1. Show that a nonempty, countable, complete metric space (X, d) has an isolated point, that is, a point $x \in X$ such that $\{x\}$ is open.

2. Recall that a set N is nowhere dense in a topological space (X, T) if the interior of the closure of N is the empty set, that is, $N^0 = \emptyset$.
 a. Show that if D is open and dense in X then the complement D^c is closed nowhere dense in X.
 b. Show that if N is nowhere dense in X then the complement of N is open and dense in X.