Multiple sign changing solutions of nonlinear elliptic problems in exterior domains

Dora Salazar

Universidad Nacional Autónoma de México

Variational and Topological Methods: Theory, Applications, Numerical Simulations, and Open Problems Flagstaff, June 2012
Coauthors

Joint work with

Mónica Clapp
We consider the problem

\[
(\mathcal{P}) \quad \begin{cases}
-\Delta u + (V_\infty + V(x))u = |u|^{p-2}u, \\
u \in H^1_0(\Omega),
\end{cases}
\]

where

- \(\Omega \subset \mathbb{R}^N \ (N \geq 3) \) is an unbounded smooth domain whose complement is bounded.
- \(2 < p < 2^* := \frac{2N}{N-2} \).
- The potential \(V_\infty + V \) satisfies

\[
(V_0) \quad V \in C^0(\mathbb{R}^N); \ V_\infty \in (0, \infty), \ \inf_{\mathbb{R}^N} \{V_\infty + V(x)\} > 0; \\
\lim_{|x| \to \infty} V(x) = 0.
\]

Description of the lack of compactness. Benci-Cerami (1987)
We consider the problem

\[
\begin{cases}
-\Delta u + (V_{\infty} + V(x))u = |u|^{p-2}u, \\
u \in H^1_0(\Omega),
\end{cases}
\]

where

- $\Omega \subset \mathbb{R}^N \ (N \geq 3)$ is an unbounded smooth domain whose complement is bounded.
- $2 < p < 2^* := \frac{2N}{N-2}$.
- The potential $V_{\infty} + V$ satisfies
 \[(V_0) \quad V \in C^0(\mathbb{R}^N); \ V_{\infty} \in (0, \infty), \ \inf_{\mathbb{R}^N} \{V_{\infty} + V(x)\} > 0; \ \lim_{|x| \to \infty} V(x) = 0.\]

Description of the lack of compactness. Benci-Cerami (1987)
POSITIVE SOLUTIONS

<table>
<thead>
<tr>
<th>Potential</th>
<th>Domain</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\Omega = \mathbb{R}^N$</td>
<td>A positive solution. Lions (1984)</td>
</tr>
<tr>
<td></td>
<td>$\Omega \neq \mathbb{R}^N$ $V \geq 0$ $\Omega = \mathbb{R}^N$ $V > 0$</td>
<td>A positive solution. Bahri-Lions (1997)</td>
</tr>
</tbody>
</table>
MULTIPLE SOLUTIONS

<table>
<thead>
<tr>
<th>Potential</th>
<th>Domain</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V \to 0$ at infinity at some suitable rate</td>
<td>$\Omega = \mathbb{R}^N$</td>
<td>Infinitely many solutions. Cerami-Devillanova-Solimini (2005)</td>
</tr>
<tr>
<td>V radial, $V(r) \to 0$ in a polynomial way</td>
<td>$\Omega = \mathbb{R}^N$</td>
<td>Infinitely many positive solutions. Wei-Yan (2010)</td>
</tr>
<tr>
<td>V decays very slowly</td>
<td>$\Omega = \mathbb{R}^N$</td>
<td>Infinitely many positive solutions. Cerami-Passaseo-Solimini (to appear)</td>
</tr>
</tbody>
</table>
Background

LOW ENERGY SOLUTIONS

<table>
<thead>
<tr>
<th>Potential</th>
<th>Domain</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Omega = \mathbb{R}^N$</td>
<td>$\Omega = \mathbb{R}^N$</td>
<td>$\frac{N}{2} + 1$ pairs of solutions $\pm u$.</td>
</tr>
<tr>
<td>Exterior</td>
<td>Exterior</td>
<td>One sign changing solution.</td>
</tr>
<tr>
<td>$\Omega = \mathbb{R}^N$</td>
<td>$\Omega = \mathbb{R}^N$</td>
<td>One sign changing solution.</td>
</tr>
</tbody>
</table>

Dora Salazar

Multiple sign changing solutions
LOW ENERGY SOLUTIONS

<table>
<thead>
<tr>
<th>Potential</th>
<th>Domain</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Omega = \mathbb{R}^N$</td>
<td>One sign changing solution.</td>
<td>One sign changing solution.</td>
</tr>
</tbody>
</table>

- **Clapp-Weth (2004)**
- **Cerami-Clapp (2007)**
- **Carvalho-Maia-Miyagaki (2011)**
Our goal

The topology of the orbit space of certain subsets of the domain

\[\Downarrow \]

The number of low energy sign changing solutions to \((\mathcal{O})\)
We consider

- A closed subgroup Γ of $O(N)$.
- A continuous homomorphism $\phi : \Gamma \to \mathbb{Z}/2 := \{1, -1\}$.

