CHM 152 Practice Final

- Of the following, the one that would have the *greatest entropy* (if compared at the same temperature) is,
 - [a] $H_2O(s)$
- [b] $H_2O(l)$
- [c] $H_2O(g)$
- [d] All would have the same entropy at the same temperature.
- [e] More information would be needed to make a selection.
- 2. A process will be *nonspontaneous* at all temperatures if
 - [a] the enthalpy change is and the entropy change is +.
 - [b] the enthalpy change is + and the entropy change is +.
 - [c] the enthalpy change is and the entropy change is –.
 - [d] the enthalpy change is + and the entropy change is -.
 - [e] all reactions will be spontaneous at some temperature.
- 3. Given the following standard state free energies of formation,

	$\Delta G_{\mathrm{f}}^{\circ}$ (kJ/mol)
$H_2O(l)$	-237.2
$HNO_3(l)$	-79.9
NO(g)	86.7
$NO_2(g)$	51.8

Calculate ΔG° for the reaction: $3NO_2(g) + H_2O(l) \rightarrow 2HNO_3(l) + NO(g)$

- [a] $\Delta G^{\circ} = 8.7 \text{ kJ}$ [b] $\Delta G^{\circ} = 192 \text{ kJ}$ [c] $\Delta G^{\circ} = -414 \text{ kJ}$ [d] $\Delta G^{\circ} = -192 \text{ kJ}$ [e] $\Delta G^{\circ} = -155 \text{ kJ}$
- Consider a reaction for which $\Delta H = -13.2 \text{ kJ}$ and $\Delta S = -125 \text{ J/K}$. Calculate ΔG_{rxn} for this reaction at a temperature of 95.0 K.
 - [a] -25.1 kJ
- [b] -13.3 kJ
- [c] -13.1 kJ
- [d] -11.9 kJ [e] -1.33 kJ

Consider the reaction, 5.

$$2SO_2(g) + O_2g) \rightarrow 2SO_3(g)$$

 ΔG° for this reaction is -142 kJ. Calculate the ΔG for this reaction at 25°C when the partial pressures of the gases are as follows: $P(SO_2) = 0.153$ atm, $P(O_2) = 0.164$ atm, and $P(SO_3) = 0.683$ atm.

- [a] -130 kJ
- [b] 4.8 kJ
- [c] -142 kJ [d] -147 kJ [e] -154 kJ

- The activation energy of a reaction may be *lowered* by,
 - [a] increasing the concentration of the reactants
 - [b] increasing the temperature
 - [c] adding a catalyst
 - [d] answers b and c are both correct
 - [e] answers a, b, and c are all correct.

Consider the following reaction and data for questions 7 and 8.

$$2NO + 2H_2 \rightarrow N_2 + 2H_2O$$

Exp#	[NO]	$[H_2]$	Rate (mol/L·s)		
1	0.10 M	0.20 M	0.0150		
2	0.10 M	0.30 M	0.0225		
3	0.20M	0.20 M	0.0600		

- If H₂ were disappearing at the rate of 0.080 mol/L·s, N₂ would be appearing at the rate of,
 - [a] $0.080 \text{ mol/L} \cdot \text{s}$ [b] $0.16 \text{ mol/L} \cdot \text{s}$
- [c] 0.040 mol/L·s
- [d] 0.24 mol/L·s
- [e] The rate of N₂ appearance can not be determined unless the temperature is known.
- The *rate law* for the reaction is, 8.
 - [a] rate = $k[NO]^2[H_2]^2$
- [b] rate = $k[NO][H_2]^2$

[c] rate = $k[NO][H_2]$

[d] rate = $k[NO]^2[H_2]$

[e] none of these are correct.

9. The reaction

$$2NOC1 \rightarrow 2NO + Cl_2$$

is found to obey the rate law, rate = $k[NOC1]^2$. Of the following three postulated mechanisms, the one(s) possible is/are,

- 1) NOCl \rightarrow NO + Cl
- (slow)

- 2) $2NOC1 \rightarrow NOC1_2 + NO$
- (slow)

- $Cl + NOCl \rightarrow NOCl_2$
 - (fast) (fast)

- $NOCl_2 \rightarrow NO + Cl_2$
- (fast)

- $NOCl_2 + NO \rightarrow 2NO + Cl_2$
- (slow)
- 3) NOCl \rightarrow NO + Cl $NOCl + Cl \rightarrow NO + Cl_2$
- (fast)

- [a] 1
- [b] 2
- [c] 3
- [d] 1 and 3
- [e] 2 and 3

10. At a certain temperature $K_c = 1 \times 10^9$ for the reaction:

$$Cl_2(g) + F_2(g) \implies 2ClF(g)$$

If 1.0 mol Cl₂ and 1.0 mol F₂ are placed in a reaction vessel and allowed to react, then at equilibrium...

