omega \supset D$, Ω is G-invariant under a closed subgroup $G \subset \Gamma$ and

$$\min_{x \in \Omega} \# Gx > \ell_m,$$

• then $(\wp_{2^*,\Omega})$ has at least m pairs $\pm u_1,\ldots,\pm u_m$ of G-invariant solutions such that

The critical case

Multiplicity in domains with nontrivial topology

Theorem (C.-Faya, preprint 2012)

There exists (ℓ_m) nondecreasing, depending only on Γ and D, s.t.: If $\Omega \supset D$, Ω is G-invariant under a closed subgroup $G \subset \Gamma$ and

$$\min_{x \in \Omega} \#Gx > \ell_m,$$

- then $(\wp_{2^*,\Omega})$ has at least m pairs $\pm u_1, \ldots, \pm u_m$ of G-invariant solutions such that
 - $\int_{\Omega} |
 abla u_k|^2 \leq \ell_k S^{N/2}$ for each $k=1,\ldots,m$,

The critical case

Multiplicity in domains with nontrivial topology

Theorem (C.-Faya, preprint 2012)

There exists (ℓ_m) nondecreasing, depending only on Γ and D, s.t.: If $\Omega \supset D$, Ω is G-invariant under a closed subgroup $G \subset \Gamma$ and

$$\min_{x \in \Omega} \#Gx > \ell_m,$$

- then $(\wp_{2^*,\Omega})$ has at least m pairs $\pm u_1, \ldots, \pm u_m$ of G-invariant solutions such that
 - $\int_{\Omega} |
 abla u_k|^2 \leq \ell_k \mathcal{S}^{N/2}$ for each $k=1,\ldots,m$,
- u_1 is positive and u_2, \ldots, u_m change sign.

case

The proof

The supercritic

Nonexistence Existence

The end

The critical case

Multiplicity in annular domains

Example (C.-Pacella, 2008)

 $\Gamma = O(N)$ and D = annulus.

• If <u>N is even</u> any annulus provides examples:

The end

The critical case

Multiplicity in annular domains

Example (C.-Pacella, 2008)

 $\Gamma = \mathit{O}(\mathit{N})$ and $\mathit{D} = \mathsf{annulus}.$

- If <u>N is even</u> any annulus provides examples:
 - Set $G_n := \{e^{2\pi i k/n} : k = 0, ..., n-1\}$ acting by multiplication on $\mathbb{C}^{N/2} \equiv \mathbb{R}^N$.

The end

The critical case

Multiplicity in annular domains

Example (C.-Pacella, 2008)

 $\Gamma = O(N)$ and D = annulus.

- If <u>N is even</u> any annulus provides examples:
 - Set $G_n := \{e^{2\pi i k/n} : k = 0, ..., n-1\}$ acting by multiplication on $\mathbb{C}^{N/2} \equiv \mathbb{R}^N$.
 - If $\Omega \supset D$ is G_n -invariant and $0 \notin \Omega$, then

$$\#G_nx = n \quad \forall x \in \Omega.$$

The end

The critical case

Multiplicity in annular domains

Example (C.-Pacella, 2008)

 $\Gamma = O(N)$ and D = annulus.

- If <u>N is even</u> any annulus provides examples:
 - Set $G_n := \{e^{2\pi i k/n} : k = 0, ..., n-1\}$ acting by multiplication on $\mathbb{C}^{N/2} \equiv \mathbb{R}^N$.
 - If $\Omega \supset D$ is G_n -invariant and $0 \notin \Omega$, then

$$\#G_nx = n \quad \forall x \in \Omega.$$

• Hence, if $n > \ell_m$, problem $(\wp_{2^*,\Omega})$ has m pairs of solutions.

The critical case

The proof

The supercritic

Nonexistence Existence

The end

The critical case

Multiplicity in annular domains

 \bullet If $\underline{\textit{N}}$ is odd, the annulus must be very thick.

I he supercritic

Nonexistence Existence

The end

The critical case

Multiplicity in annular domains

- If <u>N is odd</u>, the annulus must be very thick.
 - e.g. for *N* = 3

$$\min_{x \in \Omega} \# Gx \le 12$$

if $G \neq O(3)$, SO(3) and $\Omega \supset D$.

The end

The critical case

Multiplicity in annular domains

- If <u>N is odd</u>, the annulus must be very thick.
 - \bullet e.g. for N=3

$$\min_{x \in \Omega} \# Gx \le 12$$

if
$$G \neq O(3)$$
, $SO(3)$ and $\Omega \supset D$.

• But the numbers ℓ_m become larger as the annulus becomes thinner.

The critical case

Multiplicity in toroidal domains

Example

If $\Gamma = SO(2)$ and $D = \text{torus in } \mathbb{R}^3$ then, for each m, there are domains Ω in which $(\wp_{2^*,\Omega})$ has m pairs of solutions:

The proof

The

supercritica problem

Nonexistence Existence

The end

The critical case

Multiplicity in toroidal domains

Example

If $\Gamma = SO(2)$ and D = torus in \mathbb{R}^3 then, for each m, there are domains Ω in which $(\wp_{2^*,\Omega})$ has m pairs of solutions:

•

A "punk" torus

Mónica Clapp

Introduction

The critical case

The proof

The proc

supercritic

Nonexistence Existence

The end

The critical case

Multiplicity in toroidal domains

Example

If $\Gamma = SO(2)$ and D = torus in \mathbb{R}^3 then, for each m, there are domains Ω in which $(\wp_{2^*,\Omega})$ has m pairs of solutions:

A "punk" torus

• Similarly, in other dimensions.

The supercritic

Nonexistence

The er

The proof

Theorem (C.-Faya)

There exists (ℓ_m) nondecreasing, depending only on Γ and D, s.t.: If $\Omega \supset D$, Ω is G-invariant under a closed subgroup $G \subset \Gamma$ and

$$\min_{x \in \Omega} \# Gx > \ell_m,$$

then $(\wp_{2^*,\Omega})$ has at least m pairs $\pm u_1, \ldots, \pm u_m$ of G-invariant solutions.