We denote by

- $G := \ker \phi$.
- $\ell := \min\{\#Gx : x \in \mathbb{S}^{N-1}\}$, where $Gx := \{gx : g \in G\}$.

Recall

- $X \subset \mathbb{R}^N$ is Γ-invariant if $\Gamma x \subset X$ for every $x \in X$.
- $u : X \to \mathbb{R}$ is Γ-invariant if it is constant on each Γ-orbit Γx with $x \in X$.
We choose \(\gamma \in \Gamma \) such that \(\phi(\gamma) = -1 \).

\[
\mathbb{Z}/2 \times X/G \longrightarrow X/G
\]
\[
(-1, \ Gx) \longmapsto (-1) \cdot Gx := G(\gamma x).
\]

We denote by

\[
\Sigma := \{x \in S^{N-1} : \#Gx = \ell \}
\]
\[
\Sigma_0 := \{x \in \Sigma : Gx = G(\gamma x) \}.
\]

If \(Z \) is a \(\Gamma \)-invariant subset of \(\Sigma \setminus \Sigma_0 \), the action of \(\mathbb{Z}/2 \) on its \(G \)-orbit space \(Z/G \) is free.

Definition

If \(Z \neq \emptyset \) the Krasnoselski genus of \(Z/G \), denoted \(\text{genus}(Z/G) \), is defined to be the smallest \(k \in \mathbb{N} \) such that there exists a continuous map \(f : Z/G \rightarrow S^{k-1} \) which is \(\mathbb{Z}/2 \)-equivariant, i.e. \(f((-1) \cdot Gz) = -f(Gz) \) for every \(z \in Z \). We define \(\text{genus}(\emptyset) := 0 \).
We choose $\gamma \in \Gamma$ such that $\phi(\gamma) = -1$.

$$\mathbb{Z}/2 \times X/G \longrightarrow X/G$$

$$(-1 , \ Gx) \longmapsto (-1) \cdot Gx := G(\gamma x).$$

We denote by

$$\Sigma := \{ x \in \mathbb{S}^{N-1} : \#Gx = \ell \}$$
$$\Sigma_0 := \{ x \in \Sigma : Gx = G(\gamma x) \}.$$

If Z is a Γ-invariant subset of $\Sigma \setminus \Sigma_0$, the action of $\mathbb{Z}/2$ on its G-orbit space Z/G is free.

Definition

If $Z \neq \emptyset$ the Krasnoselski genus of Z/G, denoted $\text{genus}(Z/G)$, is defined to be the smallest $k \in \mathbb{N}$ such that there exists a continuous map $f : Z/G \to \mathbb{S}^{k-1}$ which is $\mathbb{Z}/2$-equivariant, i.e. $f((-1) \cdot Gz) = -f(Gz)$ for every $z \in Z$. We define $\text{genus}(\emptyset) := 0.$
For each subgroup K of Γ we set

$$\mu(Kz) := \begin{cases}
\inf\{|\alpha_1 z - \alpha_2 z| : \alpha_1, \alpha_2 \in K, \alpha_1 z \neq \alpha_2 z\} & \text{if } \#Kz \geq 2, \\
2|z| & \text{if } \#Kz = 1,
\end{cases}$$

$$\mu_K(Z) := \inf_{z \in Z} \mu(Kz)$$ and $$\mu^K(Z) := \sup_{z \in Z} \mu(Kz).$$

From now on, we will assume that:

- Ω is Γ-invariant.
- V is a Γ-invariant function and (V_0) holds.
- $\ell < \infty$.

c_∞ is the energy of the positive solution to the limit problem

$$\begin{cases}
-\Delta u + V_\infty u = |u|^{p-2}u, \\
u \in H^1(\mathbb{R}^N).
\end{cases}$$
Theorem (1)

