1. Show that in a Hausdorff topological space every convergent sequence has a unique limit.

Solution: Suppose that \(x_n \to x \), \(x_n \to y \) and \(x \neq y \). Since the space is Hausdorff, we can find disjoint, open neighborhoods \(U \) and \(V \) of \(x \) and \(y \) respectively. Because of the convergence, the tail of \((x_n)\) needs to be in both \(U \) and \(V \). This is impossible.

2. Show that in a Hausdorff topological space every singleton set is closed.

Solution: Let \(x \in X \). For all \(y \in X \) with \(x \neq y \) there are disjoint, open sets \(U_y \) and \(V_y \) such that \(x \in U_y \), \(y \in V_y \). Then \(\{x\} = \bigcap\{V_y \mid y \in X \setminus \{x\}\} \) is closed since it’s an intersection of closed sets.

3. Show that every metric space is Hausdorff.

Solution: If \(x \neq y \) then let \(D = B_{d(x,y)/2}(x) \cap B_{d(x,y)/2}(y) \). If \(z \in D \) then \(d(x,y) \leq d(x,z) + d(z,y) < d(x,y)/2 + d(x,y)/2 = d(x,y) \) gives a contradiction. This \(D \) is empty.

4. Let \(X \) be a topological space and \(A, B \subseteq X \).
 a. Show that \(\overline{A \cup B} = \overline{A} \cup \overline{B} \).
 b. Show that \((A^C)^c = A^C \).

Solution: a. \(A \subseteq A \cup B \) and so \(\overline{A} \subseteq \overline{A \cup B} \). Similarly \(B \subseteq A \cup B \). Hence \(\overline{A} \cup \overline{B} \subseteq \overline{A \cup B} \). \(\overline{A \cup B} \) is closed and \(A \cup B \subseteq \overline{A \cup B} \). Hence \(\overline{A} \cup \overline{B} \subseteq \overline{A \cup B} \).
 b.
 \[
 A^C = (\cap \{ F \mid F \text{ is closed, } A \subseteq F \})^C
 = \cup \{ F^C \mid F \text{ is closed, } F^C \subseteq A^C \}
 = \cup \{ U \mid U \text{ is open, } U \subseteq A^C \}
 = (A^C)^C.
 \]