The supercritica problem

Nonexistence Existence

The end

The proof

is variational

• We look for critical points of the energy functional J on

$$H^1_0(\Omega)^G:=\{u\in H^1_0(\Omega): u(gx)=u(x)\ \forall g\in G, x\in\Omega\}.$$

The end

The proof

is variational

ullet We look for critical points of the energy functional J on

$$H^1_0(\Omega)^G:=\{u\in H^1_0(\Omega): u(\mathbf{g}\mathbf{x})=u(\mathbf{x})\ \forall \mathbf{g}\in G, \mathbf{x}\in\Omega\}.$$

• J satisfies $(PS)_c^G$ in $H_0^1(\Omega)^G$ for all

$$c < \left(\min_{x \in \overline{\Omega}} \# Gx\right) c_{\infty}.$$

The end

The proof

is variational

ullet We look for critical points of the energy functional J on

$$H^1_0(\Omega)^G:=\{u\in H^1_0(\Omega): u(\mathbf{g}\mathbf{x})=u(\mathbf{x})\ \forall \mathbf{g}\in G, \mathbf{x}\in\Omega\}.$$

• J satisfies $(PS)_c^G$ in $H_0^1(\Omega)^G$ for all

$$c < \left(\min_{x \in \overline{\Omega}} \# Gx\right) c_{\infty}.$$

Theorem (minmax)

Let W be a linear subspace of $H_0^1(\Omega)^G$. If J satisfies $(PS)_c^G$ for all $c \leq \sup_W J$, then J has at least $\dim(W)$ pairs of critical points $\pm u$ in $H_0^1(\Omega)^G$.

The end

The proof

Theorem (minmax)

Let W be a linear subspace of $H_0^1(\Omega)^G$. If J satisfies $(PS)_c^G$ for all $c \leq \sup_W J$, then J has at least $\dim(W)$ pairs of critical points $\pm u$ in $H_0^1(\Omega)^G$.

Introduction

Introduction

Case
The proof

The proof

supercritica problem

Nonexistenc Existence

The end

Theorem (minmax)

Let W be a linear subspace of $H_0^1(\Omega)^G$. If J satisfies $(PS)_c^G$ for all $c \leq \sup_W J$, then J has at least $\dim(W)$ pairs of critical points $\pm u$ in $H_0^1(\Omega)^G$.

• Step 1: Define $\ell_m = \ell_m(\Gamma, D)$.

The proof

Theorem (minmax)

Let W be a linear subspace of $H_0^1(\Omega)^G$. If J satisfies $(PS)_c^G$ for all $c \leq \sup_{W} J$, then J has at least $\dim(W)$ pairs of critical points $\pm u$ in $H_0^1(\Omega)^G$.

- Step 1: Define $\ell_m = \ell_m(\Gamma, D)$.
- Step 2: Given $\Omega \supset D$, Ω is G-invariant under a closed $G \subset \Gamma$ and

$$\min_{x \in \Omega} \# Gx > \ell_m,$$

The proof

Theorem (minmax)

Let W be a linear subspace of $H_0^1(\Omega)^G$. If J satisfies $(PS)_c^G$ for all $c \leq \sup_{W} J$, then J has at least dim(W) pairs of critical points $\pm u$ in $H_0^1(\Omega)^G$.

- Step 1: Define $\ell_m = \ell_m(\Gamma, D)$.
- Step 2: Given $\Omega \supset D$, Ω is G-invariant under a closed $G \subset \Gamma$ and

$$\min_{x\in\Omega}\#Gx>\ell_m,$$

• find $W_m \subset H_0^1(\Omega)^G$, s.t.

$$\dim(W_m) = m$$
 & $\sup_{W_m} J \le \ell_m c_\infty + \varepsilon$,

The er

Theorem (minmax)

Let W be a linear subspace of $H_0^1(\Omega)^G$. If J satisfies $(PS)_c^G$ for all $c \leq \sup_W J$, then J has at least $\dim(W)$ pairs of critical points $\pm u$ in $H_0^1(\Omega)^G$.

- Step 1: Define $\ell_m = \ell_m(\Gamma, D)$.
- Step 2: Given $\Omega \supset D$, Ω is G-invariant under a closed $G \subset \Gamma$ and

$$\min_{x\in\Omega}\#Gx>\ell_m,$$

• find $W_m \subset H_0^1(\Omega)^G$, s.t.

$$\dim(W_m) = m$$
 & $\sup_{W_m} J \le \ell_m c_\infty + \varepsilon$,

• for ε small enough, so that $\ell_m c_\infty + \varepsilon < (\min_{x \in \Omega} \# Gx) c_\infty$.

The proof

....

supercritic problem

Nonexistence Existence

The end

The proof

• Step 1: Define $\ell_m = \ell_m(\Gamma, D)$.

Nonexistence

The end

The proof

- Step 1: Define $\ell_m = \ell_m(\Gamma, D)$.
 - $\mathcal{P}_1(D) := \mathsf{set} \ \mathsf{of} \ \mathsf{all} \ \Gamma$ -invariant subdomains of D,

$$\mathcal{P}_m(D):=\{(D_1,..,D_m):D_i\in\mathcal{P}_1(D),\ D_i\cap D_j=\emptyset\ \text{if}\ i\neq j\}$$



Nonexistence

The end

The proof

- Step 1: Define $\ell_m = \ell_m(\Gamma, D)$.
 - $\mathcal{P}_1(D) := \mathsf{set} \ \mathsf{of} \ \mathsf{all} \ \Gamma$ -invariant subdomains of D,

$$\mathcal{P}_m(D):=\{(D_1,..,D_m):D_i\in\mathcal{P}_1(D),\ D_i\cap D_j=\emptyset\ \text{if}\ i\neq j\}$$



• $\omega_{D_i} := \text{least energy } \Gamma \text{-invariant solution to } (\wp_{2^*,D_i}).$

