1. Show that if K is a compact subset of the Hausdorff space X and $x \notin K$ then there are open, disjoint sets U and V such that $K \subseteq U$ and $x \in V$.

For extra credit show that if K and L are disjoint, compact subsets of the Hausdorff space X then there are open disjoint sets U and V such that $K \subseteq U$ and $L \subseteq V$.

2. Show that if X is a compact topological space, Y is a Hausdorff topological space and $f : X \to Y$ is continuous then $f(G)$ is closed for all closed subset G of X.