CONTENTS

1. Systems of linear equations
2. Matrices of a system
3. Gauss elimination
4. Matrices
5. Matrix operations
6. Inverse matrix
7. Determinants
8. Vector spaces
9. Linear independence
10. Bases
11. row, column and null spaces
12. Coordinates
13. Linear transformations
14. Eigenvalues and eigenvectors
15. Diagonalization
16. Inner product
17. Orthogonal bases and Gram-Schmidt algorithm
18. Least square solution and linear regression
1. **Systems of linear equations**

1. **linear equation**: \(a_1 x_1 + a_2 x_2 + \cdots + a_n x_n = b\)
 - **variables**: \(x_1, \ldots, x_n\)
 - **coefficients**: \(a_1, \ldots, a_n\)
 - **main coefficient**: \(a_1\)
 - **constant term**: \(b\)

2. **linear system**: \(m\) equations, \(n\) unknowns

 \[
 \begin{align*}
 a_{11} x_1 + \cdots + a_{1n} x_n &= b_1 \\
 a_{21} x_1 + \cdots + a_{2n} x_n &= b_2 \\
 &\quad \vdots \\
 a_{m1} x_1 + \cdots + a_{mn} x_n &= b_m
 \end{align*}
 \]

3. **solution**: \(n\)-tuple \((x_1, \ldots, x_n)\) satisfying all equations

4. **consistent system**: has a solution

5. **inconsistent system**: has no solution

6. **solution set**: set of all solutions

7. **equivalent systems**: have the same solution set

8. **elementary (row) operations on equations**: make equivalent systems
 - (i) multiply an equation by a nonzero constant
 - (ii) interchange two equations
 - (iii) add a constant multiple of an equation to another

9. **elimination**: use elementary operations to eliminate unknowns

10. **fact**: a linear system has no solution, exactly one solution or infinitely many solutions

11. **parameters**: used to describe infinitely many solutions

12. **homogeneous system**: constant terms are 0 (consistent)

13. **trivial solution**: all variables are 0

2. **Matrices of a system**

1. **coefficient matrix**:

 \[
 A =
 \begin{bmatrix}
 a_{11} & \cdots & a_{1n} \\
 \vdots & \ddots & \vdots \\
 a_{m1} & \cdots & a_{mn}
 \end{bmatrix}
 \]

2. **constant vector**: \(b = \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix}\)
 unknown vector: \(x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}\)

3. **augmented matrix**:

 \[
 [A \ b] =
 \begin{bmatrix}
 a_{11} & \cdots & a_{1n} & b_1 \\
 \vdots & \ddots & \vdots & \vdots \\
 a_{m1} & \cdots & a_{mn} & b_m
 \end{bmatrix}
 \]
3. Gauss elimination

1. **elementary row operations**: (ERO) correspond to elementary operations on equations
 (i) multiply a row by a nonzero constant \(r_i \leftarrow cr_i \)
 (ii) interchange two rows \(r_i \leftrightarrow r_j \)
 (iii) add a multiple of a row to another row \(r_i \leftarrow r_i + cr_j \)

2. **row equivalent matrices**: one can be gotten from the other by elementary row operations

3. **fact**: linear systems with row equivalent augmented matrices have the same solution set

4. **echelon matrix**: the number of leading zeros is strictly increasing in each row until you get all 0 rows

5. **Gauss elimination**: use elementary row operations to get echelon form

6. **leading entry**: first nonzero entry in a row

7. **leading (pivot) column**: column containing a leading entry

8. **leading variable**: a variable corresponding to a leading column

9. **free variable**: not leading

10. **free column**: not leading

11. **back substitution**: get solution set from echelon form
 (i) set free variables equal to parameters
 (ii) solve last nonzero equation for leading variable
 (iii) substitute into preceding equation
 (iv) continue

12. **reduced echelon matrix**:
 (i) echelon matrix
 (ii) every leading entry is 1
 (iii) every leading entry is the only nonzero entry in its column

13. **Gauss-Jordan elimination**: use elementary row operations to get reduced echelon form