- [a] [CIF] will be much larger than [Cl₂] and [F₂].
- [b] [CIF] will be much less than [Cl₂] and [F₂].
- [c] [CIF] will be nearly equal to [Cl₂] and [F₂].
- [d] the system will contain only Cl₂ and F₂.
- [e] the system will contain only CIF.
- 11. The following reaction comes to equilibrium:

$$2H_2(g) + S_2(g) \implies 2H_2S(g)$$

If the volume of the reaction vessel is reduced, at constant temperature, the concentration of

[a] H₂ would increase.

[b] H₂ would decrease.

[c] S₂ would increase.

- [d] H₂S would decrease.
- [e] H₂, S₂ and H₂S would not change.

12. For the equilibrium:

$$2N_2O(g) + O_2(g) \implies 4NO(g), \Delta H = +198 \text{ kJ}.$$

Which of the following changes will *increase* the amount of N_2O when the system reaches its new equilibrium state?

- [a] The temperature of the system is lowered.
- [b] The volume of the container is increased.
- [c] Some O₂ is added.
- [d] He(g) is added without changing the volume.
- [e] Some NO is removed.
- 13. For the reaction: $H_2(g) + CO_2(g) \rightleftharpoons H_2O(g) + CO(g)$, the equilibrium constant, K_p , is 4.40 at 2000 K. Calculate ΔG° for this reaction.
 - [a] -73.2 kJ
- [b] -24.6 kJ
- [c] -243 J
- [d] 243 J
- [e] 24.6 kJ

- **14.** What is the K_b value for the carbonate ion, CO_3^{2-} ?
 - [a] $K_b = 4.8 \times 10^{-11}$

[b] $K_b = \frac{1.0 \times 10^{-14}}{4.8 \times 10^{-11}}$

- [c] $K_b = \frac{1.0 \times 10^{-14}}{4.2 \times 10^{-7}}$
- [d] $K_b = \frac{1}{(4.2 \times 10^{-7})(4.8 \times 10^{-11})}$ [e] None of these are correct
- 15. Which of the following would *increase* the K_a for acetic acid?
 - [a] Decrease the pH of the solution.
- [b] Add some sodium acetate.
- [c] Add some sodium hydroxide.
- [d] Add some water.
- [e] None of the above, the K_a is temperature dependent only.
- **16.** Which one of the following salts will form a *basic* solution on dissolving in water?
 - [a] NaCl
- [b] KClO₄
- [c] NH₄NO₃
- [d] NaCN

- [e] None of these solutions are basic
- 17. Which is the *conjugate base* of H_2PO_4 ?
 - [a] H₃PO₄

- [b] HPO_4^- [c] HPO_4^{2-} [d] PO_4^{3-} [e] $H_2PO_4^{2-}$
- The pH of a solution is 8.50. The [OH] is:
 - [a] $[OH^{-}] = 3.2 \times 10^{-6} M$ [d] $[OH^{-}] = 1.0 \times 10^{-14} M$
- [b] $[OH^{-}] = 3.2 \times 10^{-9} M$
- [c] $[OH^{-}] = 5.50 M$

- [e] None of these is correct.
- **19.** What is the pH of a 0.015 M HNO₃ solution?
 - [a] pH = 0.015
- [b] pH = 1.82
- [c] pH = 2.59
- [d] pH = 2.6×10^{-3}
- [e] This cannot be answered without more information.

- **20.** What is the pH of a 0.10 M solution of CH₃COONa?
 - [a] pH = 4.74
- [b] pH = 5.13
- [c] pH = 8.87
- [d] pH = 9.25
- [e] None of these

- **21.** Which of the following is the most *acidic* solution?
 - [a] 0.10 M CH₃COOH and 0.10 M CH₃COONa
 - [b] 0.10 M CH₃COOH
 - [c] 0.10 M HNO₂ and 0.10 M NaNO₂
 - [d] 0.10 M HNO₂
 - [e] 0.10 M CH₃COONa
- 22. Which of the following mixtures is suitable for making a buffer solution with an optimum pH of 9.2–9.3?
 - [a] CH₃COONa/CH₃COOH
- [b] NH₃/NH₄Cl

[c] NaOCl/HOCl

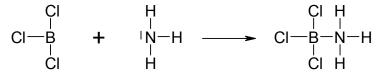
[d] NaNO₂/HNO₂

- [e] NaCl/HCl
- **23.** Which of the following 0.10 *M* solutions *cannot* act as a good buffer?
 - [a] HF & NaF