If $\phi : \Gamma \to \mathbb{Z}/2$ is an epimorphism, Z is a Γ-invariant subset of $\Sigma \setminus \Sigma_0$, and V satisfies the following:

\[(V_1)\quad \text{There exist } r_0 > 0, \ c_0 > 0 \text{ and } \lambda \in (0, \mu_{\Gamma}(Z)\sqrt{V_{\infty}}) \text{ such that}
\]

\[V(x) \leq -c_0e^{-\lambda|x|} \quad \text{for all } x \in \mathbb{R}^N \text{ with } |x| \geq r_0,
\]

then problem φ has at least $\text{genus}(Z/G)$ pairs of sign changing solutions $\pm u$ such that

\[u(\alpha x) = \phi(\alpha)u(x) \quad \text{for all } \alpha \in \Gamma, \ x \in \Omega, \quad (1)
\]

and

\[\int_{\Omega} |u|^p < \frac{4p}{p-2}lc_{\infty}. \quad (2)
\]
Theorem (1)

If \(\phi : \Gamma \to \mathbb{Z}/2 \) is an epimorphism, \(Z \) is a \(\Gamma \)-invariant subset of \(\Sigma \setminus \Sigma_0 \), and \(V \) satisfies the following:

\((V_1)\) There exist \(r_0 > 0 \), \(c_0 > 0 \) and \(\lambda \in (0, \mu_\Gamma(Z)\sqrt{V_\infty}) \) such that

\[
V(x) \leq -c_0 e^{-\lambda|x|} \quad \text{for all } x \in \mathbb{R}^N \text{ with } |x| \geq r_0,
\]

then problem \((\phi) \) has at least \(\text{genus}(Z/G) \) pairs of sign changing solutions \(\pm u \) such that

\[
u(\alpha x) = \phi(\alpha)u(x) \quad \text{for all } \alpha \in \Gamma, \ x \in \Omega,
\]

and

\[
\int_{\Omega} |u|^p < \frac{4p}{p - 2} \ell c_\infty.
\]
Multiplicity of sign changing solutions with symmetries

\[\Gamma = \langle \gamma \rangle \]

\[\phi : \Gamma \rightarrow \mathbb{Z}/2 \]
\[\gamma \mapsto -1 \]

\[G = \{ e \} \]

\[\Sigma = S^{N-1} \]

\[\Sigma_0 = W \cap S^{N-1} \]

\[Z = W^\perp \cap S^{N-1} \]

\[\mu_{\Gamma}(Z) = 2 \]

\[\text{genus}(Z/G) = N - \dim W \]

\[0 \leq \dim W < N \]
Multiplicity of sign changing solutions with symmetries

\[N = 2n, \quad \mathbb{R}^N = \mathbb{C}^n, \quad \rho(z_1, \ldots, z_n) := (e^{\pi i/m}z_1, \ldots, e^{\pi i/m}z_n) \]

\[\Gamma = \langle \rho \rangle \quad \phi : \Gamma \longrightarrow \mathbb{Z}/2 \quad G = \ker \phi = \langle \rho^2 \rangle \]

\[\rho \longmapsto -1 \]

- \(\Sigma = S^{N-1} \quad \Sigma_0 = \emptyset \quad Z = S^{N-1} \)
- If \(m = 2^k \), then \(\text{genus}(S^{N-1}/G) \geq \frac{N-1}{2^k} + 1 \).
- Since \(\mu_\Gamma(S^{N-1}) = |e^{\pi i/m} - 1| \), condition \((V_1)\) becomes more restrictive as \(m \) increases.
- If \((V_1)\) holds for \(m = 2^k \), it will also hold for \(m = 2^j \) with \(0 \leq j < k \).
- Moreover, if \(u_j \) is a solution provided by Theorem (1) for \(m = 2^j \), then \(u_k \neq u_j \) if \(k > j \).

More solutions!

Therefore, Theorem (1) provides at least

$$\sum_{j=0}^{k} \frac{N - 1}{2^j} + k + 1 = (N - 1) \frac{2^{k+1} - 1}{2^k} + k + 1$$

pairs of solutions in this case.

