[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 405, 3 ]. See Glossary for some
detail.
{4, 4}_ 18, 9 = UG(Cmap(810, 1) { 4, 4| 45}_ 90) = UG(Cmap(810, 2) { 4,
4| 45}_ 90)
= AT[405, 2]
Cyclic coverings
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
|---|---|---|---|---|---|---|---|---|---|
| 1 | - | 0 | 0 | 0 | - | - | - | 0 | - |
| 2 | 0 | - | 39 | - | 0 | - | - | - | 0 |
| 3 | 0 | 6 | - | - | - | 6 | 6 | - | - |
| 4 | 0 | - | - | - | 0 | 6 | 1 | - | - |
| 5 | - | 0 | - | 0 | - | 0 | - | 40 | - |
| 6 | - | - | 39 | 39 | 0 | - | - | - | 40 |
| 7 | - | - | 39 | 44 | - | - | - | 39 | 0 |
| 8 | 0 | - | - | - | 5 | - | 6 | - | 0 |
| 9 | - | 0 | - | - | - | 5 | 0 | 0 | - |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
|---|---|---|---|---|---|---|---|---|---|
| 1 | 1 44 | 0 | - | - | - | - | - | - | 0 |
| 2 | 0 | 1 44 | 0 | - | - | - | - | - | - |
| 3 | - | 0 | 1 44 | 0 | - | - | - | - | - |
| 4 | - | - | 0 | 1 44 | 0 | - | - | - | - |
| 5 | - | - | - | 0 | 1 44 | 0 | - | - | - |
| 6 | - | - | - | - | 0 | 1 44 | 0 | - | - |
| 7 | - | - | - | - | - | 0 | 1 44 | 0 | - |
| 8 | - | - | - | - | - | - | 0 | 1 44 | 27 |
| 9 | 0 | - | - | - | - | - | - | 18 | 1 44 |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
|---|---|---|---|---|---|---|---|---|---|
| 1 | - | 0 | 0 | - | - | - | - | 0 | 0 |
| 2 | 0 | - | 40 | 0 | - | - | - | - | 40 |
| 3 | 0 | 5 | - | 0 | 5 | - | - | - | - |
| 4 | - | 0 | 0 | - | 0 | 5 | - | - | - |
| 5 | - | - | 40 | 0 | - | 0 | 5 | - | - |
| 6 | - | - | - | 40 | 0 | - | 0 | 6 | - |
| 7 | - | - | - | - | 40 | 0 | - | 1 | 1 |
| 8 | 0 | - | - | - | - | 39 | 44 | - | 40 |
| 9 | 0 | 5 | - | - | - | - | 44 | 5 | - |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
|---|---|---|---|---|---|---|---|---|---|
| 1 | - | 0 | 0 | 0 | - | - | - | - | 0 |
| 2 | 0 | - | 6 | - | 0 | - | 0 | - | - |
| 3 | 0 | 39 | - | - | - | 39 | - | 39 | - |
| 4 | 0 | - | - | - | 0 | 39 | 1 | - | - |
| 5 | - | 0 | - | 0 | - | 0 | - | 1 | - |
| 6 | - | - | 6 | 6 | 0 | - | - | - | 7 |
| 7 | - | 0 | - | 44 | - | - | - | 0 | 0 |
| 8 | - | - | 6 | - | 44 | - | 0 | - | 6 |
| 9 | 0 | - | - | - | - | 38 | 0 | 39 | - |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
|---|---|---|---|---|---|---|---|---|---|
| 1 | - | 0 1 | - | - | - | - | - | - | 0 1 |
| 2 | 0 44 | - | 0 1 | - | - | - | - | - | - |
| 3 | - | 0 44 | - | 0 1 | - | - | - | - | - |
| 4 | - | - | 0 44 | - | 0 1 | - | - | - | - |
| 5 | - | - | - | 0 44 | - | 0 1 | - | - | - |
| 6 | - | - | - | - | 0 44 | - | 0 1 | - | - |
| 7 | - | - | - | - | - | 0 44 | - | 0 1 | - |
| 8 | - | - | - | - | - | - | 0 44 | - | 28 29 |
| 9 | 0 44 | - | - | - | - | - | - | 16 17 | - |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
|---|---|---|---|---|---|---|---|---|---|
| 1 | - | 0 | - | - | 0 | 0 | - | - | 0 |
| 2 | 0 | - | 0 | - | - | 1 | 0 | - | - |
| 3 | - | 0 | - | 0 | - | - | 1 | 0 | - |
| 4 | - | - | 0 | - | 13 | - | - | 1 | 13 |
| 5 | 0 | - | - | 32 | - | 1 | - | - | 1 |
| 6 | 0 | 44 | - | - | 44 | - | 0 | - | - |
| 7 | - | 0 | 44 | - | - | 0 | - | 0 | - |
| 8 | - | - | 0 | 44 | - | - | 0 | - | 13 |
| 9 | 0 | - | - | 32 | 44 | - | - | 32 | - |