[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 128, 34 ] =
UG(ATD[128,46]).
(I) Following is a form readable by MAGMA:
g:=Graph<128|{ {32, 33}, {80, 81}, {40, 41}, {1, 3}, {124, 126}, {116, 118},
{104, 106}, {88, 90}, {44, 46}, {28, 30}, {60, 63}, {1, 5}, {121, 125}, {65,
69}, {11, 14}, {97, 100}, {1, 7}, {35, 37}, {64, 70}, {5, 13}, {68, 76}, {49,
56}, {1, 11}, {118, 124}, {34, 40}, {32, 42}, {3, 9}, {64, 74}, {37, 46}, {67,
72}, {3, 15}, {119, 123}, {99, 111}, {65, 77}, {7, 10}, {115, 126}, {33, 44},
{23, 26}, {55, 58}, {52, 58}, {99, 109}, {100, 107}, {117, 122}, {76, 92}, {38,
55}, {5, 23}, {106, 120}, {104, 122}, {6, 21}, {108, 127}, {107, 120}, {103,
116}, {5, 17}, {105, 125}, {13, 25}, {11, 31}, {9, 29}, {4, 17}, {106, 127},
{102, 115}, {101, 112}, {3, 21}, {100, 114}, {38, 48}, {36, 50}, {8, 31}, {102,
113}, {9, 19}, {109, 119}, {76, 86}, {15, 20}, {43, 48}, {69, 94}, {7, 27},
{105, 117}, {103, 123}, {101, 121}, {47, 49}, {96, 126}, {45, 50}, {7, 39}, {95,
127}, {13, 45}, {11, 43}, {9, 41}, {14, 47}, {83, 113}, {2, 33}, {25, 58}, {21,
54}, {17, 53}, {89, 125}, {84, 112}, {79, 107}, {78, 106}, {72, 108}, {24, 61},
{16, 54}, {79, 105}, {25, 63}, {20, 50}, {16, 56}, {25, 49}, {22, 62}, {71,
111}, {10, 35}, {18, 59}, {71, 110}, {19, 57}, {88, 114}, {22, 60}, {2, 41},
{12, 39}, {13, 33}, {88, 116}, {81, 125}, {80, 124}, {23, 59}, {87, 122}, {18,
61}, {79, 96}, {30, 49}, {80, 97}, {83, 98}, {90, 104}, {14, 61}, {73, 122},
{68, 119}, {66, 118}, {28, 41}, {64, 117}, {19, 37}, {77, 123}, {78, 121}, {87,
111}, {95, 103}, {6, 63}, {73, 112}, {65, 120}, {72, 114}, {84, 110}, {82, 104},
{29, 38}, {74, 113}, {15, 51}, {26, 38}, {10, 55}, {80, 109}, {74, 116}, {77,
115}, {2, 61}, {89, 102}, {83, 108}, {27, 36}, {10, 75}, {39, 102}, {20, 85},
{35, 97}, {59, 121}, {32, 100}, {53, 113}, {54, 112}, {4, 67}, {26, 93}, {14,
70}, {42, 98}, {28, 84}, {15, 71}, {52, 124}, {2, 75}, {44, 101}, {30, 85}, {40,
99}, {29, 81}, {43, 103}, {31, 83}, {57, 119}, {60, 114}, {58, 117}, {60, 115},
{19, 67}, {48, 96}, {4, 85}, {24, 73}, {22, 71}, {12, 94}, {44, 126}, {8, 91},
{27, 79}, {59, 111}, {20, 65}, {12, 90}, {12, 91}, {17, 73}, {26, 66}, {18, 72},
{23, 77}, {51, 105}, {52, 110}, {6, 93}, {16, 75}, {54, 109}, {6, 91}, {24, 69},
{22, 75}, {8, 86}, {18, 76}, {53, 107}, {4, 91}, {21, 74}, {51, 108}, {37, 69},
{62, 94}, {62, 92}, {28, 127}, {16, 120}, {8, 97}, {24, 118}, {48, 94}, {56,
86}, {40, 88}, {35, 82}, {46, 95}, {51, 66}, {53, 68}, {63, 78}, {36, 86}, {39,
84}, {46, 93}, {55, 68}, {45, 89}, {50, 70}, {47, 90}, {42, 92}, {32, 87}, {52,