No solutions!

$$\rho(z, t) := (e^{\pi i/m} z, t), \quad (z, t) \in \mathbb{C} \times \mathbb{R} = \mathbb{R}^3$$

$$\phi(\rho) := -1 \implies \Sigma = \{\pm(0, 0, 1)\} = \Sigma_0.$$

One pair of solutions!

If $$\Gamma = \langle \rho, \tau \rangle$$, where $$\tau(z, t) := (z, -t)$$ and

$$\phi : \Gamma \longrightarrow \mathbb{Z}/2$$

$$\rho \mapsto 1$$

$$\tau \mapsto -1$$

then $$\Sigma = \{\pm(0, 0, 1)\}$$ and $$\Sigma_0 = \emptyset.$$
Theorem (2)

Let \(\ell \geq 2 \) and \(Z \) be a compact \(\Gamma \)-invariant subset of \(\Sigma \). Assume that the following hold:

\begin{enumerate}[(Z_0)]
\item \(\text{dist}(\gamma z, Gz) > \mu(Gz) \) for all \(z \in Z \) and \(\gamma \in \Gamma \) with \(\phi(\gamma) = -1 \).
\item \(\text{There exist } c_1 > 0 \text{ and } \kappa > \mu^G(Z) \sqrt{V_\infty} \text{ such that} \)
\[V(x) \leq c_1 e^{-\kappa|x|} \text{ for all } x \in \mathbb{R}^N. \]
\end{enumerate}

Then \(\varphi \) has at least \(\text{genus}(Z/G) \) pairs of sign changing solutions \(\pm u \), which satisfy (1) and (2).
Theorem (2)

Let $\ell \geq 2$ and Z be a compact Γ-invariant subset of Σ. Assume that the following hold:

(Z_0) \(\text{dist}(\gamma z, Gz) > \mu(Gz) \) for all $z \in Z$ and $\gamma \in \Gamma$ with $\phi(\gamma) = -1$.

(V_2) There exist $c_1 > 0$ and $\kappa > \mu^G(Z)\sqrt{\mathcal{V}_\infty}$ such that

$$V(x) \leq c_1 e^{-\kappa|x|} \quad \text{for all } x \in \mathbb{R}^N.$$

Then (φ) has at least $\text{genus}(Z/G)$ pairs of sign changing solutions $\pm u$, which satisfy (1) and (2).
Multiplicity of sign changing solutions with symmetries

\[\mathbb{R}^{4n} = \mathbb{C}^n \times \mathbb{C}^n \quad m \geq 3 \]

For \((y, z) \in \mathbb{C}^n \times \mathbb{C}^n\)

\[\rho(y, z) := (e^{\pi i/ m}y, e^{\pi i/ m}z) \]

\[\gamma(y, z) := (-\bar{z}, \bar{y}) \]

\[\Gamma = \langle \rho, \gamma \rangle \leq O(4n) \]

\[\phi : \Gamma \longrightarrow \mathbb{Z}/2 \]

\[\rho \longmapsto 1 \]

\[\gamma \longmapsto -1 \]

\[G = \langle \rho \rangle \quad Z := \mathbb{S}^{4n-1} \]

\[\mu^G(Z) = |e^{\pi i/ m} - 1| \]

The variational setting

- The energy functional associated to (ϕ)

\[
J_V : H^1_0(\Omega) \to \mathbb{R}
\]

\[
J_V(u) := \frac{1}{2} \|u\|^2_V - \frac{1}{p} |u|^p_p,
\]

where \(\|u\|_V := \left(\int_\Omega \left(\left| \nabla u \right|^2 + (1 + V(x)) u^2 \right) \right)^{1/2} \).

- The action of Γ on $H^1_0(\Omega)$ induced by ϕ

\[
(\gamma u)(x) := \phi(\gamma)u(\gamma^{-1}x) \quad \gamma \in \Gamma \text{ and } u \in H^1_0(\Omega).
\]

- The $\phi-$equivariant function space

\[
H^1_0(\Omega)^\phi := \{ u \in H^1_0(\Omega) : u(\gamma x) = \phi(\gamma)u(x) \ \forall \gamma \in \Gamma, x \in \Omega \}.
\]

