BIO 682
 Nonparametric Statistics Spring 2010

Steve Shuster
http://www4.nau.edu/shustercourses/BIO682/index.htm
\section*{Lecture 7}

k-Sample Tests

\qquad

1. Tests in which population is sampled multiple times.
2. Good example: Cochran's Q test.
a. A test for nominal scale data that tests for changes over time
b. Similar to McNemar's test, except that duration is not limited to two samples.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Cochran's Q Test

\qquad

1. Faculty responses to New Plan at various times in over the last few months. \qquad
a. Possible to examine the effect of time on subjects.
\qquad
b. Useful to have a control in most cases (not always possible).

Cochran's Q Test: Method

1. examine matrix with:
a. $a=\#$ of columns (sampling events)
b. $b=\#$ of rows (subjects)
c. $Y=$ score for each individual at time

$$
a_{\mathrm{i}}(0 \text { or } 1)
$$

Cochran's Q Test: Method \qquad
$\mathrm{Q}=\frac{(a-1)\left[a(\mathrm{C})-(\mathrm{A})^{2}\right]}{\mathrm{a}(\mathrm{A})-\mathrm{B}}$ \qquad
\qquad
$=(3-1)[3(75)-169]$

$$
3(13)-25
$$

$$
=8 \text {. }
$$

with $\mathrm{df}=(a-1)=2,\left(X^{2}=5.99\right), \mathrm{P}<.05$

> People change.

RxC Tests

1. Like a contingency table but with more than 2 rows or columns.
2. The classic method: $\mathrm{RxC} \mathrm{X} X^{2}$ test.

> a. Method:

1. Marginal values calculated as with 2×2 test.
2. Add up all X^{2} values for cells.
3. Has same problems with being cumbersome

$$
\text { as } 2 \times 2 X^{2} \text { test. }
$$

RxC G-tests

\qquad
1.Has same advantages as before, same rules:
a. for $a>5$ and $f_{\text {i-hat }}>3 ; G$ is better than X^{2}
b. Use an exact test when:
a. $a>5$ and $f_{\text {i-hat }}<3$
b. a <5 and $f_{\text {i-hat }}<5$
2. Commonly used test to examine \qquad independence of multiple classes.

Example: Idotea baltica

\qquad
\qquad

uniformis

albufusca

maculata

Example: Idotea baltica					
	M	Ј	J	A	
uniformis	254	185	93	55	587
albafusca	185	144	123	190	642
maculata	66	98	200	305	669
	505	427	416	550	1898
obs. f mac.	. 13	. 23	. 48	. 55	avg $=.35$

Example: Idotea baltica

1. RxC test allows you to test the hypothesis that the observed frequencies don't change.
2. Same method as 2×2 :
[(ΣG-cells)-(ΣG-rows)-(ΣG-columns) $)+(G$-N $)]$
a. with $\mathrm{df}=(r-1)(c-1)=6$.
3. Williams' correction is used for sample sizes <200.
a. Is a lot more complicated than before (see
p. 745).

Williams' Correction: RxC

\qquad

$$
\left.\stackrel{b}{\left(n \sum 1 / \sum f\right.} \stackrel{a}{f}-1\right)\left(n \sum 1 / \sum_{\mathrm{f}}^{\mathrm{f}} \mathrm{l}^{\mathrm{a}} 1\right)
$$

But the shorter version provides a lower
\qquad q $\frac{6 \mathrm{~m}(\mathrm{a}-1)(\mathrm{b}-1)}{}$ boundary (a conservative substitute),

$$
q=1+[(a+1)(b+1)] / 6 n
$$

RxC and Heterogeneity Tests

1. They are functionally analogous.
2. They both test whether the samples differ in their observed frequencies.
3. The difference is that heterogeneity tests are based on an extrinsic hypothesis.
4. RxC tests are based on marginal totals, therefore the hypothesis is intrinsic to data.

RxC: What is the Question?

\qquad

1. Do the relative frequencies change?
2. A significant G-value tells you that differences $\boldsymbol{D O}$ exist among categories.
a. But, doesn't say much about where they are.
3. To answer this question, it is possible to
\qquad
\qquad
\qquad
\qquad collapse RxC into a series of 2×2 tests.

Collapsing Cells

\qquad

1. It is necessary to pool adjacent rows and/or columns to reduce the number of \qquad comparisons.

	M	J	J	A	
uniformis	254	185	93	55	587
albafusca	185	144	123	190	642
maculata	66	98	200	305	669
	505	427	416	550	1898
obs. fmac.	.13	.23	.48	.55	avg $=.35$

\qquad
\qquad
\qquad
\qquad
\qquad

Measures of Association

1. The converse of tests of independence are tests of association.
a. If H_{o} is rejected, inference can be that factors are associated.
b. Examples:
2. Nonparametric correlations (Spearman's r; Kendall's tau).
3. Friedman's test
4. Three-way, multiple way contingency tables.

k-Way Tables

\qquad

1. Multi-way contingency tables
a. Like ANOVA; they test the effect of
\qquad multiple factors on observed values
b. However,
2. ANOVA is concerned with main effects
a. If interactions are found, it is often difficult to identify their source.
3. Multi-way tables are specifically concerned with identifying source of interactions.

Ordinal Scale Tests

\qquad

1. One sample cases- Runs test
a. There are many cases in which the order in which events occur is of interest.
b. Concern with independence, randomness.
c. Individuals choosing different sides of an experimental chamber.
d. Sequence in which different sexes defend territory.
2. Whenever it is possible to record the order in which events occur.

Coin Flips

1. Possible extremes in 20 tosses:
a. All heads or all tails.
b. 10 heads followed by 10 tails
c. THTHTHTHTHTHTHTHTHTH
2. More likely, there is some intermediate pattern:
HH TTT H TTT HHH T H TTT H
3. In each case it is possible to count the \qquad number of "runs" that occur (r).

Counting Runs

1. The first two cases have fewer runs than expected by chance ($\mathrm{r}=1$ and 2)
2. The third has more runs than expected by chance ($\mathrm{r}=20$)
3. the forth has $r=9$.
4. The number of runs (r) will depend on:
a. m - \# of events of one type
b. n - \# of events of the other type
c. Since these variables count all events,

$$
\mathrm{N}=\mathrm{r}=n+m .
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Small Samples

1. Where m and $n<20$
a. Use Table G (S\&C)
b. Provides the values for m and n
c. Also, boundaries of values for r that could occur 95% of the time.
2. Thus, provides a 2 -tailed test.
3. If a 1 -tailed test: Ho is rejected is at $\alpha=.025$

Large Samples

\qquad

1. When m and $n>20$:
2. The value of z is based on a normal \qquad distribution.
$r+h-\mu_{r}$
z $=$
 Where, \qquad a. $\mu_{\mathrm{r}}=(2 m n / \mathbf{N})+1$
b. $\left.\sigma_{\mathrm{r}}=\sqrt{\left\{[2 m n(2 m n-\mathrm{N})] /\left[\mathrm{N}^{2}(\mathrm{n}-1)\right]\right.}\right\}$
c. $\mathrm{h}=.5$ if $\mathrm{r}<[(2 \mathrm{mn} / \mathrm{N})+1]$ and -.5 if $\mathrm{r}>[(2 \mathrm{mn} / \mathrm{N})+1]$.

Two Sample Cases

\qquad

1. The Sign Test
a. One of the simplest tests using ordinal data.
b. Is used like a binomial test to determine the order of two samples.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