- [b] CH₃COOH & CH₃COONa
- [c] NaHCO₃ & Na₂CO₃

[d] pure H₂O

- [e] All of these solutions are good buffers.
- **24.** What is the **pH** of a solution that is 0.41 M HOCl and 0.050 M NaOCl?
 - [a] pH = 0.39
- [b] pH = 3.94
- [c] pH = 6.58
- [d] pH = 7.49
- [e] pH = 8.40


- 25. For which titration will the pH be *basic* at the equivalence point?
 - [a] HCl with NaOH

[b] HCl with NH₃

[c] HOCl with NaOH

- [d] All of these titrations will be neutral at the equivalence point.
- [e] A prediction cannot be made without additional information.
- **26.** The pH at the equivalence point of an acid-base titration may differ from 7.00 because of
 - [a] the indicator used.

- [b] the auto-ionization of water.
- [c] the initial pH of the titrate.
- [d] the concentration of the titrant.
- [e] the hydrolysis of the salt formed.
- 27. Choose the statement that describes the role of BCl₃ and NH₃ in the reaction:

- [a] BCl₃ is a Lewis base and NH₃ is a Lewis acid.
- [b] Both NH₃ and BCl₃ are Lewis acids.
- [c] Both NH₃ and BCl₃ are Lewis bases.
- [d] BCl₃ is a Lewis acid and NH₃ is a Lewis base.

28.	What is the pH of the solution resulting from the addition of 10.0 mL of 0.10 M NaOH to 50.0 mL of 0.10 M HCl solution?						
	[a] pH = 1.00 [e] Insufficient da		[c] $pH = 1.18$	[d] $pH = 7.00$			
29.	The molar solubility of MgCO ₃ is 1.8×10^{-4} mol/L. What is K_{sp} for this compound?						
			[c] 1.3×10^{-7}	•	[e] 2.8×10^{-14}		
30.	The $K_{\rm sp}$ of Ag ₂ CrC	$0_4 \text{ is } 1.9 \times 10^{-12}$. The	<i>molar solubility</i> of Ag ₂	2CrO ₄ in 0.10 <i>M</i> AgNo	O ₃ solution is:		
	[a] $7.8 \times 10^{-5} M$ [d] $1.3 \times 10^{-4} M$		[b] $9.5 \times 10^{-12} M$ [e] $1.9 \times 10^{-10} M$		[c] $1.4 \times 10^{-6} M$		
31.	For PbCl ₂ , $K_{sp} = 2$. added to 0.50 L of	4×10^{-4} . Will a precipe $9.0 \times 10^{-2} M$ NaCl and	ipitate of PbCl ₂ form w d why?	then $0.50 \text{ L of } 3.0 \times 10^{-2}$	$0^{-2} M \text{ Pb(NO}_3)_2 \text{ is}$		
	[a] Yes, $Q > K_{sp}$ [d] Yes, $Q < K_{sp}$		[b] No, $Q < K_{sp}$ [e] More information	on is needed to solve th	[c] No, $Q = K_{sp}$ ne problem.		
For	questions 32 ar	nd 33 consider th	e following redox	reaction,			
	$Zn + NO_3^- \xrightarrow{acidic} Zn^{2+} + NO$						
32.	In the balanced equ	nation in acidic solution	n, the <i>coefficient</i> of H_2	O is,			
	[a] 1 H ₂ O	[b] 2 H ₂ O	[c] 3 H ₂ O	[d] 4 H ₂ O	[e] 5 H ₂ O		
33.	The <i>reducing agen</i>	<i>t</i> is,					
	[a] Zn	[b] NO ₃	[c] NO	[d] H ⁺	[e] H ₂ O		
34.	4. Referring to the Standard Reduction Potential Table on this exam, the strongest <i>oxidizing agent</i> listed below is						
	[a] Mn ²⁺	[b] Mn	[c] ClO ₃	[d] Cl ₂	[e] Ag ⁺		
35.	35. Of the following reactions, the <i>spontaneous</i> one would be, [a] $Mn^{2+} + Fe \rightarrow Mn + Fe^{2+}$ [b] $3Ag + NO_3^- + 4H^+ \rightarrow 3Ag^+ + NO + 2H_2O$ [c] $3Sn^{4+} + 2Cr^{3+} + 7H_2O \rightarrow 3Sn^{2+} + Cr_2O_7^{2-} + 14H^+$ [d] all are spontaneous.						

[c] hydrolysis

[d] isomerization

[e] acid-base

[e] none are spontaneous.

