Programming assignment 4: Multivariable Newton method Name:

MAT 362 Spring 2007 Programm Instructor: Nándor Sieben e-mail: nandor.sieben@nau.edu http://jan.ucc.nau.edu/ \sim ns46/362/362.html Office: AMB 175 Hours: MW 10:10-12:10, F 10:10-11:10

Write a program implementing the multivariable Newton method. Use your program to find as many solutions of the following system as possible:

$$\cos(x)y - 2z + 10 = 0$$
$$z - y^{2}x + 10 = 0$$
$$e^{x-z} - 20 = 0$$

At each iteration print the number of iterations the estimate for the root and the value of the function at this estimate.

Turn in:

- This problem sheet with your name.
- A summary sheet explaining what you did, how you approached the problem, what was accomplished, what was not accomplished, etc.
- A table showing solutions, initial guesses and the number of iterations.
- A formula for the Jacobian matrix.

Website:

- Create a directory called 4multinewton on your web site and make all your input, output and source files available in this directory. Write the url for the website on this problem sheet.

Hints:

- To avoid huge amount of output, choose initial guesses that do not require too many iterations. Do not use more than one decimal place to create these initial guesses.
- When you define a function that implements $f: \mathbb{R}^3 \to \mathbb{R}^3$, make the input variable have type Trow. The function should also return type Trow. The Jacobian takes an input of type Trow and returns type Tmatrix.
- Use your code from the Gauss elimination project to solve linear systems of equations. Put this piece of code into a separate source file called linsyssolve.cc. Create a header file linsyssolve.h that you can include in your main source file.
- Use matrix.cc and matrix.h to implement generic matrix operations (scalar multiple, sum, norm printing,
- You need to compile all your source files together g++ multinewton.cc matrix.cc linsyssolve.cc.
- To simplify your work, write a go script that compiles and runs your code.
- Use absolute tolerance 10^{-15} for the norm.