14. **fact**: every matrix is row equivalent to a unique reduced echelon matrix

15. **fact**: system with square coefficient matrix \(A \) has unique solution iff \(A \) is row equivalent to \(I \)

16. **fact**: system with more unknowns than equations is inconsistent or has infinitely many solutions

4. Matrices

1. **matrix**: rectangular array of numbers

2. **notation**: \(A = [a_{ij}] \)

3. **scalar**: real number

4. **size of a matrix**: \(\text{size}(A) = m \times n \) if \(m \) rows and \(n \) columns

5. **square matrix**: \(m = n \)

6. **diagonal matrix**: \(D = [d_{ij}] \) \(d_{ij} = 0 \) if \(i \neq j \)

7. **zero matrix**: \(O \) all entries \(o_{ij} \) are 0

8. **identity matrix**: \(I = [\delta_{ij}] \) \(\delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases} \)

9. **(column) vector**: has size \(n \times 1 \)

10. **row vector**: has size \(1 \times n \)

11. **n-tuple**: \((a_1, \ldots, a_n) \equiv \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} \neq [a_1 \; \cdots \; a_n] \) slightly abusive identification

12. **\(\mathbb{R}^n \)**: set of \(n \)-tuples, \(\mathbb{R}^2 = \text{plane}, \mathbb{R}^3 = \text{space} \)

13. **\(\mathbb{R}^{m\times n} \)**: set of \(m \times n \) matrices, \(\mathbb{R}^{n\times 1} \) is identified with \(\mathbb{R}^n \)

14. **basic unit vectors**: \(e_j = (0, \ldots, 0, 1, 0, \ldots, 0) \) (1 in \(j \)-th position), column vectors of \(I = [e_1 \; \cdots \; e_n] \)

15. **column vectors**: \(A = [c_1 \; \cdots \; c_n] \)
5. Matrix operations

1. **matrix addition**: $A + B = [a_{ij} + b_{ij}]$ if A, B have the same size
2. **matrix subtraction**: $A - B = [a_{ij} - b_{ij}]$
3. **scalar multiplication**: $cA = [ca_{ij}]$
4. **negative matrix**: $-A = (-1)A$
5. **properties**:
 - $A + B = B + A$ commutative
 - $A + (B + C) = (A + B) + C$ associative
 - $c(A + B) = cA + cB$ distributive
 - $(c + d)A = cA + dA$ distributive
 - $(cd)A = c(dA)$ associative
6. **matrix multiplication**: $C = AB$, size(C) = $m \times n$, size(A) = $m \times p$, size(B) = $p \times n$

 $c_{ij} = \sum_{k=1}^{p} a_{ik}b_{kj} = (i$-th row of $A) \cdot (j$-th column of B)
7. **properties**:
 - $A(BC) = (AB)C$ associative
 - $A(B + C) = AB + AC$ distributive
 - $(A + B)C = AC + BC$ distributive
 - $c(AB) = (cA)B = A(cB)$
8. **warning**:
 - $AB \neq BA$ in general
 - $AB = AC \neq B = C$
 - $AB = O \neq A = O$ or $B = O$
9. **transpose**: $A^T = [b_{ij}]$ where $b_{ij} = a_{ji}$
10. **properties**:
 - $(A^T)^T = A$
 - $(A + B)^T = A^T + B^T$
 - $(cA)^T = cA^T$
 - $(AB)^T = B^T A^T$
11. **trace of a square matrix**: sum of the diagonal entries $\text{tr}(A) = a_{1,1} + \cdots + a_{n,n}$
12. **fact**: product of diagonal matrices is diagonal
13. **matrix form of linear system**: $Ax = b$, $A = [a_{ij}]$, $x = (x_1, \ldots, x_n)$, $b = (b_1, \ldots, b_n)$
14. **linear combination**: of objects v_i is a finite sum of scalar multiples of the objects $\sum_{i=1}^{n} c_i v_i$, $c_i \in \mathbb{R}$
15. **fact**: Ax is the linear combination $x_1c_1 + \cdots + x_nc_n$ of the columns of A
16. **span**: of objects v_i is the set of linear combinations of the objects $\text{span}\{v_1, \ldots, v_n\} = \{\sum_{i=1}^{n} c_i v_i | c_i \in \mathbb{R}\}$
17. **fact**: solution set of homogeneous system is the span of particular solutions (one for each parameter)

