[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 476, 7 ]. See Glossary for some
detail.
PS( 4,119; 13) = PS( 4,119; 55) = PS( 4,238; 13)
= PS( 4,238; 55) = MSZ ( 28, 17, 13, 4) = UG(ATD[476, 1])
= UG(ATD[476, 2]) = MG(Cmap(476, 1) { 4, 28| 34}_238) = MG(Cmap(476, 2) {
4, 28| 34}_238)
= PL(PS( 14, 17; 4)[ 34^ 14]) = HT[476, 1]
Cyclic coverings
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | - | - | - | - | - | - | - | - | 0 1 | - | 0 | - | - | 0 |
| 2 | - | - | - | - | - | - | - | 0 13 | - | 0 13 | - | - | - | - |
| 3 | - | - | - | - | - | - | - | - | 0 33 | - | 7 | - | - | 7 |
| 4 | - | - | - | - | - | - | - | 32 | - | 0 | - | 0 | 0 | - |
| 5 | - | - | - | - | - | - | - | - | - | - | 7 | 11 | 9 | 5 |
| 6 | - | - | - | - | - | - | - | - | - | - | 4 | 0 | 32 | 2 |
| 7 | - | - | - | - | - | - | - | 15 | - | 17 | - | 9 | 9 | - |
| 8 | - | 0 21 | - | 2 | - | - | 19 | - | - | - | - | - | - | - |
| 9 | 0 33 | - | 0 1 | - | - | - | - | - | - | - | - | - | - | - |
| 10 | - | 0 21 | - | 0 | - | - | 17 | - | - | - | - | - | - | - |
| 11 | 0 | - | 27 | - | 27 | 30 | - | - | - | - | - | - | - | - |
| 12 | - | - | - | 0 | 23 | 0 | 25 | - | - | - | - | - | - | - |
| 13 | - | - | - | 0 | 25 | 2 | 25 | - | - | - | - | - | - | - |
| 14 | 0 | - | 27 | - | 29 | 32 | - | - | - | - | - | - | - | - |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | - | - | - | 0 14 | - | 0 | - | - | - | - | - | - | 0 | - | - | - | - |
| 2 | - | - | - | - | - | - | - | 0 | 0 | 0 | - | - | - | - | - | - | 0 |
| 3 | - | - | - | - | 0 | - | - | - | - | - | - | 0 | 0 | 0 | - | - | - |
| 4 | 0 14 | - | - | - | - | - | - | - | 1 | - | - | - | - | - | - | 1 | - |
| 5 | - | - | 0 | - | 5 23 | - | - | - | - | - | - | - | - | 5 | - | - | - |
| 6 | 0 | - | - | - | - | - | 1 | - | 7 | 7 | - | - | - | - | - | - | - |
| 7 | - | - | - | - | - | 27 | - | - | - | - | 25 | - | 27 | 7 | - | - | - |
| 8 | - | 0 | - | - | - | - | - | - | - | 27 | - | - | - | - | 21 | - | 19 |
| 9 | - | 0 | - | 27 | - | 21 | - | - | - | - | - | - | - | - | 13 | - | - |
| 10 | - | 0 | - | - | - | 21 | - | 1 | - | - | 11 | - | - | - | - | - | - |
| 11 | - | - | - | - | - | - | 3 | - | - | 17 | - | 25 | - | - | 11 | - | - |
| 12 | - | - | 0 | - | - | - | - | - | - | - | 3 | - | - | 13 | - | 21 | - |
| 13 | 0 | - | 0 | - | - | - | 1 | - | - | - | - | - | - | - | - | 21 | - |
| 14 | - | - | 0 | - | 23 | - | 21 | - | - | - | - | 15 | - | - | - | - | - |
| 15 | - | - | - | - | - | - | - | 7 | 15 | - | 17 | - | - | - | - | 15 | - |
| 16 | - | - | - | 27 | - | - | - | - | - | - | - | 7 | 7 | - | 13 | - | - |
| 17 | - | 0 | - | - | - | - | - | 9 | - | - | - | - | - | - | - | - | 9 19 |
| 1 | 2 | 3 | 4 | |
|---|---|---|---|---|
| 1 | - | 0 1 | - | 0 64 |
| 2 | 0 118 | - | 46 59 | - |
| 3 | - | 60 73 | - | 4 73 |
| 4 | 0 55 | - | 46 115 | - |