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Community
Ecology

Considers outcome
of interactions
among species.

But has yet to
Incorporate
evolutionary insights
gained from studies
of multi-level
selection within
species.
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groups, = '

conspecific interactions may have significant

indirect genetic effects (IGESs)
(Moore et al. 1997; Goodnight & Stevens 1997; Wolf et al. 1998)




Indirect
Genetic
Effects (IGEs)

The fithess consequences
of genetically-based
interactions among

individuals in the same
species.

|GEs are now considered
important in group and

social evolution

(Wolf et al. 1999; Agrawal et al. 2001; Wade
2003).
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Genetic differences
among communities
are likely to arise.

An Analogous Mechanism

Involves genetic interactions
among individuals in different
species.

When the fithess consequences
of genetic interactions among
species changes the population
frequencies of alleles involved in
interactions,
Genetic interactions
among species and the
fitness effects they impose
are likely to undergo

continuous change.




Interspecific
Indirect Genetic
Effects (IIGEs)

The fitness consequences
of genetically-based
Interactions among
individuals in different
species.

lIGEs provide a basis for
communities to evolve
genetically and
differentiate
demographically.

(Shuster et al. 2006; Whitham et al. 2006).




Three Points:

1.Interspecific indirect genetic effects (IIGEs)
can occur between plants and arthropods.

2. A genetic basis for arthropod community
phenotype on cottonwood is measurable as
H?..

3. Significant H2. indicates that community-
level selection has occurred; community
evolution is likely underway.




Cottonwoods (Populus spp.) on Weber River, Utah




Unidirectional Introgression in Cottonwoods
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Cottonwood Phytochemistry Has a Genetic Basis

QTL Interval Mapping
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Cottonwood Trees as
Foundation Species

Species that structure
a community by
creating locally stable
conditions for other
species

Community
Phenotype

‘Traditional’
Phenotype

By modulating and
stabilizing
fundamental
ecosystem
processes.

Ecosystem
Phenotype

Shuster et al. 2006 Evolution
Whitham et al. 2003 Ecology, Whitham et al. 2006 Nature Reviews Genetics




Bud Gall Mite (Aceria parapopuli)




2 Bud Gall Mite (Aceria parapopuli)

Populus Hybrid and Overlap Zone Populus
fremontii T— angustifolia
= 800
P 700—
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Z 400 x<o001 X< 0.01 X=5. X=2.
0 N = 250 N =93 N =357 N=138
| : | | | |
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Whitham et al. 1999 Ecology




Location of mite susceptibility markers
within the Populus genome
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Genetic variation in cottonwoods
influences mite fithess
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Mites on narrowleaf cottonwood are genetically distinct
from mites on hybrid cottonwoods
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Neighbor-joining phylogram WC-Ed.seq
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The relative fitness of different mite
genotypes may covary with the genotype of
their cottonwood host
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Genetic variation in cottonwoods influences
arthropod communities in the wild and in
common gardens

o
o
|

N
o1
|

Community Diversity (H')
W
|

2
| I | I
0.1 015 0.2 025 0.3 0.35

Gene Diversity (He)

Whitham et al. 2006 Nature Reviews Genetics




Three Points:

\/ 1. Interspecific indirect genetic effects (IIGEs)
can occur between plants and arthropods.

2. A genetic basis arthropod community
phenotype on cottonwood is measurable as
H?..

3. Significant H?; indicates that selection
community-level selection has occurred,
community evolution is likely underway.




Two Possible

Outcomes of
IIGEs:

1.Community-level
selection.

2. Phenotypic
covariance among
genetically related

communities.




Community-
Level Selection
via lIGEs

Selection occurs within a
community context.

Individual relative fitness
depends on the genetic and
demographic composition of

its community.

The community need not have
fitness such that differential
extinction and proliferation of
communities occurs.

(e.g., Wilson 1997)




Phenotypic
Covariance Among
Communities via

IIGEs

Similar lIGEs are expected
to produce phenotypically
Similar communities.

Hypothesis: If genetic
interactions have no fithess
effects,

no differences will exist in
the composition of
arthropod communities
within or among
cottonwood genotypes.




Broad Sense
Community
Heritability, H?.