6. **Inverse matrix**

1. A invertible: $\exists B$ such that $AB = BA = I$

 B is the **inverse** of A (A is also the inverse of B)
2. **properties**:
 - invertible \Rightarrow square
 - inverse is unique if exists, notation A^{-1}
 - $(A^{-1})^{-1} = A$
 - $(AB)^{-1} = B^{-1}A^{-1}$
 - $(A^T)^{-1} = (A^{-1})^T$

 if A is invertible then $Ax = b$ has unique solution $x = A^{-1}b$
3. **fact**: $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is invertible iff $ad \neq bc$, $A^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$
4. **elementary matrix**: $I \xrightarrow{E} E$ single elementary row operation
5. properties:
 \(I \overset{\text{eq}}{\mapsto} E \) implies \(A \overset{\text{eq}}{\mapsto} EA \) equivalently \([I \ A] \overset{\text{eq}}{\mapsto} [E \ EA] \)
 \(I \overset{\text{eq}}{\mapsto} E^{-1} \) inverse ero

6. fact: \(A \) invertible iff \(A \) row equivalent to \(I \)

7. fact: \(A, B \) row equivalent iff \(A = E_1 \cdots E_n B \), for \(E_i \) elementary

8. algorithm for \(A^{-1} \): \([A \ I] \overset{\text{eq}}{\mapsto} [I \ A^{-1}] \)
 more generally \([A \ B] \overset{\text{eq}}{\mapsto} [I \ A^{-1}B] \)

7. Determinants

1. notation: \(A = [a_{ij}] \ n \times n \)
2. \(1 \times 1 \) matrix: \(\det[a] = a \)
3. \(2 \times 2 \) matrix: \(\det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc \)
4. notation: \(A_{ij} \) = submatrix after deletion of \(i \)-th row and \(j \)-th column

5. \(ij \)-th cofactor of \(A \): \(C_{ij} = (-1)^{i+j} \det A_{ij} \)

6. chess board rule: \(\begin{bmatrix} + & - & + & \cdots \\ - & + & - & \cdots \\ + & - & + & \cdots \\ \cdots & \cdots & \cdots & \cdots \end{bmatrix} (-1)^{i+j} \)

7. inductive definition: \(\det A = \sum_{j=1}^n a_{1j} C_{1j} \)
 cofactor expansion along first row

8. cofactor expansion:
 along \(i \)-th row \(\det A = \sum_{j=1}^n a_{ij} C_{ij} \)
 along \(j \)-th column \(\det A = \sum_{i=1}^n a_{ij} C_{ij} \)

9. elementary row operations: \(A \overset{\text{eq}}{\mapsto} B \)
 \(r_i \leftrightarrow cr_i \): \(\det B = c \cdot \det A \)
 \(r_i \leftrightarrow r_j \): \(\det B = -\det A \)
 \(r_i \leftarrow r_i + cr_j \): \(\det B = \det A \)

10. properties:
 \(A \) triangular implies \(\det(A) = a_{11} \cdots a_{nn} \)
 \(\det I = 1 \)
 \(r_i = r_j \) implies \(\det A = 0 \)
 \[
 \begin{vmatrix}
 r_1 \\
 \vdots \\
 r_n
 \end{vmatrix}
 = \det
 \begin{vmatrix}
 r_1 \\
 \vdots \\
 r_n
 \end{vmatrix}
 + \det
 \begin{vmatrix}
 r_1' \\
 \vdots \\
 r_n'
 \end{vmatrix}
 \]
 \(\det kA = k^{\text{size}(A)} \det A \)
 \(\det A^T = \det A \)
 \(\det(AB) = \det A \cdot \det B \)
 \(\det(A^{-1}) = \frac{1}{\det(A)} \)
 \(A \) invertible iff \(\det A \neq 0 \)

