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The second eigenfunction Introduction

Abstract

In this talk we report on the joint result of the speaker, Jifi Benedikt
and Petr Girg where we prove that the second eigenfunction of the
p-Laplacian, p > 1, on the disc is not radial. Our proof is a combination
of asymptotic analysis for p — +oc and the application of interval
arithmetic.
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In this talk we report on the joint result of the speaker, Jifi Benedikt
and Petr Girg where we prove that the second eigenfunction of the
p-Laplacian, p > 1, on the disc is not radial. Our proof is a combination
of asymptotic analysis for p — +oc and the application of interval
arithmetic.

In

we combine analytic and computer aided rigorous mathematical
proofs.
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The second eigenfunction Introduction

Eigenvalue problem and the first eigenvalue

Let D C R? be the open unit disc centered at the origin. We consider
the following eigenvalue problem

—Apu = AulP"2u in D,
(1)

u=0 on 0D,

where A,u = div (|Vu[P~2Vu) is the p-Laplacian, p > 1, and A is the
spectral parameter.
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Let D C R? be the open unit disc centered at the origin. We consider
the following eigenvalue problem

—Apu = AulP"2u in D,
(1)

u=0 on 0D,

where A,u = div (|Vu[P~2Vu) is the p-Laplacian, p > 1, and A is the
spectral parameter.

It is a well-known fact that the principal eigenfunction of (1)
(corresponding to the least eigenvalue \; of (1)) is a radial function
which does not change the sign in D and it is unique up to a multiple
by a nonzero real number.
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The second eigenfunction Introduction

Eigenvalue problem and the first eigenvalue

Let D C R? be the open unit disc centered at the origin. We consider
the following eigenvalue problem

—Apu = AulP"2u in D,
(1)

u=0 on 0D,

where A,u = div (|Vu[P~2Vu) is the p-Laplacian, p > 1, and A is the
spectral parameter.

It is a well-known fact that the principal eigenfunction of (1)
(corresponding to the least eigenvalue \; of (1)) is a radial function
which does not change the sign in D and it is unique up to a multiple
by a nonzero real number.

The existence of sign changing radial eigenfunctions associated with
higher eigenvalues was shown in many papers.
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The second eigenvalue Introduction

Radial solutions and the second eigenvalue

Note that the radial eigenfunctions of (1) are determined by nonzero
solutions u = u(r) of the ordinary differential equation

— (rlu/[P~2) = prlul 2w in (0,1) 2)

subject to the boundary conditions

u'(0) =0, u(l)=0. (3)
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The second eigenvalue Introduction

Radial solutions and the second eigenvalue

Note that the radial eigenfunctions of (1) are determined by nonzero
solutions u = u(r) of the ordinary differential equation

= (/P72 = prfuP~?u in (0,1) 2
subject to the boundary conditions

u'(0) =0, u(l)=0. (3)

It is also well-known that there is the second eigenvalue of (1),
A2 > A1. There are no eigenvalues of (1) in (A1, A2), and an
eigenfunction associated with A\, has exactly two nodal domains in D.
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The second eigenvalue Introduction

Radial solutions and the second eigenvalue

Note that the radial eigenfunctions of (1) are determined by nonzero
solutions u = u(r) of the ordinary differential equation

= (/P72 = prfuP~?u in (0,1) 2
subject to the boundary conditions
u'(0) =0, u(l)=0. (3)
It is also well-known that there is the second eigenvalue of (1),

A2 > A1. There are no eigenvalues of (1) in (A1, A2), and an
eigenfunction associated with A\, has exactly two nodal domains in D.

Note that the structure of the set of all eigenvalues of the p-Laplacian
(p # 2) beyond \s seems to be an interesting open problem.
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The second eigenfunction Introduction

Main result

An eigenfunction associated with \q is not radial for all p € (1, +00).
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The second eigenfunction Introduction

Main result

For the case p = 2, this fact follows from Payne, L. E., On two
conjectures in the fixed membrane eigenvalue problem, J. Appl. Math.
Physics (ZAMP) 24 (1973) and/or the Fourier method for the Laplacian
on a disc. In this paper we present a different argument to prove this
fact and generalize it for arbitrary p > 1.

