MAT 362 Spring 200711. Programming assignment: Inverse Power method

Instructor: Nándor Sieben e-mail: nandor.sieben@nau.edu http://jan.ucc.nau.edu/~ns46/362/362.html

Office: AMB 175 Hours: MW 10:10-12:10, F 10:10-11:10

Write a C++ program that implements the inverse power method for finding the smallest eigenvalue in absolute value and a corresponding eigenvector. At each iteration print the number of iterations, the approximate value of the eigenvalue and the corresponding eigenvector. Run your code with the given input files.

Name:

- This problem sheet with your name.
- A summary sheet explaining what you did, how you approached the problem, what was accomplished, what was not accomplished, etc.
- A list of the eigenvalue-eigenvector pairs and the number of required iterations for each input file. If a matrix is too large then include only the first 5 coordinates of the eigenvector.

Website:

- Create a directory called 11invpower on your web site and make all your input, output and source files available in this directory. Write the url for the website on this problem sheet.

Input:

A square matrix.

Output:

The number of iterations, the approximate eigenvalue and the corresponding eigenvector.

Sample input:

-2 0

0 4

Sample output:

0 1 2 5

1 0.2 -0.2 0.25

2 4 0.4 0.25

3 2.5 -0.5 0.15625

4 -2 -0.5 -0.078125

5 -2 -0.5 0.0390625

6 -2 -0.5 -0.0195312

7 -2 -0.5 0.00976562 8 -2 -0.5 -0.00488281

9 -2 -0.5 0.00244141

10 -2 -0.5 -0.0012207

11 -2 -0.5 0.000610352

12 -2 -0.5 -0.000305176

13 -2 -0.5 0.000152588

14 -2 -0.5 -7.62939e-05

15 -2 -0.5 3.8147e-05

16 -2 -0.5 -1.90735e-05

17 -2 -0.5 9.53674e-06

18 -2 -0.5 -4.76837e-06

19 -2 -0.5 2.38419e-06

20 -2 -0.5 -1.19209e-06

21 -2 -0.5 5.96046e-07

22 -2 -0.5 -2.98023e-07

Hints:

- Stop the iterations if the norm of the change in the eigenvector is less then a tolerance of 10^{-6} .
- Try to use the makefile I created for this project. It creates the required files automatically.
- Use an initial guess of $x = (x_0, \dots, x_{n-1})$ where $x_i = (i+1)^2 + 1$. A random number would work best here but this makes it easier to verify your output against my output.
- You can either use your linear system solver or you can write separate code to find the inverse of a matrix and then use the power method code on the inverse. Explain your approach in the summary sheet.