The proo

I he supercritic

Nonexistenc

The end

The proof

- Step 1: Define $\ell_m = \ell_m(\Gamma, D)$.
 - $\mathcal{P}_1(D) := \mathsf{set}$ of all Γ -invariant subdomains of D,

$$\mathcal{P}_m(D):=\{(D_1,..,D_m):D_i\in\mathcal{P}_1(D),\ D_i\cap D_j=\emptyset\ \text{if}\ i\neq j\}$$

- $\omega_{D_i} := \text{least energy } \Gamma \text{-invariant solution to } (\wp_{2^*,D_i}).$
- $c_m := \inf \left\{ igcap_{-1}^m J(\omega_{D_i}) : (D_1, \ldots, D_m) \in \mathcal{P}_m(D)
 ight\}.$

Nonexistence

The end

The proof

- Step 1: Define $\ell_m = \ell_m(\Gamma, D)$.
 - $\mathcal{P}_1(D) := \mathsf{set}$ of all Γ -invariant subdomains of D,

$$\mathcal{P}_m(D):=\{(D_1,..,D_m):D_i\in\mathcal{P}_1(D),\ D_i\cap D_j=\emptyset\ \text{if}\ i\neq j\}$$

- $\omega_{D_i} := \text{least energy } \Gamma \text{-invariant solution to } (\wp_{2^*,D_i}).$
 - $c_m := \inf \left\{ \sum\limits_{i=1}^m J(\omega_{D_i}) : (D_1, ..., D_m) \in \mathcal{P}_m(D)
 ight\}.$
- $\ell_m := c_\infty^{-1} c_m$.

The

supercritic problem

Nonexistence Existence

The end

The proof

• Step 2: Define $W_m \subset H^1_0(\Omega)^G$.

The supercritic problem

Nonexistence Existence

The end

The proof

- Step 2: Define $W_m \subset H_0^1(\Omega)^G$.
 - For $\varepsilon>0$ s.t. $\ell_m c_\infty + \varepsilon < \left(\min_{x\in\Omega} \# Gx\right) c_\infty$,

The end

The proof

- Step 2: Define $W_m \subset H_0^1(\Omega)^G$.
 - For $\varepsilon > 0$ s.t. $\ell_m c_{\infty} + \varepsilon < (\min_{x \in \Omega} \#Gx) c_{\infty}$,
 - choose $(D_1,...,D_m) \in \mathcal{P}_m(D)$ s.t.

$$c_m \leq \sum_{i=1}^m J(\omega_{D_i}) \leq c_m + \varepsilon = \ell_m c_\infty + \varepsilon.$$

The end

The proof

- Step 2: Define $W_m \subset H_0^1(\Omega)^G$.
 - For $\varepsilon > 0$ s.t. $\ell_m c_{\infty} + \varepsilon < (\min_{x \in \Omega} \#Gx) c_{\infty}$,
 - choose $(D_1, ..., D_m) \in \mathcal{P}_m(D)$ s.t.

$$c_m \leq \sum_{i=1}^m J(\omega_{D_i}) \leq c_m + \varepsilon = \ell_m c_\infty + \varepsilon.$$

and define

The end

The proof

- Step 2: Define $W_m \subset H_0^1(\Omega)^G$.
 - For $\varepsilon > 0$ s.t. $\ell_m c_{\infty} + \varepsilon < (\min_{x \in \Omega} \#Gx) c_{\infty}$,
 - choose $(D_1, ..., D_m) \in \mathcal{P}_m(D)$ s.t.

$$c_m \leq \sum_{i=1}^m J(\omega_{D_i}) \leq c_m + \varepsilon = \ell_m c_\infty + \varepsilon.$$

- and define
- •

$$W_m := \operatorname{span}\left\{\omega_{D_1},\ldots,\omega_{D_m}
ight\} \subset H^1_0(D)^\Gamma.$$

The end

The proof

- Step 2: Define $W_m \subset H_0^1(\Omega)^G$.
 - For $\varepsilon > 0$ s.t. $\ell_m c_{\infty} + \varepsilon < (\min_{x \in \Omega} \#Gx) c_{\infty}$,
 - choose $(D_1, ..., D_m) \in \mathcal{P}_m(D)$ s.t.

$$c_m \leq \sum_{i=1}^m J(\omega_{D_i}) \leq c_m + \varepsilon = \ell_m c_\infty + \varepsilon.$$

- and define
 - and de

$$W_m := \operatorname{span}\left\{\omega_{D_1}, \ldots, \omega_{D_m}\right\} \subset H^1_0(D)^{\Gamma}.$$

• Since ω_{D_i} and ω_{D_j} have a.e. disjoint supports for $i \neq j$,

$$\dim W_m = m$$
,

and, since ω_{D_i} lies on the Nehari manifold,

$$\sup_{W_m} J \leq \sum_{i=1}^m J(\omega_{D_i}) \leq \ell_m c_\infty + \varepsilon. \qquad \Box$$

IIILIOGUCLIO

case

The proof

The supercritica problem

Nonexistenc Existence

The end

The critical case

• We have shown that in every dimension N there are many domains Ω in which $(\wp_{2^*,\Omega})$ has a given number of solutions,

Mónica Clapp

Introduction

_.

case

The proof

The supercritical problem

Nonexistence Existence

The end

The critical case

- We have shown that in every dimension N there are many domains Ω in which $(\wp_{2^*,\Omega})$ has a given number of solutions,
 - which are neither small perturbations of a given domain,

case

The proof

The supercritica problem

Nonexistence Existence

The end

The critical case

- We have shown that in every dimension N there are many domains Ω in which $(\wp_{2^*,\Omega})$ has a given number of solutions,
 - which are neither small perturbations of a given domain,
 - nor have only infinite orbits.

Existence

The end

The critical case

- We have shown that in every dimension N there are many domains Ω in which $(\wp_{2^*,\Omega})$ has a given number of solutions,
 - · which are neither small perturbations of a given domain,
 - nor have only infinite orbits.