It is important to note that the result for p sufficiently close to 1 follows
from Parini, E., The second eigenvalue of the p-Laplacian as p goes to
1, Int. J. Differential Equations 2010 (2010). The proof of Parini’s
Theorem 6.1 is based on Cheeger’s inequality and implies that a
second eigenfunction of (1) is not radial provided 1 < p < pg, where pg
is sufficiently close to 1.
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The second eigenfunction Introduction

Main result

For the case p = 2, this fact follows from Payne, L. E., On two
conjectures in the fixed membrane eigenvalue problem, J. Appl. Math.
Physics (ZAMP) 24 (1973) and/or the Fourier method for the Laplacian
on a disc. In this paper we present a different argument to prove this
fact and generalize it for arbitrary p > 1.

It is important to note that the result for p sufficiently close to 1 follows
from Parini, E., The second eigenvalue of the p-Laplacian as p goes to
1, Int. J. Differential Equations 2010 (2010). The proof of Parini’s
Theorem 6.1 is based on Cheeger’s inequality and implies that a
second eigenfunction of (1) is not radial provided 1 < p < pg, where pg
is sufficiently close to 1.

However, the value of py is not quantified in Parini.
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The second eigenfunction Proof

Preliminaries

The following two assertions express the continuous dependence of
eigenvalues on p € (1, +0o0).
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The second eigenfunction Proof

Preliminaries

The following two assertions express the continuous dependence of
eigenvalues on p € (1, +0o0).

(Huang, Y. X., On the eigenvalues of the p-Laplacian with varying p,
Proc. Amer. Math. Soc. 125, no. 11 (1997).)
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The second eigenfunction Proof

Preliminaries

The following two assertions express the continuous dependence of
eigenvalues on p € (1, +0o0).

A = A (p) is continuous in p € (1,4+00) for k =1, 2.

(Huang, Y. X., On the eigenvalues of the p-Laplacian with varying p,
Proc. Amer. Math. Soc. 125, no. 11 (1997).)

The set of the scalars 1 such that (2), (3) admits a nontrivial solution,
consists of an unbounded increasing sequence

0 < pi(p) < palp) <---.
Moreover, for any k € N, the set of solutions of (2), (3) for u = ux(p) is
a one-dimensional space spanned by a solution ®;, of (2), (3) with
exactly £k — 1 zeros in (0, 1), all of them simple. Furthermore,
ur = pi(p) as a function of p € (1, +00) is continuous for each k € N.
(Del Pino, M., Manasevich, R., Global bifurcation from the eigenvalues
of the p-Laplacian, J. Differential Equations 92, no. 2.(1991).)
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The second eigenfunction Proof

Preliminaries

In particular, we have \; = u;. The corresponding positive
eigenfunction of (1) is obtained by rotation of ®; around the origin.
Similarly, by rotation of ®,, we obtain the second radial eigenfunction
of the p-Laplacian which changes the sign exactly once in D and which
corresponds to the eigenvalue po. Our can be thus
restated as

forall p € (1, 400).
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The second eigenfunction Proof

Preliminaries

In particular, we have \; = u;. The corresponding positive
eigenfunction of (1) is obtained by rotation of ®; around the origin.
Similarly, by rotation of ®,, we obtain the second radial eigenfunction
of the p-Laplacian which changes the sign exactly once in D and which
corresponds to the eigenvalue po. Our can be thus
restated as

forall p € (1, 400).

As mentioned above the inequality holds for p = 2. Hence by the
continuous dependence of \y(p) and u2(p) on p it holds also for p close
to 2.
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The second eigenfunction Proof

Preliminaries

Consider now the eigenvalue problem on a general domain

—Apu = AulP2u in Q,
u=0 on o).

We set \; = \1(Q2) to emphasize the dependence of the principal
eigenvalue \; on the domain €.

Pavel Drabek June 8, 2012 8/26



The second eigenfunction Proof

Preliminaries

Consider now the eigenvalue problem on a general domain

—Apu = AulP2u in Q,
u=0 on o).

We set \; = \1(Q2) to emphasize the dependence of the principal
eigenvalue \; on the domain €.

Pavel Drabek June 8, 2012 8/26



The second eigenfunction Proof

Preliminaries

Consider now the eigenvalue problem on a general domain

—Apu = AulP2u in Q,
u=0 on o).

We set \; = \1(Q2) to emphasize the dependence of the principal
eigenvalue \; on the domain €.