11. Cramer’s rule: \(\det A \neq 0 \) implies solution of \(Ax = b \) is
 \(x_i = \frac{\det A_i}{\det A} \) where \(A_i \) comes from \(A \) after replacing \(i \)-th column by \(b \)

12. classical adjoint (adjugate) of \(A \): \(\text{adj} A = [C_{ij}]^T \) transpose of matrix of cofactors

13. adjoint formula for inverse: \(A^{-1} = \frac{\text{adj} A}{\det A} \)
8. Vector spaces

1. **vector space**: set \(V \) of vectors with vector addition and scalar multiplication satisfying
 for all \(u, v, w \in U \) and \(c, d \in \mathbb{R} \)
 i) \(u + v = v + u \)
 ii) \((u + v) + w = u + (v + w) \)
 iii) \(\exists 0 \in V, u + 0 = u \)
 iv) \(\exists -u \in V, u + (-u) = 0 \)
 v) \(c(u + v) = cu + cv \)
 vi) \((c + d)u = cu + du \)
 vii) \(c(du) = (cd)u \)
 viii) \(1u = u \)

2. **examples**: \(\mathbb{R}^n, \mathbb{R}^{m \times n}, \mathbb{P} \) polynomials, \(\mathbb{P}_n \) polynomials with degree less than \(n \), sequences, sequences converging to 0, functions on \(\mathbb{R}, C(\mathbb{R}) \) continuous functions on \(\mathbb{R} \), solutions of homogeneous systems

3. **subspace of** \(V \): subset \(W \) of \(V \) that is a vector space with same operations

4. **proper subspace of** \(V \): subspace but not \(\{0\} \) and not \(V \)

5. **examples**:
 - \(W = \{0\} \) and \(W = V \), subspaces of \(V \)
 - \(W = \) lines through origin, subspace of \(V = \mathbb{R}^2 \)
 - \(W = \) planes through origin, subspace of \(V = \mathbb{R}^3 \)
 - \(W = \) diagonal \(n \times n \) matrices, subspace of \(V = \mathbb{R}^{n \times n} \)
 - \(W = \) span\{\(v_1, \ldots, v_n \)\}, subspace of \(V \) where \(v_1, \ldots, v_n \in V \)
 - \(W = \) convergent sequences, subspace of \(V = \) sequences
 - \(W = \) continuous functions on \(\mathbb{R} \), subspace of \(V = \) functions on \(\mathbb{R} \)

6. **fact**: subset \(W \) of \(V \) is a subspace of \(V \) iff
 - nonempty: \(W \neq \emptyset \)
 - closed under addition: \(\forall u, v \in W, u + v \in W \)
 - closed under scalar multiplication: \(\forall c \in \mathbb{R} \ \forall u \in W, cu \in W \)

9. **Linear independence**

1. \(v_1, \ldots, v_n \) **linearly independent**: \(\sum_{i=1}^{n} c_i v_i = 0 \) implies \(\forall i, c_i = 0 \)

2. **linearly dependent**: not independent

3. **parallel vectors**: one is scalar multiple of the other
 - notation \(u \parallel v \)

4. **properties**:
 - \(u, v \) linearly dependent iff \(u \parallel v \)
 - vectors are dependent iff one of them is linear combination of the others
 - subset of linearly independent set is linearly independent
 - columns of matrix \(A \) are independent iff \(AX = 0 \) has only trivial solution
 - columns of square matrix \(A \) are independent iff \(A \) invertible iff \(\det A \neq 0 \)
 - \(v_1, \ldots, v_n \) independent, \(v_{n+1} \notin \) span\{\(v_1, \ldots, v_n \)\} implies \(v_1, \ldots, v_{n+1} \) independent
 - \(v_1, \ldots, v_n \) independent, \(\sum_{i=1}^{n} c_i v_i = \sum_{i=1}^{n} d_i v_i \) implies \(\forall i, c_i = d_i \)
 - rows of row echelon matrix are independent
 - leading columns of echelon matrix are independent
10. Bases