Problem (open)

Does $(\wp_{2^*,\Omega})$ have multiple solutions in every domain with nontrivial topology?

The end

The supercritical problem

Next we look at the supercritical problem

$$(\wp_{p,\Omega})$$
 $\begin{cases} -\Delta u = |u|^{p-2} u & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}$

where

The supercritical problem

Nonexistence Existence

The end

The supercritical problem

Next we look at the supercritical problem

$$(\wp_{p,\Omega})$$
 $\begin{cases} -\Delta u = |u|^{p-2} u & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}$

where

• $\Omega \subset \mathbb{R}^N$ is a bounded smooth domain, $N \geq 3$,

The end

The supercritical problem

Next we look at the supercritical problem

$$(\wp_{p,\Omega})$$
 $\begin{cases} -\Delta u = |u|^{p-2} u & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}$

where

- $\Omega \subset \mathbb{R}^N$ is a bounded smooth domain, $N \geq 3$,
- $p > 2^*$ is supercritical.

The proof

The supercritical problem

Nonexistence

The end

The supercritical problem

Rabinowitz's question

• Pohozhaev 1965: If Ω is starshaped there is no nontrivial solution to $(\wp_{p,\Omega})$.

The proof

The supercritical problem

Nonexistence Existence

The end

The supercritical problem

Rabinowitz's question

- **Pohozhaev 1965**: If Ω is starshaped there is no nontrivial solution to $(\wp_{p,\Omega})$.
- Kazdan-Warner 1975: If Ω is an annulus there are infinitely many radial solutions.

The said

The supercritical problem

Rabinowitz's question

- **Pohozhaev 1965**: If Ω is starshaped there is no nontrivial solution to $(\wp_{p,\Omega})$.
- Kazdan-Warner 1975: If Ω is an annulus there are infinitely many radial solutions.
- **del Pino-Felmer-Musso 2003**: Existence of multibubbles for $p > 2^*$ but close enough to 2^* in domains with a hole and certain symmetries.

The en

The supercritical problem

Rabinowitz's question

- **Pohozhaev 1965**: If Ω is starshaped there is no nontrivial solution to $(\wp_{p,\Omega})$.
- Kazdan-Warner 1975: If Ω is an annulus there are infinitely many radial solutions.
- del Pino-Felmer-Musso 2003: Existence of multibubbles for p > 2* but close enough to 2* in domains with a hole and certain symmetries.

Problem (Rabinowitz)

Is it true that, If $\tilde{H}_*(\Omega; \mathbb{Z}/2) \neq 0$, then $(\wp_{p,\Omega})$ has a nontrivial solution?

case

The proof

The supercritic

Nonexistence

The end

The supercritical problem

Passaseo's answer

Theorem (Passaseo 1995)

For each $1 \le k \le N-3$ there exists Ω such that

1 Ω has the homotopy type of \mathbb{S}^k ,

The end

The supercritical problem

Passaseo's answer

Theorem (Passaseo 1995)

For each $1 \le k \le N-3$ there exists Ω such that

- **1** Ω has the homotopy type of \mathbb{S}^k ,
- $(\wp_{p,\Omega})$ has no solution for $p \ge 2^*_{N,k} := \frac{2(N-k)}{N-k-2}$,

The end

The supercritical problem

Passaseo's answer

Theorem (Passaseo 1995)

For each $1 \le k \le N-3$ there exists Ω such that

- **1)** Ω has the homotopy type of \mathbb{S}^k ,
- ② $(\wp_{p,\Omega})$ has no solution for $p \ge 2^*_{N,k} := \frac{2(N-k)}{N-k-2}$,
- **3** $(\wp_{p,\Omega})$ has infinitely many solutions for $p < 2^*_{N,k}$.

The supercritical problem

Passaseo's answer

Theorem (Passaseo 1995)

For each $1 \le k \le N-3$ there exists Ω such that

- **1** Ω has the homotopy type of \mathbb{S}^k ,
- ② $(\wp_{p,\Omega})$ has no solution for $p \ge 2^*_{N,k} := \frac{2(N-k)}{N-k-2}$,
- **3** $(\wp_{p,\Omega})$ has infinitely many solutions for $p < 2^*_{N,k}$.

$$2_{N,k}^* := \frac{2(N-k)}{N-k-2} = (k+1)$$
-st critical exponent.

The en

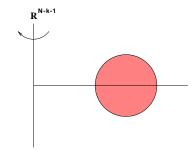
The supercritical problem

Passaseo's example

Passaseo's domains are

$$\Omega := \{ (y, z) \in \mathbb{R}^{k+1} \times \mathbb{R}^{N-k-1} : (|y|, z) \in B \}$$

where B is a ball contained in $(0, \infty) \times \mathbb{R}^{N-k-1}$ with center in $(0, \infty) \times \{0\}$.



The end

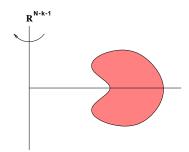
The supercritical problem

Existence at higher critical exponents

• Wei-Yan 2011: Constructed infinitely many positive solutions for $p=2_{N,k}^*$, $N\geq 5$, in domains Ω of the form

$$\Omega := \{(y,z) \in \mathbb{R}^{k+1} \times \mathbb{R}^{N-k-1} : (|y|,z) \in \Theta\},\$$

where $\overline{\Theta} \subset (0, \infty) \times \mathbb{R}^{N-k-1}$ has a particular shape:



case

The proof

I he supercritica problem

Nonexistence

The end

The supercritical problem

A geometric nonexistence condition

• $\Theta \subset (0, \infty) \times \mathbb{R}^{N-k-1}$ is doubly starshaped if there exist two numbers $0 < t_0 < t_1$ such that

The proof

supercritica problem

Nonexistence Existence

The end

The supercritical problem

A geometric nonexistence condition

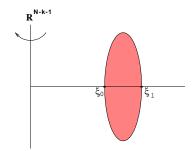
- $\Theta \subset (0, \infty) \times \mathbb{R}^{N-k-1}$ is doubly starshaped if there exist two numbers $0 < t_0 < t_1$ such that
 - $t \in (t_0, t_1)$ for every $(t, z) \in \Theta$,

The end

The supercritical problem

A geometric nonexistence condition

- $\Theta \subset (0, \infty) \times \mathbb{R}^{N-k-1}$ is doubly starshaped if there exist two numbers $0 < t_0 < t_1$ such that
 - $t \in (t_0, t_1)$ for every $(t, z) \in \Theta$,
 - Θ is strictly starshaped w.r. to $\xi_0 := (t_0, 0)$ and $\xi_1 := (t_1, 0)$.