Measures the phenotypic
covariance of arthropod
communities on related

cottonwood trees.
(Shuster et al. 2006; Whitham et al. 20006).

When groups are clones,
HZC =[02among host genotype/ c)-z‘total]

The contribution of all
genetic factors influencing
community phenotypic
variation.




A Test: Arthropod
Communities on
Cottonwood
Clonal Replicates

We examined
communities on 20
RFLP-confirmed tree
genotypes within 4 tree
crosstypes (Fremont, F1,
BC, Narrowleaf) in a
common garden.

3-6 replicate clones per
genotype

(N,.... = 79).

trees




We Censused

The leaf modifying
arthropod community

14 species in 5 orders and
[ families

We Summarized

The number and type of
arthropods comprising
communities using non-
metric multidimensional
scaling (NMDS)




NMDS

, ‘\’4' = L
Ak

VAN AN

Common and rare arthropod
species are treated equally by
NMDS, so observed score
values represent community-
wide patterns.

Captures the phenotypic
outcome of trait interactions
among cottonwoods and
arthropods;

each community = a single
NMDS score

Each NMDS score
identifies a community
phenotype for each clonal
replicate within each tree
genotype, but provides no
specific information on the
genetic basis for that
score.




Three Analyses of Community
Phenotype With Increasing
Genetic Resolution

1. Line cross/joint scaling analysis of the effect of cross type
2. Nested ANOVA with genotype nested within cross type
3. 1-way ANOVA of genotype for each of the 4 cross types.

This Sequence Allowed Us To Determine:

Whether within- or between-species comparisons accounted
for more of the total variation in community phenotype

The extent to which our inferences from this system may
apply to other systems.

Whether estimates of H?. are possible and meaningful.
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Three Points:

1. Interspecific indirect genetic effects (IIGEs)
can occur between plants and arthropods.

\/ 2. A genetic basis for arthropod community

phenotype on cottonwood is measurable as
H?..

3. Significant H2. indicates that community-
level selection has occurred; community
evolution is likely underway.




The Basis for H?%.

H? is proportional to the product of:

the broad sense heritability of the tree trait used to

identify genetically similar communities, 6,

and the intensity of community-level selection, y,

relative to total selection in each ecological context,
(v +E,).

H? loc| H? L
¢ 9y+En




Estimates of H%.

Quantify more than just the heritability of the
tree trait.

They include the phenotypic effects of
individual-level, as well as community-level
selection,

HZOCHZ 7/
¢ 97/+En




Can Simulated IIGEs Produce
Distinct Communities?

We modeled synthetic
communities in which the
number, intensity and
fitness consequences of
the lIGEs were known.

We created synthetic
trees in which a single trait
influencing plant
phytochemistry, 6,, varied
among tree genotypes and
cross types.




Synthetic Arthropods Sampled
Synthetlc

0.25 4

0 100 120

o
[

Frequency
o
o MIN
= o
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We then used NMDS to
collapse arthropod multi-
species abundances for each
tree into a single community

phenotype for community '
genetic analysis (H2.). ﬂ_’ﬁ




Phytochemical Trait Expression
¢ =a +a,+e,

Was controlled by 2
alleles at a single locus

where a, was the additive effect
of an allele on chromosome 1,
a, was the additive effect of an
allele on chromosome 2, e,
represented random
environmental effects; there
was no dominance.




Arthropod Trait Expression

Z,=b,+Db,+e,

Was also controlled
by 2 alleles at a
single locus

where b, was the additive

effect of an allele on

chromosome 1, b, was

the additive effect of an

allele on chromosome 2
and e, represented

random environmental

effects.




The j-th Arthropod Phenotype on
the i-th Cottonwood Tree

z,=2p;D; +2p,(1-p,)(C, +Dj)+2(1—pj)2 ¢

Was determined by the frequencies of the 2 alleles for
each j-th arthropod species, C; and D;, with p; as the
population frequency of D,.




Joint Changes in Arthropod

Populations
2
dz. ©
I Gj >
dt (75_ 7/(6" - ”)’

dp, dz; 1
dt  dt 2D,-2C

c.f., Ronce & Kirkpatrick 2001




The Effects of Other Species

N o k(1_7 2 _Z(@I,_Zf)z +E_
2 2 : U

j 2.l

Depended on the relative magnitude of ecological interactions other than
the tree on the population size of the j-th arthropod species, on the i-th
tree, with E, proportional to carrying capacity.