1. S spans W: spanS = W
 S is a spanning set of W

2. basis of V: linearly independent spanning set of V
 maximal independent set in V
 minimal spanning set of V
 spanning set containing dim (V) vectors
 independent set containing dim (V) vectors

3. standard bases E = \{e_1, ..., e_n\} for V:
 \{(1, 0), (0, 1)\} for \(\mathbb{R}^2\)
 \{1, x, x^2\} for \(P_3(x)\)
 \(\{\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}\}\) for \(\mathbb{R}^{2\times 2}\)

4. replacement theorem: spanS = V, T \subseteq V, |T| > |S| implies T dependent

5. dimension of V:
 all bases of V has same number of vectors
 \(\dim V\) = number of vectors in a basis of V

6. examples:
 \(\dim \mathbb{R}^n = n\)
 \(\dim \{\emptyset\} = 0\)
 \(\dim \mathbb{R}^{m\times n} = mn\)
 \(\dim P_n(x) = n\)
 \(\dim P(x) = \infty\)
 \(\dim(\text{span}\{u\}) = 1\)

7. properties:
 W proper subspace of V implies \(\dim W < \dim V\)
 independent subset of V can be extended to a basis of V
 spanning set of V contains a basis of V

11. ROW, COLUMN AND NULL SPACES

1. notation: size \(A = m \times n\)

2. row space of \(A\): \(\text{Row}A\) = subspace of \(\mathbb{R}^m\) spanned by rows of \(A\)

3. row rank of \(A\): \(\dim \text{Row}A\)

4. column space of \(A\): \(\text{Col}A\) = subspace of \(\mathbb{R}^n\) spanned by columns of \(A\)

5. column rank of \(A\): \(\dim \text{Col}A\)

6. algorithm for basis of \(\text{Col}A\):
 (i) reduce \(A\) to echelon form \(B\)
 (ii) take columns of \(A\) corresponding to leading columns of \(B\)

7. algorithm for basis of \(\text{Row}A\): find basis for \(\text{Col}(A^T)\)

8. fact: row rank \(A\) equals column rank \(A\)

9. rank \(A\): this common value

10. null space of \(A\): \(\text{Null}A = \{x \mid Ax = 0\}\) = solution set of homogeneous system, subspace of \(\mathbb{R}^n\)

11. properties:
 \(\text{Null}(A) = (\text{Row}(A))^\perp\)
 \(\text{Null}(A^T) = (\text{Col}(A))^\perp\)
 \(A, B\) row equivalent implies \(\text{Row}A = \text{Row}B\)
 \(A, B\) row equivalent implies columns of \(A\) and columns of \(B\) have the same dependence relations
 \(Ax = b\) consistent iff \(b \in \text{Col}A\)
 \(\text{rank}A + \dim \text{Null}A = n\)
12. Coordinates

1. notation: \(B = \{b_1, \ldots, b_n\}, D = \{d_1, \ldots, d_n\} \) bases for \(V, E = \{e_1, \ldots, e_n\} \) standard basis for \(V \)

2. fact: each \(v \in V \) can be written uniquely as \(v = c_1b_1 + \cdots + c_nb_n \)

3. coordinates of \(v \) in basis \(B \): \([v]_B = (c_1, \ldots, c_n) \) if \(v = \sum_{i=1}^n c_ib_i \)

4. huge fact: \(v \mapsto [v]_B \): \(V \rightarrow \mathbb{R}^n \) is an isomorphism (\(\mathbb{R}^n \) are the ‘only’ finite dimensional vector spaces)

5. transition matrix from basis \(B \) to basis \(D \): \(T^D_B = [[b_1]_D \; \cdots \; [b_n]_D] \) square matrix

6. properties:

 \[
 [v]_D = T^D_B[v]_B \\
 T^D_B = (T^B_D)^{-1} \\
 T^D_B T^E_B = (T^B_E)^{-1}T^E_B \\
 [T^D_B \; T^E_B] \xrightarrow{\text{isom}} [I \; T^D_B]
 \]

7. algorithm for finding a basis for \(W = \text{span}\{v_1, \ldots, v_n\} \) in \(V \):

 (i) find a bases \(B \) for \(V \) (use standard if possible)