67}, {57, 78}, {27, 99}, {31, 101}, {56, 66}, {34, 89}, {36, 95}, {43, 87}, {30,
96}, {34, 92}, {47, 81}, {62, 64}, {29, 98}, {42, 85}, {34, 93}, {45, 82}, {57,
70}, {82, 128}, {98, 128}, {110, 128}, {123, 128} }>;
(II) A more general form is to represent the graph as the orbit of {32, 33}
under the group generated by the following permutations:
a: (1, 2)(3, 41)(4, 42)(5, 33)(6, 34)(7, 75)(8, 76)(11, 61)(12, 62)(15, 28)(16,
27)(17, 32)(18, 31)(19, 29)(20, 30)(21, 40)(22, 39)(23, 44)(24, 43)(25, 45)(26,
46)(35, 55)(36, 56)(37, 38)(47, 70)(48, 69)(49, 50)(51, 127)(52, 128)(53,
100)(54, 99)(57, 81)(58, 82)(59, 101)(60, 102)(63, 89)(64, 90)(65, 96)(66,
95)(67, 98)(68, 97)(71, 84)(72, 83)(73, 87)(74, 88)(77, 126)(78, 125)(79,
120)(80, 119)(91, 92)(103, 118)(104, 117)(105, 106)(111, 112)(113, 114)(123,
124) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 3)(2, 4)(5, 9)(6, 10)(7, 21)(8, 22)(11, 15)(12, 16)(13, 19)(14, 20)(17,
41)(18, 42)(23, 29)(24, 30)(25, 37)(26, 38)(27, 74)(28, 73)(31, 71)(32, 72)(33,
67)(34, 68)(35, 63)(36, 64)(39, 54)(40, 53)(43, 51)(44, 52)(45, 57)(46, 58)(47,
65)(48, 66)(49, 69)(50, 70)(55, 93)(56, 94)(59, 98)(60, 97)(61, 85)(62, 86)(75,
91)(76, 92)(77, 81)(78, 82)(79, 116)(80, 115)(83, 111)(84, 112)(87, 108)(88,
107)(89, 119)(90, 120)(95, 117)(96, 118)(99, 113)(100, 114)(101, 110)(102,
109)(103, 105)(104, 106)(121, 128)(122, 127)(123, 125)(124, 126)
c: (2, 111)(3, 11, 7, 5)(4, 74, 8, 102)(6, 83, 12, 53)(9, 43, 10, 23)(13, 15,
14, 27)(16, 121, 28, 122)(17, 21, 31, 39)(18, 40, 32, 22)(19, 103, 35, 77)(20,
70, 36, 45)(24, 109, 44, 110)(25, 51, 47, 79)(26, 29, 48, 55)(30, 117, 56,
125)(33, 71, 61, 99)(34, 42, 62, 76)(37, 123)(41, 87, 75, 59)(46, 128, 69,
119)(49, 105)(52, 118, 80, 126)(54, 101, 84, 73)(57, 95, 82, 65)(58, 66, 81,
96)(60, 72, 88, 100)(63, 108, 90, 107)(64, 86, 89, 85)(67, 116, 97, 115)(68, 93,
98, 94)(78, 127, 104, 120)(91, 113)
d: (3, 5)(4, 6)(7, 11)(8, 12)(9, 13)(10, 14)(15, 23)(16, 24)(17, 21)(18, 22)(19,
25)(20, 26)(27, 43)(28, 44)(29, 45)(30, 46)(31, 39)(32, 40)(33, 41)(34, 42)(35,
47)(36, 48)(37, 49)(38, 50)(51, 77)(52, 78)(53, 74)(54, 73)(55, 70)(56, 69)(57,
58)(59, 71)(60, 72)(61, 75)(62, 76)(63, 67)(64, 68)(65, 66)(79, 103)(80,
104)(81, 82)(83, 102)(84, 101)(85, 93)(86, 94)(87, 99)(88, 100)(89, 98)(90,
97)(95, 96)(105, 123)(106, 124)(107, 116)(108, 115)(109, 122)(110, 121)(117,
119)(118, 120)(125, 128)(126, 127)
e: (3, 7)(4, 8)(5, 11)(6, 12)(9, 10)(13, 14)(15, 27)(16, 28)(17, 31)(18, 32)(19,