H?.: Effects of -

H%, yand E, -

2
c 0.5

0.4 -

As selection (y) increased, =
community heritability 02
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0 i
0.00001

As ecological variation
(En) increased, the rate of
increase declined.

H?- was proportional to

plant heritability (H2,). o e
H%; 0.5 — &30

H?; was lower when plant > BV
] -

heritability was lower (A) .
and higher when plant "
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v (strength of selection) Shuster et al. 2006 Evolution




Three Points:

1. Interspecific indirect genetic effects (IIGEs)
can occur between plants and arthropods.

2. A genetic basis for arthropod community
phenotype cottonwood is measurable as H?..

3. Significant estimates of H?. do indicate that
community-level selection has occurred;
community evolution is likely underway.




Common
Gardens

Replicated
clones and experimental
crosses map
ecologically
important traits and
quantify heritability.

Restoration at a former
Super Fund site




Plant Genetic Factors Account for ~50% of the
Variation in Ecosystem Services

Water Cycles 35-40%
(Fluxes from Soil to Plant to
Atmosphere) Fischer et al. 2004

Oecologia

Biodiversity 43-78%
(Microorganisms, Herbivores,
Birds) Wimp et al. 2004 Ecology
Letters, Bangert et al. 2004
Conservation Biology, Shuster et
al. 2006 Evolution, Bailey et al.
Ecology Letters 2006, LeRoy et al.
2006 Ecology, Schweitzer et al.

2006 & unpub. data

Plant Growth Rate

Constant 45%

(Productivity)
Lojewski et al.

unpub. data

Nutrient Cycles

34-65%

(Soil Fertility)
Schweitzer et al.
2004 Ecology Letters,
2005 Ecology, 2005
Oikos, LeRoy et al.
2006 Ecology

Belowground Carbon
Storage & Root

Production 77%
Fischer et al. 2006 Oecologia




Application in Restoration

A 40-acre common
garden was planted
with ~10,000 trees in
2005 to study the
effects of tree genetic
diversity on the
diversity of the
arthropod and
microbial communities.
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Conservation
Implications

There are evolutionary
genetic reasons why
monocultures
decrease total species
diversity.

Relative stability may
depend on the
strength and diversity
of different [IGEs.




Conservation
Implications

There are evolutionary
genetic reasons why
Global Climate
Change can have far
reaching
consequences.

Drought in Arizona
has significant effects
on arthropod N\
communities.

m Control

Axis 2

Axis 1

Scudder et al., 2005, Unpublished data




Conservation
Implications

There are
evolutionary genetic
reasons why
Genetically Modified
Organisms must be
iIntroduced with care.

The ecological
consequences of
novel IIGEs may be
difficult to predict.




Community and Ecosystem Phenotypes,
and Heritability in Diverse Systems

Level of System Plant Phenotypes Heritability Foundation
Investigation Type Species
Community
Eucalyptus  Tree 1 Unmeasured Yes
Oenothera Herb 1 Yes No
FPinus Lree 4 Unmeasured Yes
Populus Tree 1-3 Yes Yes
Quercus Tree 1 Unmeasured Yes
Salix Tree 1 Unmeasured Yes
Solidago Herb 1 Unmeasured Yes
Ecosystem
| _Metrosidero  Tree 4 Unmeasured Yes |
" Populus Tree 5-7 Yes Yes
Quercus Tree 6,7 Unmeasured Yes
Solidago Herb 8 Unmeasured Yes

Organism: 1-arthropods, 2-microbes and fungi, 3-vertebrates, 4-plants
Process: 5-litter decomposition, 6-energy flow, 7-nutrient cycles, 8 productivity.

Whitham et al. 2006 Nature Reviews Genetics, plus new studies




Why Do We Need a Community
Genetics Perspective?

1. Prevailing models of community organization and
ecosystem dynamics do not include a genetic-
based perspective (e.g., Hubbell's null model
hypothesis).

2. Ignoring lIGEs may exclude a significant
component of total selection on ecologically
Important traits.

3. A genetic-based framework places community
and ecosystem ecology within an evolutionary
framework.
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