 (ii) put the coordinates of the \(v_i \)'s as columns for a matrix \(A \)

 (iii) reduce \(A \) to echelon form \(B \)

 (iv) take columns of \(A \) corresponding to leading columns of \(B \)

 (v) use these columns as coordinates to build the basis of \(W \)

8. algorithm for extending a linearly independent set \(\{v_1, \ldots, v_n\} \) to get a basis:

 use the previous algorithm to find a basis for \(\text{span}\{v_1, \ldots, v_n, e_1, \ldots, e_n\} \)

13. Linear transformations

1. notation: \(B = \{b_1, \ldots, b_m\} \) basis for \(V, D = \{d_1, \ldots, d_n\} \) basis for \(W, E \) standard basis for \(V \)

2. linear transformation: \(L : V \rightarrow W \) such that for all \(u, v \in V, \alpha \in \mathbb{R} \)

 (i) \(L(u + v) = L(u) + L(v) \) additive

 (ii) \(L(\alpha u) = \alpha L(u) \) multiplicative

3. kernel: \(\ker L = \{v \in V \mid L(v) = 0\} \)

4. image or range: \(\text{im} L = \text{ran} L = \{L(v) \mid v \in V\} = \text{ran} L = \text{span}\{Lb_1, \ldots, Lb_n\} \)

5. \(L \) is one-to-one (1-1): \(L(u) = L(v) \) implies \(u = v \)

6. \(L \) is onto \(W \): \(\text{ran} L = W \)

7. \(L \) is an isomorphism: if \(L \) is one-to-one and onto

8. properties:

 \[
 L(0) = 0 \\
 \ker L \text{ subspace of } V \\
 \text{ran} L \text{ subspace of } W \\
 L \text{ is 1-1 iff } \ker L = \{0\}
 \]

9. matrix of \(L \): \([L]_B^D = [[Lb_1]_D \; \cdots \; [Lb_m]_D] \)

10. properties:

 \[
 [L]_B^D = T^D_B[L]_B^E = (T^E_B)^{-1}[L]_B^E \\
 [L]_B^D = (T^E_B)^{-1}[L]_E^E T^E_B \text{ if } V = W \\
 [Lv]_D = [L]_B^D[v]_B \\
 [L^{-1}]_D^B = ([L]_B^E)^{-1}
 \]

11. \(R, S \) are similar matrices: \(S = P^{-1}RP \) for some \(P \) (\(P \) is a transition matrix)

12. fact: \(R, S \) are similar iff \(R = [L]_B^D, S = [L]_D^D \) where \(V = W \)

13. rank of \(L \): \(\text{rank} L = \dim \text{ran} L \)

14. properties:

 \[
 \text{ran} L = \text{Col} M \\
 \ker L = \text{Null} M \\
 \text{rank} L = \text{rank} M \\
 \dim \ker L = \dim \text{Null} M
 \]

15. dimension theorem: \(\text{rank} L + \dim \ker L = \dim V \)
14. Eigenvectors and eigenvectors

1. **Notation**: \(L : V \rightarrow V \) linear transformation, \(A = [L]^B_B \) matrix of \(L \), \(x = [u]_B \) coordinates of \(u \)

2. **Eigenvalue problem**:
 - Transformation version \(L(u) = \lambda u \), \(u \neq 0 \)
 - **Eigenvalue**: \(\lambda \)
 - **Eigenvector of** \(L \) **associated to** \(\lambda \): \(u \)
 - **Eigenspace associated to** \(\lambda \): \(E_\lambda = \ker(L - \lambda \text{id}) \)
 - Matrix version \(Ax = \lambda x \), \(x \neq 0 \)
 - **Eigenvalue**: \(\lambda \)
 - **Eigenvector of** \(A \) **associated to** \(\lambda \): \(x \)
 - **Eigenspace associated to** \(\lambda \): \(E_\lambda = \text{Null}(A - \lambda I) \)

3. **Characteristic polynomial**: \(\det(A - \lambda I) \)
 - If \(A \sim B \) then \(\text{charpoly}(A) = \text{charpoly}(B) \)