- The principle of symmetric criticality (Palais 1979)
The variational setting

- The energy functional associated to (ϕ)

$$J_V : H^1_0(\Omega) \rightarrow \mathbb{R}$$

$$J_V(u) := \frac{1}{2} \|u\|_V^2 - \frac{1}{p} |u|^p_p,$$

where $\|u\|_V := \left(\int_\Omega \left(|\nabla u|^2 + (1 + V(x)) u^2 \right) \right)^{1/2}.$

- The action of Γ on $H^1_0(\Omega)$ induced by ϕ

$$(\gamma u)(x) := \phi(\gamma)u(\gamma^{-1}x) \quad \gamma \in \Gamma \text{ and } u \in H^1_0(\Omega).$$

- The $\phi-$equivariant function space

$$H^1_0(\Omega)^\phi := \{ u \in H^1_0(\Omega) : u(\gamma x) = \phi(\gamma)u(x) \ \forall \gamma \in \Gamma, \ x \in \Omega \}.$$

- The principle of symmetric criticality (Palais 1979)
The variational setting

- The energy functional associated to (φ)

$$J_V : H_0^1(\Omega) \to \mathbb{R}$$

$$J_V(u) := \frac{1}{2} \|u\|_V^2 - \frac{1}{p} |u|^p,$$

where $\|u\|_V := \left(\int_\Omega \left(|\nabla u|^2 + (1 + V(x)) u^2 \right) \right)^{1/2}$.

- The action of Γ on $H_0^1(\Omega)$ induced by ϕ

$$(\gamma u)(x) := \phi(\gamma)u(\gamma^{-1}x) \quad \gamma \in \Gamma \text{ and } u \in H_0^1(\Omega).$$

- The ϕ–equivariant function space

$$H_0^1(\Omega)_{\phi} := \{ u \in H_0^1(\Omega) : u(\gamma x) = \phi(\gamma)u(x) \ \forall \gamma \in \Gamma, \ x \in \Omega \}.$$

- The principle of symmetric criticality (Palais 1979)
The variational setting

- The energy functional associated to (φ)
 \[J_V : H^1_0(\Omega) \to \mathbb{R} \]
 \[J_V(u) := \frac{1}{2} \|u\|_V^2 - \frac{1}{p} |u|^p_p, \]
 where \(\|u\|_V := \left(\int_{\Omega} \left(|\nabla u|^2 + (1 + V(x)) u^2 \right) \right)^{1/2} \).

- The action of \(\Gamma \) on \(H^1_0(\Omega) \) induced by \(\varphi \)
 \[(\gamma u)(x) := \varphi(\gamma)u(\gamma^{-1}x) \quad \gamma \in \Gamma \text{ and } u \in H^1_0(\Omega). \]

- The \(\varphi \)-equivariant function space
 \[H^1_0(\Omega)^\varphi := \{ u \in H^1_0(\Omega) : u(\gamma x) = \varphi(\gamma)u(x) \ \forall \gamma \in \Gamma, \ x \in \Omega \}. \]

- The principle of symmetric criticality (Palais 1979)
The variational setting

- The Nehari manifold

\[N^\phi := \left\{ u \in H^1_0(\Omega)^\phi : u \neq 0, \|u\|^2_V = |u|^p_p \right\}. \]

- Let \(\omega \) be the ground state of

\[(\phi_\infty) \left\{ \begin{array}{l}
-\Delta u + u = |u|^{p-2}u, \\
u \in H^1(\mathbb{R}^N).
\end{array} \right. \]

\[\lim_{|x| \to \infty} \frac{|D^\nu \omega(x)| |x|^\frac{N-1}{2}}{\exp{|x|}} = b_\nu > 0 \quad \text{for} \quad \nu = 0, 1. \]

- The energy functional \(J_\infty : H^1(\mathbb{R}^N) \to \mathbb{R} \) associated to problem \((\phi_\infty)\) is given by

\[J_\infty(u) := \frac{1}{2} \|u\|^2 - \frac{1}{p} |u|^p_p \quad \text{and} \quad c_\infty := J_\infty(\omega). \]
The variational setting

- The Nehari manifold
 \[\mathcal{N}^\phi := \left\{ u \in H^1_0(\Omega)^\phi : u \neq 0, \|u\|^2_V = |u|^p_p \right\}. \]