35)(20, 36)(21, 39)(22, 40)(23, 43)(24, 44)(25, 47)(26, 48)(29, 55)(30, 56)(33,
61)(34, 62)(41, 75)(42, 76)(45, 70)(46, 69)(51, 79)(52, 80)(53, 83)(54, 84)(57,
82)(58, 81)(59, 87)(60, 88)(63, 90)(64, 89)(65, 95)(66, 96)(67, 97)(68, 98)(71,
99)(72, 100)(73, 101)(74, 102)(77, 103)(78, 104)(85, 86)(93, 94)(107, 108)(109,
110)(115, 116)(117, 125)(118, 126)(119, 128)(120, 127)(121, 122)
C4[ 128, 34 ]
128
-1 11 3 5 7
-2 33 61 41 75
-3 1 15 9 21
-4 67 91 17 85
-5 1 23 13 17
-6 91 93 63 21
-7 1 27 39 10
-8 91 31 86 97
-9 3 29 19 41
-10 55 35 7 75
-11 1 14 31 43
-12 90 91 39 94
-13 33 45 25 5
-14 11 47 70 61
-15 3 71 51 20
-16 56 75 54 120
-17 4 5 73 53
-18 59 61 72 76
-19 67 57 37 9
-20 15 50 85 65
-21 3 6 74 54
-22 60 71 62 75
-23 77 26 59 5
-24 69 61 73 118
-25 13 58 49 63
-26 66 23 38 93
-27 99 79 36 7
-28 127 84 30 41
-29 81 38 9 98
-30 49 28 85 96
-31 11 101 83 8
-32 33 100 42 87
-33 44 2 13 32
-34 89 92 93 40
-35 37 82 97 10
-36 27 50 95 86
-37 35 46 69 19
-38 55 26 48 29
-39 12 102 7 84
-40 88 99 34 41
-41 2 28 40 9
-42 92 85 32 98
-43 11 48 103 87
-44 33 46 101 126
-45 89 13 82 50
-46 44 37 93 95
-47 90 14 81 49
-48 38 94 96 43
-49 56 25 47 30
-50 45 36 70 20
-51 66 15 105 108
-52 110 67 58 124
-53 68 113 17 107
-54 112 16 21 109
-55 68 58 38 10
-56 66 16 49 86
-57 78 70 19 119
-58 55 25 117 52
-59 121 23 111 18
-60 22 114 115 63
-61 2 24 14 18
-62 22 92 94 64
-63 78 25 60 6
-64 70 62 117 74
-65 77 69 20 120
-66 56 26 51 118
-67 4 72 19 52
-68 55 53 119 76
-69 24 37 94 65
-70 57 14 50 64
-71 22 110 111 15
-72 67 114 18 108
-73 122 24 112 17
-74 113 116 64 21
-75 22 2 16 10
-76 68 92 18 86
-77 23 123 115 65
-78 121 57 106 63
-79 27 105 96 107
-80 124 81 97 109
-81 47 80 125 29
-82 45 35 104 128
-83 113 31 108 98
-84 110 112 28 39
-85 4 30 20 42
-86 56 36 8 76
-87 111 122 32 43
-88 90 114 116 40
-89 34 45 102 125
-90 88 12 47 104
-91 12 4 6 8
-92 34 62 42 76
-93 34 46 26 6
-94 12 69 48 62
-95 46 36 103 127
-96 79 48 126 30
-97 100 35 80 8
-98 83 29 128 42
-99 111 27 40 109
-100 114 107 97 32
-101 44 121 112 31
-102 89 113 115 39
-103 123 116 95 43
-104 122 90 82 106
-105 79 125 51 117
-106 78 104 127 120
-107 100 79 53 120
-108 72 83 127 51
-109 99 80 119 54
-110 71 84 128 52
-111 99 59 71 87
-112 101 73 84 54
-113 102 83 74 53
-114 88 100 60 72
-115 77 102 60 126
-116 88 103 74 118
-117 122 58 105 64
-118 66 24 124 116
-119 57 68 123 109
-120 16 106 107 65
-121 78 101 59 125
-122 104 73 117 87
-123 77 103 128 119
-124 80 126 52 118
-125 121 89 81 105
-126 44 124 115 96
-127 28 95 106 108
-128 110 123 82 98
0