The proof follows directly from the variational characterization of the
principal eigenvalue.
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The second eigenvalue Proof

Preliminaries

Let us consider the initial value problem

— (r]u’|p_2u’), = r|ulP~2u in (0, +o0),
u(0) =1, 4/(0)=0.
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The second eigenvalue Proof

Preliminaries

Let us consider the initial value problem

— (r]u’|p_2u’), = r|ulP~2u in (0, +o0),
u(0) =1, 4/(0)=0.

According to Lemma 5.2 in Del Pino, M., Manasevich, R., Global
bifurcation from the eigenvalues of the p-Laplacian, J. Differential
Equations 92, no. 2 (1991), (6) has a unique solution defined on

[0, +00) which we denote by .J; , = Jy ,(r). Moreover, Lemma 5.3 from
above paper implies that .Jy , is oscillatory with zeros

0 < vi(p) < ra(p) < --- — +oo, and Lemma 5.1 from above paper
claims that these zeros are simple. Clearly, px(p) = (vi(p))?,
k=1,2,...,and ®4(r) = Jo,(vk(p)r), r € [0, 1], is the corresponding
solution of (2), (3) from previous slide which has k& — 1 zeros in (0, 1).
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The second eigenfunction Preliminaries

Bessel function and its first two zeros

For p = 2, the equation in (6) can be written as
" 1 /
u +;u +u=0, r#0,

and so the solution of (6) coincides with the Bessel function Jy = Jy(r).
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The second eigenfunction Preliminaries

Bessel function and its first two zeros
For p = 2, the equation in (6) can be written as
u”Jr%u'Jru:O, r#0,
and so the solution of (6) coincides with the Bessel function Jy = Jy(r).
We have
vi(2) =2.4048 -, 15(2) = 5.5201-- -,

For p # 2, p € (1,+00), the solution .Jy , = Jy ,(r) of (6) can be thus
regarded as a generalization of the Bessel function Jy = Jy ».
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The second eigenfunction Preliminaries

Bessel function and its first two zeros

For p = 2, the equation in (6) can be written as
’LL”‘F%U,‘FU:O, r#0,
and so the solution of (6) coincides with the Bessel function Jy = Jy(r).
We have
vi(2) =2.4048 -, 15(2) = 5.5201-- -,

For p # 2, p € (1,+00), the solution .Jy , = Jy ,(r) of (6) can be thus
regarded as a generalization of the Bessel function Jy = Jy ».

An observation that appears to be important in the
proof.
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The second eigenfunction

NOTATION : N

N
K o
D .
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The second eigenfunction Proof
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The second eigenfunction Proof
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The second eigenfunction Proof
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The second eigenfunction Proof
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The second eigenfunction Proof

The accond radhal L0ge nfunctpim
festricted to e boll R % (o, o)
Y,

2

is He 76),}5# ,e,,,‘;enfu.ncﬁb*\ for Ylus ba/ :
S = A, (81, (o/o)>
Y

I% fZ)),< Vo Aben. monotone Aefendlence
/\1‘70t\ He oloreun omd Tranc/aton thva -

awe 014 Alo ’.""-/’e“‘“

/\1(8%(0, ;’;)) = 2,[82_, (s, o))( A, (8}»_«, /o,o)>

= = E DA®
Pavel Drabek June 8, 2012 16/26



The second eigenfunction Proof

Bi (o, r%)
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The second eigenfunction Proof
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The second eigenfunction

Proof
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The second eigenfunction

Proof
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The second eigenfunction Proof
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The second eigenfunction Proof

AO/ :I_ 7—0'_' i/wa—’\fﬁff the slatement
'/3 is close +o 7”

reockeces *o %o‘no&ing Sestable Panchron
e WD) suet that

f‘lf lov-1F PR
fD, 1v 1P '

Wc {ou.uo( a P('f_u.,m'.rg ,Z.‘w.w v wﬂ.'eZ
Satisfieo Ale 4;1.7:%2,-;5, above .

o = = = = wae
Pavel Drabek June 8, 2012 22/26



The second eigenfunction Proof

Ao{ 2. . jo,/, Solution o,[

LY« el G0

M(O) = 1, 4«—’(0> s 0
N o,f("')

°1P fer P»1
Ya(P)

2v,(p) < Vi (p) Y p2ae

Pavel Drabek June 8, 2012

23/26



Proof
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The second eigenfunction

Proof
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Thank you!
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