- Let \(\omega \) be the ground state of
 \[
 (\rho_\infty) \quad \begin{cases}
 -\Delta u + u = |u|^{p-2}u, \\
 u \in H^1(\mathbb{R}^N).
 \end{cases}
 \]

 \[
 \lim_{|x| \to \infty} |D^\nu \omega(x)| |x|^{\frac{N-1}{2}} \exp|x| = b_\nu > 0 \quad \text{ for } \nu = 0, 1.
 \]

- The energy functional \(J_\infty : H^1(\mathbb{R}^N) \to \mathbb{R} \) associated to problem \((\rho_\infty) \) is given by
 \[
 J_\infty(u) := \frac{1}{2} \|u\|^2 - \frac{1}{p} |u|^p_p
 \]
 \[
 c_\infty := J_\infty(\omega)
 \]
The variational setting

- The Nehari manifold
 \[N^\phi := \left\{ u \in H^1_0(\Omega)^\phi : u \neq 0, \|u\|_V^2 = |u|^p_p \right\}. \]

- Let \(\omega \) be the ground state of
 \[
 (\phi_\infty) \quad \left\{ \begin{array}{l}
 -\Delta u + u = |u|^{p-2}u, \\
 u \in H^1(\mathbb{R}^N).
 \end{array} \right.
 \]

\[\lim_{|x| \to \infty} \frac{|D^\nu \omega(x)||x|^{N-1/2}}{|x|^N} \exp |x| = b_\nu > 0 \quad \text{for} \quad \nu = 0, 1. \]

- The energy functional \(J_\infty : H^1(\mathbb{R}^N) \to \mathbb{R} \) associated to problem \((\phi_\infty) \) is given by
 \[
 J_\infty(u) := \frac{1}{2} \|u\|^2 - \frac{1}{p} |u|^p_p \quad \text{and} \quad c_\infty := J_\infty(\omega). \]
The variational setting

- The Nehari manifold

\[\mathcal{N}^\phi := \left\{ u \in H_0^1(\Omega) : u \neq 0, \|u\|^2_V = |u|^p_p \right\} . \]

- Let \(\omega \) be the ground state of

\[(\phi_\infty) \quad \begin{cases} -\Delta u + u = |u|^{p-2}u, \\ u \in H^1(\mathbb{R}^N). \end{cases} \]

\[\lim_{|x| \to \infty} |D^\nu \omega(x)| |x|^{\frac{N-1}{2}} \exp |x| = b_\nu > 0 \quad \text{for} \quad \nu = 0, 1. \]

- The energy functional \(J_\infty : H^1(\mathbb{R}^N) \to \mathbb{R} \) associated to problem \((\phi_\infty)\) is given by

\[J_\infty(u) := \frac{1}{2} \|u\|^2 - \frac{1}{p} |u|^p_p \quad c_\infty := J_\infty(\omega) \]
Proposition

Let \((u_n)\) be a sequence in \(H^1_0(\Omega)\) such that \(u_n \rightharpoonup 0\) in \(H^1_0(\Omega)\), \(J_0(u_n) \to c > 0\) and \(J'_0(u_n) \to 0\) in \(H^{-1}(\Omega)\). Then there exist a sequence \((\zeta_n)\) in \(\Omega\), a closed subgroup \(K\) of finite index in \(\Gamma\), a nontrivial solution \(v\) to problem \((\varphi_\infty)\) and a sequence \((w_n)\) in \(H^1_0(\Omega)\) such that

\(\begin{align*}
\Gamma\zeta_n &= K \quad \text{for all } n \in \mathbb{N}, \\
|\zeta_n| &\to \infty \quad \text{and} \quad |\alpha \zeta_n - \hat{\alpha} \zeta_n| \to \infty \quad \text{if } \hat{\alpha} \alpha^{-1} \notin K, \quad \hat{\alpha}, \alpha \in \Gamma, \\
v(\alpha x) &= \phi(\alpha)v(x) \quad \text{for all } x \in \mathbb{R}^N, \alpha \in K, \\
\left\|u_n - w_n - \sum_{[\alpha] \in \Gamma/K} \phi(\alpha)v\alpha^{-1}(\cdot - \alpha \zeta_n)\right\| &\to 0, \\
w_n &\rightharpoonup 0 \quad \text{in } H^1_0(\Omega), \quad J_0(w_n) \to c - |\Gamma/K| J_\infty(v) \quad \text{and} \quad J'_0(w_n) \to 0 \quad \text{in } H^{-1}(\Omega).
\end{align*}\)
The ϕ-equivariant Palais-Smale condition

Definition

J_V satisfies the condition $(PS)^\phi_c$ on N^ϕ if every sequence (u_n) such that

\[u_n \in N^\phi, \quad J_V(u_n) \to c, \quad \nabla_{N^\phi} J_V(u_n) \to 0, \]

contains a convergent subsequence in $H^1_0(\Omega)$.

