1. Show that if \(f : \mathbb{R} \to \mathbb{R} \) is uniformly continuous and \(f_n(x) := f \left(x + \frac{1}{n} \right) \) then \(f_n \to f \) uniformly.

Solution: Let \(\epsilon > 0 \). Since \(f \) is uniformly continuous there is a \(\delta > 0 \) such that for all \(x, y \in \mathbb{R} \), \(|x - y| < \delta\) implies \(|f(x) - f(y)| < \epsilon\). Choose a \(k \in \mathbb{N} \) such that \(1/k < \delta \). Then for all \(n \geq k \) and \(x \in \mathbb{R} \) we have

\[
\left| \left(x + \frac{1}{n} \right) - x \right| = \frac{1}{n} < \frac{1}{k} < \delta.
\]

and so

\[
|f_n(x) - f(x)| = \left| f \left(x + \frac{1}{n} \right) - f(x) \right| < \epsilon.
\]

2. Is the statement of the previous problem true if \(f \) continuous but not uniformly continuous?

Solution: The statement is not true if the continuity of \(f \) is not uniform. For example let \(f(x) = x^2 \). Then \(f_n(x) = (x + \frac{1}{n})^2 = x^2 + \frac{2x}{n} + \frac{1}{n^2} \). Let \(\epsilon = 1 \) and \(N \in \mathbb{N} \). If \(x > \frac{N}{2} \) then

\[
|f_N(x) - f(x)| = \left| \frac{2x}{N} + \frac{1}{N^2} \right| > \frac{2x}{N} > 1 = \epsilon.
\]

This means no threshold index \(N \) could work for all \(x \in \mathbb{R} \) and so \(f_n \) does not converge to \(f \) uniformly.

3. Find the largest domain on which the function series \(\sum_{n=1}^{\infty} \frac{n}{n+1} \left(\frac{x}{2x+1} \right)^n \) is convergent.

Solution: We apply the ratio test.

\[
\frac{n+1}{n+2} \left| \frac{x}{2x+1} \right| \frac{n+1}{n} \left| \frac{x}{x+1} \right|^n = \left(\frac{n+1}{n} \right) \frac{x}{2x+1} \to \left| \frac{x}{2x+1} \right|
\]

If \(x \in (-\infty, -1) \cup (-\frac{1}{3}, \infty) \) then \(\left| \frac{x}{2x+1} \right| < 1 \) and so the series is absolutely convergent. If \(x \in (-1, -\frac{1}{3}) \) then \(\left| \frac{x}{2x+1} \right| > 1 \) and so the series is divergent. It remains to check the case \(x = -1 \) and \(x = -\frac{1}{3} \). If \(x = -1 \) then the series fails the n-th term test since \(\frac{n}{n+1} \left(-\frac{1}{2} \right)^n \to 1 \neq 0 \). If \(x = -\frac{1}{3} \) then again the series fails the n-th term test since \(\frac{n}{n+1} \left(-\frac{1}{2/3+1} \right)^n = \frac{n}{n+1}(-1)^n \) diverges. So the series is absolutely convergence on \((-\infty, -1) \cup (-\frac{1}{3}, \infty) \).