The end

The supercritical problem

A nonexistence result

Theorem (C.-Faya-Pistoia, preprint 2012)

If $\Theta \subset (0, \infty) \times \mathbb{R}^{N-k-1}$ is doubly starshaped, $0 \le k \le N-3$ and

$$\Omega := \{ (y, z) \in \mathbb{R}^{k+1} \times \mathbb{R}^{N-k-1} : (|y|, z) \in \Theta \},$$

then problem $(\wp_{p,\Omega})$ does not have a nontrivial solution for $p \geq 2^*_{N,k}$ and has infinitely many solutions for $p \in (2, 2^*_{N,k})$.

Mónica Clapp

Introduction

The proof

The proo

supercritic problem

Nonexistence Existence

The end

The supercritical problem

A further nonexistence result

• Perhaps if $\tilde{H}_*(\Omega;\mathbb{Z})$ is richer $(\wp_{p,\Omega})$ won't have a nontrivial solution ...

A further nonexistence result

• Perhaps if $\tilde{H}_*(\Omega;\mathbb{Z})$ is richer $(\wp_{p,\Omega})$ won't have a nontrivial solution ...

Theorem (C.-Faya-Pistoia, preprint 2012)

Given $k = k_1 + \cdots + k_m \leq N - 3$ and $\varepsilon > 0$ there exists a domain $\Omega \simeq \mathbb{S}^{k_1} \times \cdots \times \mathbb{S}^{k_m}$, in which problem $(\wp_{p,\Omega})$ does not have a nontrivial solution for $p \geq 2^*_{N,k} + \varepsilon$ and has infinitely many solutions for $p \in (2, 2^*_{N,k})$.

A further nonexistence result

• Perhaps if $\tilde{H}_*(\Omega; \mathbb{Z})$ is richer $(\wp_{p,\Omega})$ won't have a nontrivial solution ...

Theorem (C.-Faya-Pistoia, preprint 2012)

Given $k = k_1 + \cdots + k_m \leq N - 3$ and $\varepsilon > 0$ there exists a domain $\Omega \simeq \mathbb{S}^{k_1} \times \cdots \times \mathbb{S}^{k_m}$, in which problem $(\wp_{p,\Omega})$ does not have a nontrivial solution for $p \geq 2^*_{N,k} + \varepsilon$ and has infinitely many solutions for $p \in (2, 2^*_{N,k})$.

• In particular, if all $k_i=1$, then $\Omega\simeq \mathbb{S}^1 imes\cdots imes\mathbb{S}^1$ and

$$\operatorname{cup-length}(\Omega) = k + 1$$
,

A further nonexistence result

• Perhaps if $\tilde{H}_*(\Omega; \mathbb{Z})$ is richer $(\wp_{p,\Omega})$ won't have a nontrivial solution ...

Theorem (C.-Faya-Pistoia, preprint 2012)

Given $k=k_1+\cdots+k_m\leq N-3$ and $\varepsilon>0$ there exists a domain $\Omega\simeq \mathbb{S}^{k_1}\times\cdots\times \mathbb{S}^{k_m}$, in which problem $(\wp_{p,\Omega})$ does not have a nontrivial solution for $p\geq 2^*_{N,k}+\varepsilon$ and has infinitely many solutions for $p\in (2,2^*_{N,k})$.

• In particular, if all $k_i=1$, then $\Omega\simeq \mathbb{S}^1 imes\cdots imes\mathbb{S}^1$ and

$$\operatorname{cup-length}(\Omega) = k + 1$$
,

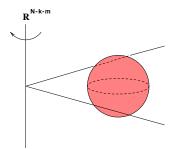
• i.e. there are k cohomology classes in $H^1(\Omega; \mathbb{Z})$ whose cup-product is not zero.

A further nonexistence result

· Our domains are of the form

$$\Omega = \{ (y^1, \dots, y^m, z) \in \mathbb{R}^{k_1 + 1} \times \dots \times \mathbb{R}^{k_m + 1} \times \mathbb{R}^{N - k - m} : (|y^1|, \dots, |y^m|, z) \in B \}$$

where B is a ball in $(0,\infty)^m \times \mathbb{R}^{N-k-m}$ with center in $(0,\infty)^m \times \{0\}$,



The proof

I he supercritic

Nonexistence

The end

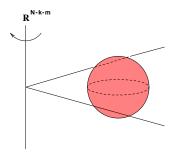
The supercritical problem

A further nonexistence result

· Our domains are of the form

$$\Omega = \{(y^1, \dots, y^m, z) \in \mathbb{R}^{k_1+1} \times \dots \times \mathbb{R}^{k_m+1} \times \mathbb{R}^{N-k-m} : (|y^1|, \dots, |y^m|, z) \in B\}$$

where B is a ball in $(0,\infty)^m \times \mathbb{R}^{N-k-m}$ with center in $(0,\infty)^m \times \{0\}$,



• whose radius becomes smaller as $\mathcal{E} \to 0$.

