CHM-151 Hildebrandt Preliminary Topic List Exam #3 - Thursday April 22nd

CHAPTER 8 - PERIODIC RELATIONSHIPS AMONG THE ELEMENTS

Shielding Effect in Many-Electron Atoms Effective Nuclear Charge: Shielding Atomic and Ionic Radius (sizes)

Ionization Energy: the minimum energy (in KJ/mole) required to remove an electron from

gaseous atom in its ground state (OFF)

Electron Affinity: is the energy of process when an electron is acquired by an atom (ON)

CHAPTER 9 - CHEMICAL BONDING I: BASIC CONCEPTS

Valence Electrons

Lewis Dot Symbol

Ionic Bond

Three Step Formation of Ionic Bond

Ionization-electron Affinity - Lattice Energy

Coulombs Law .. Higher Charged Atoms Form Stronger Lattice Energy, So Do Tiny Atoms

Covalent Bond

Sharing of Electrons

Lewis Dot Structures

Octet Rule

Single Bond

Double Bond

Triple Bond

Comparison of Ionic Vs. Covalent Bond

Ionic - Strong, Brittle, High Melting, Conduct When Molten or in Water

Covalent- Weak Forces ... Gases, Liquids, Soft Solids Low Melting, Don't Conduct Electricity

Electronegativity

Polar Covalent Bond

Polar Molecules

Lewis Dot Structures

Lewis Dot Structure for Ions

Formal Charges

Resonance

Resonance Structures

Exceptions to Octet Rule

Bond Dissociation Energy

Calculation of Heats of Reaction from Bond Energies

<u>CHAPTER 10 - CHEMICAL BONDING II: MOLECULAR GEOMETRY AND HYBRIDIZATION OF ATOMIC ORBITALS</u>

Molecular Geometry

VSEPR

Linear, Plane Triangle, Tetrahedral, Trigonal Bipyramid, Octahedral

Bond Angles

Dipole Moments

Molecule Polarity

Valence Bond Theory

Overlap of Partially Filed Orbitals

Hybridization

 $sp, sp^2, sp^3, sp^3d, sp^3d^2$

Lone Pair Repulsion VSEPR

Nature of Double - Triple Bonds

Sigma Bond

Pi-bonds (in double and triple bonds)

Free Rotation Around Bond vs Multiple Bonds

Molecular Orbital Theory

Bonding Orbitals

Anti-Bonding Orbitals

<u>Chapter 5 - GASES</u> (I am not sure how far we will be into this chapter for Exam #3 - watch the class web page and announcements in class)

Pressure - Units

Atmospheres, Torr, Mm/hg

1 Atm = 760 Torr

Kelvin Temperature = C + 273.15

Liters

"Moles"

Boyle's Law

Charles' Law

Avogadro's Law

Ideal Gas Law PV=nRT

Gas Law Constant

R = 0.082057 L*atm/k*mole

If You Know Three Properties of a Gas You Can Calculate the Fourth

PV/T = PV/T

Combining Volumes of Gases

Standard Temperature and Pressure

0 Celsius and 1 Atm Pressure

1 Moles Gas at STP = 22.4 Liters

Dalton's Law of Partial Pressure

Kinetic Molecular Theory

Lots of Space Between Atoms

Molecules in Constant Motion

Collisions Are Perfect (Elastic)

No Attractions Between Molecules

*Average Kinetic Energy of Molecules Is Proportional to the Kelvin Temperature

Application of KMT to Explain Gas Laws.

Effusion/Diffusion

I decided to make this list cover topics all the way to the final. Watch the class web page and for announcements in class.

CHAPTER 11 - INTERMOLECULAR FORCES AND LIQUIDS AND SOLIDS

Phases

Intermolecular Forces

Dipole-dipole Forces

Ion-dipole Forces

London Dispersion Forces - Very Weak but Go "Up" with Atomic/molecular Weight

Hydrogen Bond - H Bonded to N O F

"Like Dissolves Like"

Use Molecular Forces to Predict about Melting and Boiling Points

Properties of Liquids

Surface Tension

Unique Properties of Water

Vaporization

Heat of Vaporization

Vapor Pressure

Vapor Pressure Vs. Temperature

Boiling Point a Function of Applied Pressure

Surface Tension, Capillary Action, Viscosity

CHAPTER 12 - PHYSICAL PROPERTIES OF SOLUTIONS

Units of Concentration

Molality

Mole Fraction

Molarity

Colligative Properties

Vapor Pressure Lowering

Boiling Point Elevation $\Delta T = k_b * molality$

Freezing Point Depression $\Delta T = k_f^*$ molality

Osmotic Pressure Pressure = $\pi = \Delta m * R * T$

The Solution Process

Factors Affecting Solubility: Pressure and Temperature

Colloids