$\nabla_{N^\phi} J_V(u)$ is the orthogonal projection of $\nabla J_V(u)$ onto $T_u N^\phi$.

Corollary

J_V satisfies the condition $(PS)^\phi_c$ on N^ϕ for all $c < |\Gamma/G| \ell c_\infty$.

\[J^d_V := \{ u \in H^1_0(\Omega) : J_V(u) \leq d \} \]
Sketch of the proof of Theorem 2

- $J_V : \mathcal{N}^\phi \rightarrow \mathbb{R}$ is an even function, which is bounded from below and satisfies $(PS)_c^\phi$ on \mathcal{N}^ϕ for all $c < 2\ell c_\infty$.

- if $d < 2\ell c_\infty$, J_V has at least

\[
\text{genus}(\mathcal{N}^\phi \cap J_V^d)
\]

pairs of critical points $\pm u$ with critical value $J_V(u) \leq d$.

\[\theta : \square \longrightarrow \mathcal{N}^\phi \cap J_V^d\]
Sketch of the proof of Theorem 2

- $J_V : \mathcal{N}^\phi \to \mathbb{R}$ is an even function, which is bounded from below and satisfies $(PS)_c^\phi$ on \mathcal{N}^ϕ for all $c < 2\ell c_\infty$.

- If $d < 2\ell c_\infty$, J_V has at least $\text{genus}(\mathcal{N}^\phi \cap J_V^d)$ pairs of critical points $\pm u$ with critical value $J_V(u) \leq d$.

$\theta : \Box \to \mathcal{N}^\phi \cap J_V^d$
Sketch of the proof of Theorem 2

- $J_V : \mathcal{N}^\phi \to \mathbb{R}$ is an even function, which is bounded from below and satisfies $(PS)_c^\phi$ on \mathcal{N}^ϕ for all $c < 2\ell c_\infty$.

- if $d < 2\ell c_\infty$, J_V has at least $\text{genus}(\mathcal{N}^\phi \cap J_V^d)$ pairs of critical points $\pm u$ with critical value $J_V(u) \leq d$.

\[\theta : \Box \longrightarrow \mathcal{N}^\phi \cap J_V^d \]
We define

\[\theta : \mathbb{Z} \rightarrow \mathcal{N}^\phi \cap J^d_V \]

\[\theta(y) := \pi \circ \chi \left(\sum_{[\alpha] \in \Gamma / \Gamma_y} \phi(\alpha) \omega_{R\alpha y} \right) \]

\[d < 2\ell c_\infty \]

- \(\theta \) is continuous and satisfies \(\theta(gz) = \theta(z) \) for all \(g \in G \) and \(\theta(\gamma z) = -\theta(z) \) if \(\phi(\gamma) = -1 \).
\[\hat{\theta} : Z/G \rightarrow \mathcal{N}^\phi \cap J^d_V \]

\[\hat{\theta}(Gz) := \theta(z) \]

which satisfies \(\hat{\theta}((-1) \cdot Gz) = -\hat{\theta}(Gz) \) for all \(z \in Z \).

\[
\text{genus}(Z/G) \leq \text{genus}(\mathcal{N}^\phi \cap J^d_V)
\]
Sketch of the proof of Theorem 2

- \(\theta \) induces a continuous map:

\[
\hat{\theta} : Z/G \rightarrow \mathcal{N}^\phi \cap J^d_V
\]

\[
\hat{\theta}(Gz) := \theta(z)
\]

which satisfies \(\hat{\theta}((-1) \cdot Gz) = -\hat{\theta}(Gz) \) for all \(z \in Z \).

\[
\text{genus}(Z/G) \leq \text{genus}(\mathcal{N}^\phi \cap J^d_V)
\]

Thanks for your attention.