case

The proof

The supercritic problem

Nonexistence

The end

The supercritical problem

The ingredients of the proofs

• We use a Pohozhaev-type identity due to

The end

The supercritical problem

The ingredients of the proofs

- We use a Pohozhaev-type identity due to
- Pucci-Serrin, 1986: If $u \in \mathcal{C}^2(\Omega) \cap \mathcal{C}^1(\overline{\Omega})$ is a solution of $(\wp_{p,\Omega})$ and $\chi \in \mathcal{C}^1(\overline{\Omega},\mathbb{R}^N)$, then

$$\begin{split} \frac{1}{2} \int_{\partial\Omega} \left| \nabla u \right|^2 \left\langle \chi, \nu_\Omega \right\rangle \, d\sigma &= \int_\Omega \left(\mathrm{div} \chi \right) \left[\frac{1}{p} \left| u \right|^p - \frac{1}{2} \left| \nabla u \right|^2 \right] \, dx \\ &+ \int_\Omega \left\langle \mathrm{d} \chi \left[\nabla u \right], \nabla u \right\rangle \, dx \end{split}$$

where ν_{Ω} is the outward pointing unit normal to $\partial\Omega$,

The end

The supercritical problem

The ingredients of the proofs

- We use a Pohozhaev-type identity due to
- Pucci-Serrin, 1986: If $u \in \mathcal{C}^2(\Omega) \cap \mathcal{C}^1(\overline{\Omega})$ is a solution of $(\wp_{p,\Omega})$ and $\chi \in \mathcal{C}^1(\overline{\Omega},\mathbb{R}^N)$, then

$$\begin{split} \frac{1}{2} \int_{\partial\Omega} \left| \nabla u \right|^2 \left\langle \chi, \nu_\Omega \right\rangle \, d\sigma &= \int_\Omega \left(\mathrm{div} \chi \right) \left[\frac{1}{p} \left| u \right|^p - \frac{1}{2} \left| \nabla u \right|^2 \right] \, dx \\ &+ \int_\Omega \left\langle \mathrm{d} \chi \left[\nabla u \right], \nabla u \right\rangle \, dx \end{split}$$

where ν_{Ω} is the outward pointing unit normal to $\partial\Omega$,

• and we choose a vector field s.t.

The end

The supercritical problem

The ingredients of the proofs

- We use a Pohozhaev-type identity due to
- Pucci-Serrin, 1986: If $u \in \mathcal{C}^2(\Omega) \cap \mathcal{C}^1(\overline{\Omega})$ is a solution of $(\wp_{p,\Omega})$ and $\chi \in \mathcal{C}^1(\overline{\Omega},\mathbb{R}^N)$, then

$$\begin{split} \frac{1}{2} \int_{\partial \Omega} |\nabla u|^2 \left\langle \chi, \nu_{\Omega} \right\rangle d\sigma &= \int_{\Omega} \left(\operatorname{div} \chi \right) \left[\frac{1}{p} \left| u \right|^p - \frac{1}{2} \left| \nabla u \right|^2 \right] dx \\ &+ \int_{\Omega} \left\langle \operatorname{d} \chi \left[\nabla u \right], \nabla u \right\rangle dx \end{split}$$

where ν_{Ω} is the outward pointing unit normal to $\partial\Omega$,

- and we choose a vector field s.t.
 - $\operatorname{div}\chi = N k$,

The end

The supercritical problem

The ingredients of the proofs

- We use a Pohozhaev-type identity due to
- Pucci-Serrin, 1986: If $u \in \mathcal{C}^2(\Omega) \cap \mathcal{C}^1(\overline{\Omega})$ is a solution of $(\wp_{p,\Omega})$ and $\chi \in \mathcal{C}^1(\overline{\Omega},\mathbb{R}^N)$, then

$$\begin{split} \frac{1}{2} \int_{\partial\Omega} \left| \nabla u \right|^2 \left\langle \chi, \nu_\Omega \right\rangle \, d\sigma &= \int_\Omega \left(\mathrm{div} \chi \right) \left[\frac{1}{p} \left| u \right|^p - \frac{1}{2} \left| \nabla u \right|^2 \right] \, dx \\ &+ \int_\Omega \left\langle \mathrm{d} \chi \left[\nabla u \right], \nabla u \right\rangle \, dx \end{split}$$

where ν_{Ω} is the outward pointing unit normal to $\partial\Omega$,

- and we choose a vector field s.t.
 - $\operatorname{div}\chi = N k$,
 - + other convenient properties.

The proof

supercritic problem

Nonexistence Existence

The end

The supercritical problem

Two questions

We believe the following to be true:

The end

The supercritical problem

Two questions

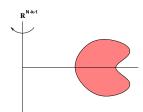
We believe the following to be true:

Problem (open)

If $\Theta \subset (0,\infty) \times \mathbb{R}^{N-k-1}$ is starshaped w.r. to the point in $(0,\infty) \times \{0\} \cap \overline{\Theta}$ which is closest to the origin, is it true that problem $(\wp_{p,\Omega})$ does not have a nontrivial solution in

$$\Omega := \{ (y, z) \in \mathbb{R}^{k+1} \times \mathbb{R}^{N-k-1} : (|y|, z) \in \Theta \}$$

for
$$p \ge 2^*_{N,k}$$
?



The proof

The supercritic

Nonexistence

The end

The supercritical problem

Two questions

• The last theorem says nothing about $p \in [2^*_{N,k}, 2^*_{N,k} + \varepsilon)$,

case

The proof

I he supercritic

Nonexistence Existence

The end

The supercritical problem

Two questions

- The last theorem says nothing about $p \in [2_{N,k}^*, 2_{N,k}^* + \varepsilon)$,
 - and, in particular, about $p = 2_{N,k}^*$.

The supercritic

Nonexistence Existence

The end

The supercritical problem

Two questions

- The last theorem says nothing about $p \in [2_{N,k}^*, 2_{N,k}^* + \varepsilon)$,
 - and, in particular, about $p = 2_{N,k}^*$.

Problem (open)

Are there domains Ω such that

$$cup$$
-length $(\Omega)=k+1$,

in which problem $(\wp_{p,\Omega})$ does not have a nontrivial solution for $p \ge 2^*_{N,k}$ and has infinitely many solutions for $p \in (2,2^*_{N,k})$?

