[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 420, 42 ]. See Glossary for some
detail.
UG(ATD[420, 33]) = UG(ATD[420, 34]) = MG(Rmap(420,173) { 28, 30| 4}_105)
= DG(Rmap(420,173) { 28, 30| 4}_105) = DG(Rmap(420,174) { 30, 28| 4}_105) =
AT[420, 13]
Cyclic coverings
| 1 | 2 | 3 | 4 | 5 | 6 | |
|---|---|---|---|---|---|---|
| 1 | - | 0 65 | 0 | - | - | 0 |
| 2 | 0 5 | - | 46 | - | - | 1 |
| 3 | 0 | 24 | - | 8 | 8 | - |
| 4 | - | - | 62 | - | 1 66 | 52 |
| 5 | - | - | 62 | 4 69 | - | 27 |
| 6 | 0 | 69 | - | 18 | 43 | - |
| 1 | 2 | 3 | 4 | |
|---|---|---|---|---|
| 1 | - | 0 | 0 28 | 0 |
| 2 | 0 | 1 104 | 46 | - |
| 3 | 0 77 | 59 | - | 3 |
| 4 | 0 | - | 102 | 29 76 |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 1 27 | - | - | 0 | - | - | 0 | - | - | - | - | - | - | - | - |
| 2 | - | - | - | - | 0 | - | - | 0 | - | - | - | - | 0 | - | 0 |
| 3 | - | - | 13 15 | 2 | - | - | 26 | - | - | - | - | - | - | - | - |
| 4 | 0 | - | 26 | - | - | - | - | - | 1 | - | 1 | - | - | - | - |
| 5 | - | 0 | - | - | - | 0 | - | - | - | 0 2 | - | - | - | - | - |
| 6 | - | - | - | - | 0 | - | - | 24 | - | - | - | - | 10 | - | 14 |
| 7 | 0 | - | 2 | - | - | - | - | - | 19 | - | 15 | - | - | - | - |
| 8 | - | 0 | - | - | - | 4 | - | - | - | - | - | 0 26 | - | - | - |
| 9 | - | - | - | 27 | - | - | 9 | - | - | - | - | - | 16 18 | - | - |
| 10 | - | - | - | - | 0 26 | - | - | - | - | - | - | - | - | 0 5 | - |
| 11 | - | - | - | 27 | - | - | 13 | - | - | - | - | - | - | - | 6 8 |
| 12 | - | - | - | - | - | - | - | 0 2 | - | - | - | - | - | 16 25 | - |
| 13 | - | 0 | - | - | - | 18 | - | - | 10 12 | - | - | - | - | - | - |
| 14 | - | - | - | - | - | - | - | - | - | 0 23 | - | 3 12 | - | - | - |
| 15 | - | 0 | - | - | - | 14 | - | - | - | - | 20 22 | - | - | - | - |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 1 29 | - | - | 0 | - | - | 0 | - | - | - | - | - | - | - |
| 2 | - | - | 0 | - | - | 0 | 22 | - | - | 0 | - | - | - | - |
| 3 | - | 0 | - | - | 19 21 | 3 | - | - | - | - | - | - | - | - |
| 4 | 0 | - | - | - | - | 13 | - | 0 | 0 | - | - | - | - | - |
| 5 | - | - | 9 11 | - | - | - | - | - | 2 | - | 0 | - | - | - |
| 6 | - | 0 | 27 | 17 | - | - | - | - | - | 1 | - | - | - | - |
| 7 | 0 | 8 | - | - | - | - | - | 26 | - | - | 0 | - | - | - |
| 8 | - | - | - | 0 | - | - | 4 | - | - | - | - | 0 2 | - | - |
| 9 | - | - | - | 0 | 28 | - | - | - | - | - | - | 15 | - | 28 |
| 10 | - | 0 | - | - | - | 29 | - | - | - | - | - | - | 26 28 | - |
| 11 | - | - | - | - | 0 | - | 0 | - | - | - | - | 13 | - | 15 |
| 12 | - | - | - | - | - | - | - | 0 28 | 15 | - | 17 | - | - | - |
| 13 | - | - | - | - | - | - | - | - | - | 2 4 | - | - | - | 5 22 |
| 14 | - | - | - | - | - | - | - | - | 2 | - | 15 | - | 8 25 | - |