Recall in a topological space a point z is a cluster point of A if for all open neighborhood N of z we have $(N \setminus \{z\}) \cap A \neq \emptyset$.

1. Let $X = \{a, b, c\}$ and $\mathcal{T} = \{\emptyset, \{a\}, \{b, c\}, X\}$ a topology on X. Find the following:
 a. all dense subsets of X
 b. $\{b\}$
 c. $\{a, b\}$
 d. $\partial\{b\}$
 e. all nowhere dense subsets of X.
 f. all isolated points of X.
 g. $\{c\}$

 Solution: a. $\{a, b\}$, $\{a, c\}$, $\{a, b, c\}$.
 b. $\{b, c\}$
 c. $\{a\}$
 d. $\partial\{b\} = \overline{\{b\}} \cap \overline{\{b\}}^C = \{b, c\} \cap \overline{\{a, c\}} = \{b, c\} \cap X = \{b, c\}$
 e. \emptyset
 f. a
 g. $\{b\}$

Recall that a topological space is sequentially compact if every sequence has a convergent subsequence.

2. a. Is the topological space in Problem 1 compact?
 b. Is it sequentially compact?
 c. Show that $K = \{0\} \cup \{1/n \mid n \in \mathbb{N}\}$ is a compact subset of \mathbb{R}.

 Solution: a. Yes because it is finite so every open cover is finite since there only finitely many open sets.
 b. Yes because it is finite so every sequence has a subsequence that is constant, and therefore convergent.
 c. Let \mathcal{C} be an open cover. The is a $U \in \mathcal{C}$ such that $0 \in U$. We can also fine an $r > 0$ such that $B_r(0) \subseteq U$. $B_r(0)$ contains all but finitely many points of K by the archimedean property. These finitely many points can be covered by a finite subcollection \mathcal{D} of \mathcal{C}. So $\mathcal{D} \cup \{U\}$ is a finite subcover of \mathcal{C}.