The end

The supercritical problem

Existence at higher critical exponents

Some recent perturbative existence results:

• **del Pino-Musso-Pacard, 2009:** Solutions for $p=2^*_{N,1}-\varepsilon$ concentrating at a boundary geodesic as $\varepsilon \to 0$ in certain domains.

The end

The supercritical problem

Existence at higher critical exponents

Some recent perturbative existence results:

- **del Pino-Musso-Pacard, 2009:** Solutions for $p=2^*_{N,1}-\varepsilon$ concentrating at a boundary geodesic as $\varepsilon \to 0$ in certain domains.
- Ackermann-C.-Pistoia: Solutions for $p=2^*_{N,k}-\varepsilon$ concentrating at k-dimensional submanifolds of the boundary as $\varepsilon \to 0$.

Existence at higher critical exponents

Some recent perturbative existence results:

- **del Pino-Musso-Pacard, 2009:** Solutions for $p=2^*_{N,1}-\varepsilon$ concentrating at a boundary geodesic as $\varepsilon \to 0$ in certain domains.
- Ackermann-C.-Pistoia: Solutions for $p=2^*_{N,k}-\varepsilon$ concentrating at k-dimensional submanifolds of the boundary as $\varepsilon \to 0$.
- Kim-Pistoia: Solutions for p large concentrating at (N-2)-dimensional submanifolds of the boundary as p → +∞.

Existence at higher critical exponents

Some recent perturbative existence results:

- **del Pino-Musso-Pacard, 2009:** Solutions for $p=2_{N,1}^*-\varepsilon$ concentrating at a boundary geodesic as $\varepsilon \to 0$ in certain domains.
- Ackermann-C.-Pistoia: Solutions for $p=2^*_{N,k}-\varepsilon$ concentrating at k-dimensional submanifolds of the boundary as $\varepsilon \to 0$.
- **Kim-Pistoia:** Solutions for p large concentrating at (N-2)-dimensional submanifolds of the boundary as $p \to +\infty$.
- Wei-Yan, 2011: Positive multipeak solutions for $p = 2^*_{N,k}$.

Mónica Clapp

Introduction

Introductio

case

The proof

The supercritica

Nonexisten Existence

The end

The supercritical problem

Existence via the Hopf fibrations

 Next we prove existence in domains arising from the Hopf fibrations. supercritic problem

Nonexistence Existence

The end

The supercritical problem

Existence via the Hopf fibrations

- Next we prove existence in domains arising from the Hopf fibrations.
- If N = 4, 8, 16 then $\mathbb{R}^N = \mathbb{K} \times \mathbb{K}$,

The en

The supercritical problem

Existence via the Hopf fibrations

- Next we prove existence in domains arising from the Hopf fibrations.
- If N = 4, 8, 16 then $\mathbb{R}^N = \mathbb{K} \times \mathbb{K}$,
 - where $\mathbb K$ is either the complex numbers $\mathbb C$, the quaternions $\mathbb H$ or the Cayley numbers $\mathbb O.$

The end

The supercritical problem

Existence via the Hopf fibrations

- Next we prove existence in domains arising from the Hopf fibrations.
- If N = 4, 8, 16 then $\mathbb{R}^N = \mathbb{K} \times \mathbb{K}$,
 - where $\mathbb K$ is either the complex numbers $\mathbb C$, the quaternions $\mathbb H$ or the Cayley numbers $\mathbb O$.
- The Hopf map $\pi: \mathbb{R}^N = \mathbb{K} imes \mathbb{K} o \mathbb{K} imes \mathbb{R} = \mathbb{R}^{(N/2)+1}$,

$$\pi(z_1, z_2) = (2\overline{z_1}z_2, |z_1|^2 - |z_2|^2),$$

The end

The supercritical problem

Existence via the Hopf fibrations

- Next we prove existence in domains arising from the Hopf fibrations.
- If N = 4, 8, 16 then $\mathbb{R}^N = \mathbb{K} \times \mathbb{K}$,
 - where $\mathbb K$ is either the complex numbers $\mathbb C$, the quaternions $\mathbb H$ or the Cayley numbers $\mathbb O$.
- The Hopf map $\pi: \mathbb{R}^N = \mathbb{K} \times \mathbb{K} \to \mathbb{K} \times \mathbb{R} = \mathbb{R}^{(N/2)+1}$,

$$\pi(z_1, z_2) = (2\overline{z_1}z_2, |z_1|^2 - |z_2|^2),$$

• is a harmonic morphism.

The critic

The proof

The supercritical problem

Nonexiste Existence

The end

The supercritical problem

Harmonic morphisms

• Let (M, \mathfrak{g}) and (N, \mathfrak{h}) be Riemannian manifolds,

case

The proof

The supercritic

Nonexistence Existence

The end

The supercritical problem

- Let (M, \mathfrak{g}) and (N, \mathfrak{h}) be Riemannian manifolds,
- $\pi: M \to N$ be a smooth map,

The proof

The supercri

supercritic: problem

Nonexistence Existence

The end

The supercritical problem

- Let (M, \mathfrak{g}) and (N, \mathfrak{h}) be Riemannian manifolds,
- $\pi: M \to N$ be a smooth map,
- and $v: U \to \mathbb{R}$ be defined on an open subset U of N.

I he supercriti

Nonexistence Existence

The end

The supercritical problem

- Let (M, \mathfrak{g}) and (N, \mathfrak{h}) be Riemannian manifolds,
- $\pi: M \to N$ be a smooth map,
- and $v: U \to \mathbb{R}$ be defined on an open subset U of N.
- Define $u := v \circ \pi : \pi^{-1}(U) \to \mathbb{R}$.

The end

The supercritical problem

- Let (M, \mathfrak{g}) and (N, \mathfrak{h}) be Riemannian manifolds,
- $\pi: M \to N$ be a smooth map,
- and $v: U \to \mathbb{R}$ be defined on an open subset U of N.
- Define $u := v \circ \pi : \pi^{-1}(U) \to \mathbb{R}$.
- Is there a simple relationship between

$$\Delta_M u$$
 and $\Delta_N v$?