4. **Characteristic equation**: \(\lambda \) eigenvalue of \(A \) iff \(\det(A - \lambda I) = 0 \)

5. **Algebraic multiplicity of** \(\lambda \): multiplicity of \(\lambda \) as a root of the characteristic polynomial

6. **Geometric multiplicity of** \(\lambda \): \(\dim E_\lambda \)

15. Diagonalization

1. **A diagonalizable**: \(A \) similar to diagonal matrix \(D \), \(D = P^{-1}AP \)

2. **Fact**: \(D \) is diagonalizable iff \(P^{-1}AP \) implies
 \[
P = \begin{bmatrix} v_1 & \cdots & v_n \end{bmatrix}
 \]
 \[
 D = \begin{bmatrix} d_{ij} \end{bmatrix}, \quad d_{ij} = \begin{cases} \lambda_i & i = j \\ 0 & i \neq j \end{cases}
 \]
 \[
 Av_i = \lambda_i v_i
 \]
 \(\{v_1, \ldots, v_n\} \) is a basis of eigenvectors with associated eigenvalues in the diagonal of \(D \)

3. **Properties**:
 - \(A \) diagonalizable iff for each eigenvalue the algebraic and geometric multiplicities are the same
 - If \(v_1, \ldots, v_n \) eigenvectors associated to distinct eigenvalues then they are independent
 - If size \(A = n \times n \) and \(A \) has \(n \) distinct eigenvalues then \(A \) diagonalizable
 - \(\lambda_1, \ldots, \lambda_n \) distinct eigenvalues, \(B_1, \ldots, B_n \) bases for eigenspaces implies \(B_1 \cup \cdots \cup B_n \) is independent

4. **Algorithm for diagonalization**:
 (i) solve characteristic equation to find eigenvalues
 (ii) for each eigenvalue \(\lambda \) find basis \(B_\lambda \) of associated eigenspace \(E_\lambda \)
 (iii) if the union \(\cup B_\lambda \) of the bases is not a basis for the vectorspace than not diagonalizable
 (iv) build \(P \) from the eigenvectors as columns
 (v) build \(D \) from the corresponding eigenvalues

16. Inner product

1. **Inner product**: a function \(\langle \cdot, \cdot \rangle : V \times V \rightarrow \mathbb{R} \)
 satisfying
 (i) \(\langle u, v \rangle = \langle v, u \rangle \)
 (ii) \(\langle \alpha u, v \rangle = \alpha \langle u, v \rangle \)
 (iii) \(\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle \)
 (iv) \(\langle u, u \rangle \geq 0 \) and \(\langle u, u \rangle = 0 \) iff \(u = 0 \)

2. **Examples of inner products**:
 - **Dot product (standard inner product) on** \(\mathbb{R}^n \): \(\langle u, v \rangle = u \cdot v = \sum_{i=1}^n u_i v_i = u^T v = v^T u \)
 - **Standard inner product on** \(C[0,1] \): (continuous functions on \([0,1])\), \(\langle f, g \rangle := \int_0^1 fg \)
 - **Inner product on** \(\mathbb{R}^{2 \times 2} \): \(\langle A, B \rangle = \text{trace}(A^T B) \)
 - **Inner product on** \(\mathbb{R}^{2 \times 2} \): \(\langle A, B \rangle = a_{11}b_{11} + 2a_{12}b_{12} + 3a_{21}b_{21} + 4a_{22}b_{22} \)

3. **Fact**: every inner product on \(\mathbb{R}^n \) is \(\langle u, v \rangle = u^T A v \) where \(A \) is a symmetric (therefore diagonalizable) matrix with positive eigenvalues and \(a_{ij} = \langle e_i, e_j \rangle \)

4. **Length (norm)**: \(\|v\| = \sqrt{\langle v, v \rangle} \)
5. properties:
 \[\|v\| \geq 0 \]
 \[\|v\| = 0 \text{ iff } v = 0 \]
 \[\|\alpha v\| = |\alpha| \cdot \|v\| \]
 \[\|u + v\| \leq \|u\| + \|v\| \]

