BIO 682 Nonparametric Statistics Spring 2010

Steve Shuster

http://www4.nau.edu/shustercourses/BIO682/index.htm

Lecture 7

k-Sample Tests

1. Tests in which population is sampled *multiple times*.

2. Good example: Cochran's Q test.

a. A test for nominal scale data that tests for *changes over time*

b. Similar to McNemar's test, except that duration is not limited to two samples.

Cochran's Q Test

1. Faculty responses to New Plan at various times in over the last few months.

a. Possible to examine the effect of time on subjects.

b. Useful to have a control in most cases (not always possible).

Cochran's Q Test: Method

examine matrix with:
a. a = # of columns (sampling events)
b. b = # of rows (subjects)
c. Y = score for each individual at time a_i (0 or 1)

RxC Tests

1. Like a contingency table but with *more than* 2 rows or columns.

2. The classic method: $RxC X^2$ test.

a. Method:

Marginal values calculated as with 2x2 test.
Add up all X² values for cells.

3. Has same problems with being cumbersome as $2x2 X^2$ test.

RxC *G*-tests

1.Has same advantages as before, same rules:

a. for a > 5 and $f_{i-hat} > 3$; *G* is *better* than X^2

b. Use an exact test when:

a. a > 5 and $f_{i-hat} < 3$ b. a < 5 and $f_{i-hat} < 5$

2. Commonly used test to examine independence of multiple classes.

Exa	mpl	e: <i>Idd</i>	otea l	balti	ca
	М	J	J	А	
uniformis	254	185	93	55	587
albafusca	185	144	123	190	642
maculata	66	98	200	305	669
	505	427	416	550	1898
obs. f mac.	.13	.23	.48	.55	avg = .35

Example: Idotea baltica

1. RxC test allows you to test the hypothesis that the observed frequencies *don't change*.

2. Same method as 2x2:

[(ΣG -cells)-(ΣG -rows)-(ΣG -columns)+(G-N)]

a. with df = (r-1)(c-1) = 6.

3. Williams' correction is used for sample sizes <200.

a. Is a lot more complicated than before (see p. 745).

Williams' Correction: RxC

6n(a-1)(b-1)

But the shorter version provides a lower boundary (a conservative substitute),

q = 1 + [(a+1)(b+1)]/6n

RxC and Heterogeneity Tests

- 1. They are functionally analogous.
- 2. They both test whether the samples differ in their *observed frequencies*.
- 3. The difference is that heterogeneity tests are based on an *extrinsic hypothesis*.
 - 4. RxC tests are based on marginal totals, therefore the hypothesis is *intrinsic* to data.

RxC: What is the Question?

- 1. Do the relative frequencies *change*?
- 2. A significant *G*-value tells you that differences *DO* exist among categories.
- a. But, doesn't say much about *where* they are.
 - 3. To answer this question, it is possible to collapse RxC into a series of 2x2 tests.

1. It is necessary to pool adjacent rows and/or columns to reduce the number of comparisons. М J J A uniformis 254 185 93 55 587 albafusca 185 144 123 190 642 maculata 66 98 200 305 669 427 505 416 550 1898 obs. f mac. .13 .23 .48 .55 avg = .35

Collapsing Cells

Measures of Association

1. The converse of tests of independence are tests of association.

- a. If H_0 is rejected, inference can be that factors are associated.
 - b. Examples:
- 1. Nonparametric correlations (Spearman's r; Kendall's tau).
 - 2. Friedman's test
- 2. Three-way, multiple way contingency tables.

k-Way Tables

1. Multi-way contingency tables

- a. Like ANOVA; they test the effect of multiple factors on observed values
 b. However,
- 1. ANOVA is concerned with *main effects*
- a. If interactions are found, it is often difficult to identify their source.
- 2. Multi-way tables are specifically concerned with identifying source of interactions.

Ordinal Scale Tests

- 1. One sample cases- Runs test
- a. There are many cases in which the order in which events occur is of interest.
- b. Concern with independence, randomness.
- c. Individuals choosing different sides of an experimental chamber.
- d. Sequence in which different sexes defend territory.
- 2. Whenever it is possible to record the order in which events occur.

Coin Flips

1. Possible extremes in 20 tosses:

- a. All heads or all tails.
- b. 10 heads followed by 10 tails

2. More likely, there is some intermediate pattern: HH TTT H TTT HHH T H TTT H

3. In each case it is possible to count the number of "runs" that occur (r).

Counting Runs

1. The first two cases have *fewer* runs than expected by chance (r =1 and 2)

- 2. The third has *more* runs than expected by chance (r = 20)
 - 3. the forth has r = 9.

4. The number of runs (r) will depend on:

a. m - # of events of one type

- b. n # of events of the other type
- c. Since these variables count all events,

N= r = n+m.

is great											in nig							er +a	luc, or
1	-		Υ.		_						11			18	16	_	18	18	20
1	T	-									1	1	1	ł	1	1	1	1	1
1	Ŀ				t	÷	ŧ	ł.	÷	2	3	1	1	2	2	÷	3	÷	2
				£	:		ż	3		1	1		2	2	•	÷	•	÷	:
			ţ	6		1	j.	2	2	•		•			•		1		
			-				1		4				1	1	1	÷		÷	•
	Ŀ								1	1	1		1			÷			:
	L	1						2	1	1		:				1	1	1	3
	L		1	5				5	3			3	3	2	1	1			
14	L				4		1	1			3	2	2	1				1	3
											1	1	2	2	1	2	2	2	3
									3	17	7		1	2			2		2
13	1		,		1			*	17	18		1	:	2	11 *	11	24		-10 -10 -10
14	1.	-	3			5	*			-					30	18	10	13	#
48	1,			1				1	10	1	-	*	21 9	22 28	**	23 11	18	12	
18	1		1				*		-	7	*	*	32 10		13 11	23	28	20 12	17 11
			-					Υ.		28	*	21	**	12	10	24 13	25 13	29 12	13
		-	-	1	-		, 10	*	*	*	-		11 11 11	13	39	11 12 12	15	15	26 13
	Ľ		1	*	-	-					10	22 23	11	28	12	12	15	28	17
2	11	-		1		ì	11	*	*	-11				14	-85 11	28	28	27	17
20		-	-	2	2	1	ú	ú.	2	ai.	볋	-11	31	ñ	'n	16	ii.	ii.	

Small Samples

Where *m* and *n* < 20

 Use Table G (S&C)
 Provides the values for *m* and *n* Also, boundaries of values for r that could occur 95% of the time.
 Thus, provides a 2-tailed test.

If a 1-tailed test: Ho is rejected is at α = .025

Large Samples 1. When *m* and *n* > 20: 1. The value of *z* is based on a normal distribution. $z = \underbrace{r + h - \mu_{r}}_{\sigma_{r}}$ where r = # of runs Where, $a. \mu_{r} = (2mn/N) + 1$ b. $\sigma_{r} = \sqrt{\{[2mn(2mn - N)] / [N^{2}(n-1)]\}}$

c. h = .5 if r < [(2mn/N)+1] and -.5 if r > [(2mn/N)+1].

Two Sample Cases

1. The Sign Test

a. One of the simplest tests using ordinal data.b. Is used like a binomial test to determine the

order of two samples.

Example: Sign Test

1. The number of warning cries delivered against intruders by male and female pairs of trogons.