Harmonic morphisms

• A smooth map $\pi: M \to N$ is a harmonic morphism with dilation $\lambda: M \to [0, \infty)$ if

$$\Delta_{M}(v \circ \pi)(x) = \lambda^{2}(x) \left[(\Delta_{N} v)(\pi(x)) \right]$$

for each function $v: U \to \mathbb{R}$ defined on an open subset U of N s.t. $\pi^{-1}(U) \neq \emptyset$.

The end

The supercritical problem

Harmonic morphisms

• A smooth map $\pi: M \to N$ is a harmonic morphism with dilation $\lambda: M \to [0, \infty)$ if

$$\Delta_M(v \circ \pi)(x) = \lambda^2(x) [(\Delta_N v)(\pi(x))]$$

for each function $v: U \to \mathbb{R}$ defined on an open subset U of N s.t. $\pi^{-1}(U) \neq \emptyset$.

Example

A Riemannian submersion $\pi: M \to N$ s.t. the mean curvature of each fiber $\pi^{-1}(y)$ in M is zero is a harmonic morphism.

Harmonic morphisms

• A smooth map $\pi: M \to N$ is a harmonic morphism with dilation $\lambda: M \to [0, \infty)$ if

$$\Delta_{M}(v \circ \pi)(x) = \lambda^{2}(x) \left[(\Delta_{N} v)(\pi(x)) \right]$$

for each function $v: U \to \mathbb{R}$ defined on an open subset U of N s.t. $\pi^{-1}(U) \neq \emptyset$.

Example

A Riemannian submersion $\pi: M \to N$ s.t. the mean curvature of each fiber $\pi^{-1}(y)$ in M is zero is a harmonic morphism.

Example

The Hopf maps $\pi: \mathbb{R}^N = \mathbb{K} \times \mathbb{K} \to \mathbb{K} \times \mathbb{R} = \mathbb{R}^{(N/2)+1}$ are harmonic morphisms with dilation

$$\lambda(x, y) = \sqrt{2(|x|^2 + |y|^2)}.$$

The end

The supercritical problem

A comparison result

• **Proposition.** Let $N=4,8,16,\ U$ be a domain in $\mathbb{R}^{(N/2)+1}$ s.t. $0 \notin U$. If v solves

$$\left(\wp_{p,\Omega}^*\right) \quad \left\{ \begin{array}{ll} -\Delta v = rac{1}{2|x|} \left|v\right|^{p-2} v & \text{in } U, \\ v = 0 & \text{on } U, \end{array} \right.$$

A comparison result

• **Proposition.** Let $N=4,8,16,\ U$ be a domain in $\mathbb{R}^{(N/2)+1}$ s.t. $0 \notin U$. If v solves

$$(\wp_{p,\Omega}^*)$$

$$\begin{cases} -\Delta v = \frac{1}{2|x|} |v|^{p-2} v & \text{in } U, \\ v = 0 & \text{on } U, \end{cases}$$

• then $u := v \circ \pi$ is a solution of

$$(\wp_{p,\Omega})$$
 $\begin{cases} -\Delta u = |u|^{p-2} u & \text{in } \Omega := \pi^{-1}(U), \\ u = 0 & \text{on } \partial\Omega, \end{cases}$

where $\pi: \mathbb{R}^N \to \mathbb{R}^{(N/2)+1}$ is the Hopf map.

The end

The supercritical problem

An existence result

• Let N = 4, 8, 16.

Nonexistence Existence

The end

The supercritical problem

An existence result

- Let N = 4, 8, 16.
- Fix a bounded domain D in $\mathbb{R}^{(N/2)+1}$ invariant under $\Gamma \subset O(\frac{N}{2}+1)$ s.t. every Γ -orbit in D is infinite.

The end

The supercritical problem

An existence result

- Let N = 4, 8, 16.
- Fix a bounded domain D in $\mathbb{R}^{(N/2)+1}$ invariant under $\Gamma \subset O(\frac{N}{2}+1)$ s.t. every Γ -orbit in D is infinite.

Theorem (C.-Faya-Pistoia, preprint 2012)

There exists (ℓ_m) nondecreasing, depending only on Γ and D, s.t.: If $U \supset D$ is invariant under a subgroup G of Γ and

$$\min_{x \in U} (\#Gx) |x|^{(N/2)-1} > \ell_m,$$

then, for $p=2^*_{N,(N/2)-1}$, problem $(\wp_{p,\Omega})$ has m pairs of solutions $\pm u_1, \ldots, \pm u_m$ in $\Omega:=\pi^{-1}(U)$, u_1 is positive and u_2, \ldots, u_m change sign.

The end

The supercritical problem

An example

Example

Fix
$$D := \text{torus in } \mathbb{R}^3 \equiv \mathbb{C} \times \mathbb{R}, \quad \Gamma := SO(2).$$

• U:= "punk" torus in \mathbb{R}^3 :

An example

Example

Fix D:= torus in $\mathbb{R}^3\equiv\mathbb{C}\times\mathbb{R}$, $\Gamma:=SO(2)$.

• U:= "punk" torus in \mathbb{R}^3 :

• Then $\Omega \cong U \times \mathbb{S}^1 \subset \mathbb{R}^4$,

supercritic problem

Nonexistence Existence

The end

The supercritical problem

An example

Example

Fix $D := \text{torus in } \mathbb{R}^3 \equiv \mathbb{C} \times \mathbb{R}, \quad \Gamma := SO(2).$

• U:= "punk" torus in \mathbb{R}^3 :

- Then $\Omega \cong U \times \mathbb{S}^1 \subset \mathbb{R}^4$,
- and we obtain m pairs of solutions to problem $(\wp_{p,\Omega})$ in Ω for p=6.

milioductio

case

The proof

The

problem

Nonexistence Existence

The end

Thanks

Thank you very much for your attention!