6. unit vector: \(\|v\| = 1 \)

7. unit vector in the direction of \(v \):
 \[\frac{v}{\|v\|} \]

8. distance:
 \[d(u, v) = \|u - v\| \]

9. angle:
 \[\angle(u, v) = \arccos \frac{(u, v)}{\|u\| \cdot \|v\|} \]

10. orthogonal: \(u \perp v \) iff \(\angle(u, v) = \pi/2 \) iff \(\langle u, v \rangle = 0 \)

11. \(S = \{v_1, \ldots, v_n\} \) orthogonal:
 \(v_i \perp v_j \) for all \(i, j \)

12. fact: nonzero orthogonal vectors are independent

13. \(S = \{v_1, \ldots, v_n\} \) orthonormal:
 \(S \) is orthogonal and \(\|v_i\| = 1 \) for all \(i \)

14. Triangle inequality:
 \[d(u, v) \leq d(u, w) + d(w, v) \]

15. orthogonal complement:
 \(W^\perp = \{v \in V \mid v \perp w \text{ for all } w \in W\} \), \(W \) is subspace of \(V \)

16. properties: \(W \) is subspace of \(\mathbb{R}^n \)
 \(W^\perp \) is a subspace
 \(W \cap W^\perp = \{0\} \)
 \(W = \text{span}(S), u \perp s_i \) for all \(i \) implies \(u \in W^\perp \)
 \(\text{Row}(A)^\perp = \text{Null}(A) \)
 \(\dim W + \dim W^\perp = n \)
 \(\text{(basis of } W) \cup \text{(basis of } W^\perp) \text{ is basis of } \mathbb{R}^n \)
 \((W^\perp)^\perp = W \)

17. Pythagorean theorem:
 \(u \perp v \) implies \(\|u + v\| = \|u\| + \|v\| \)

18. Cauchy-Schwartz inequality:
 \[|\langle u, v \rangle| \leq \|u\| \cdot \|v\| \]

19. Orthogonal bases and Gram-Schmidt algorithm

 1. notation: \(\{v_1, \ldots, v_n\} \) orthogonal basis, \(\{b_1, \ldots, b_n\} \) orthonormal basis for a subspace \(W \) of \(V \), \(p \in V \)

 2. orthogonal projection:
 \(\text{proj}_W p = \sum_{i=1}^{n} \frac{(p, v_i)}{(v_i, v_i)} v_i \in W \)

 3. Gram-Schmidt algorithm:
 for finding an orthogonal basis \(\{b_1, \ldots, b_n\} \) for \(\text{span}(v_1, \ldots, v_n) \)
 \((i) \) make \(\{v_1, \ldots, v_n\} \) independent if necessary
 \((ii) \) let \(u_1 = v_1 \)
 \((iii) \) inductively let \(u_{i+1} = v_{i+1} - \text{proj}_{\text{span}(u_1, \ldots, u_i)} v_{i+1} = v_{i+1} - \sum_{j=1}^{i} \frac{(v_{i+1}, u_j)}{(u_j, u_j)} u_j \)

 4. fact: \(W = \text{Col}(A), A\beta = \text{proj}_W y \) iff \(A^T A\beta = A^T y \)

20. Least square solution and linear regression

 1. fact: if \(W \) subspace of \(V \), \(w \in W \), \(y \in V \) then \(\|y - w\| \) is minimum when \(w = \text{proj}_W (y) \)

 2. fact: \(W = \text{Col}(A), \|y - A\beta\| \) is minimum iff \(A^T A\beta = A^T y \)

 3. least square regression line \(ax + b \): data \(\{(x_i, y_i) \mid i = 1, \ldots, n\} \)
 \[A = \begin{pmatrix} 1 & x_1 \\ \vdots & \vdots \\ 1 & x_n \end{pmatrix}, \beta = \begin{pmatrix} b \\ a \end{pmatrix}, y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}, \beta \text{ makes } \|A\beta - y\| \text{ minimum, that is, } A^T A\beta = A^T y \]
 \[ax + b = \text{proj}_{\text{Col}(A)} (y) \]