[a] reduction

36. In a galvanic cell, the reaction occurring at the *cathode* is

[b] oxidation

37. Use data from the Table of Standard Reduction Potentials to calculate the *equilibrium constant* for the following reaction at 25°C.

$$\text{Cl}_2(g) + 2\text{Br}^-(aq) \rightarrow 2\text{Cl}^-(aq) + \text{Br}_2(l)$$

[a]
$$K = 1.5 \times 10^{-10}$$

[b]
$$K = 6.3 \times 10^9$$

[e] $K = 9.8$

[c]
$$K = 1.3 \times 10^{41}$$

[d]
$$K = 8.1 \times 10^4$$

[e]
$$K = 9.8$$

- **38.** The radioactive decay of ⁸⁷Kr *produces* a beta particle and,
 - [a] an alpha particle

[b] a positron [e] ⁸⁷Rb

[c] H⁺

39. A first order reaction has a rate constant of $k = 2.4 \times 10^{-3} \text{ s}^{-1}$ at 25°C. The half-life of the reaction is:

[a] 1660 s

- [b] 576 s
- [c] 289 s
- [d] 1.70×10^{-3} s
- [e] 2.90×10^{-4} s
- **40.** A certain radioactive element has a half-life of 10.0 minutes. If 2.00 grams of this element were present initially, the amount of the element remaining after 8.30 minutes has elapsed would be:
 - [a] 1.00 grams
- [b] 1.13 grams
- [c] 1.32 grams
- [d] 1.08 grams
- [e] 0.288 grams

Potentially Useful Information

$$\Delta G^{\circ} = \Sigma n \Delta G_{f}^{\circ}(\text{products}) - \Sigma n \Delta G_{f}^{\circ}(\text{reactants})$$
$$\Delta H^{\circ} = \Sigma n \Delta H_{f}^{\circ}(\text{products}) - \Sigma n \Delta H_{f}^{\circ}(\text{reactants})$$

$$\Delta S^{\circ} = \Sigma n S^{\circ} (\text{products}) - \Sigma n S^{\circ} (\text{reactants})$$

$$\Delta S_{\text{univ}} = \Delta S_{\text{sys}} + \Delta S_{\text{surr}}$$

$$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$$

$$\Delta G^{\circ} = -RT \ln K$$

$$\Delta G = \Delta G^{\circ} + RT \ln Q$$

$$R = 8.314 \text{ J/mol} \cdot \text{K} = 0.0821 \text{ L} \cdot \text{atm/mol} \cdot \text{K}$$

$$K = {}^{\circ}C + 273$$

$$PV = nRT$$

$$molarity(M) = \frac{moles \text{ of solute}}{L \text{ of solution}}$$

A quadratic equation of the form $ax^2 + bx + c = 0$, has the solutions: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

$$K_{\rm c} = \frac{[{\rm products}]^{\rm x}}{[{\rm reactants}]^{\rm y}}$$

$$K_{\rm w} = [{\rm H_3O}^+][{\rm OH}^-] = 1.0 \times 10^{-14} \text{ at } 25^{\circ}{\rm C}$$

pH = $-{\rm log}[{\rm H_3O}^+]$

$$K_{\rm w} = K_{\rm a} \times K_{\rm b}$$

$$\Delta G^{\circ} = -nF E_{\text{cell}}^{\circ}$$

$$E_{\text{cell}}^{\circ} = E_{\text{cathode}}^{\circ} - E_{\text{anode}}^{\circ}$$

$$E_{\text{cell}}^{\circ} = \frac{RT}{nF} \ln K$$

$$E = E^{\circ} - \frac{RT}{nF} \ln Q$$

Rate =
$$\frac{\Delta[conc]}{\Delta t}$$

Rate =
$$k[A]^{x}[B]^{y}$$

$$\ln[\mathbf{A}]_t = -kt + \ln[\mathbf{A}]_0$$

$$\ln\left(\frac{[A]_t}{[A]_0}\right) = -kt$$

$$\ln\left(\frac{[A]_0}{[A]_t}\right) = kt$$

$$t_{\frac{1}{2}} = \frac{0.693}{k}$$

$$\frac{1}{[\mathbf{A}]_t} = kt + \frac{1}{[\mathbf{A}]_0}$$

$$t_{\frac{1}{2}} = \frac{1}{k[\mathbf{A}]_0}$$

$$\ln k = \left(\frac{-E_{\rm a}}{R}\right) \left(\frac{1}{T}\right) + \ln A$$

$$\ln \frac{k_1}{k_2} = \frac{E_a}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$$

$$K_{\rm p} = K_{\rm c} (0.0821 \ T)^{\Delta n}$$

$$pH + pOH = 14$$

 $pOH = -log[OH^{-}]$

$$pH = pK_a + log \frac{[base]}{[acid]}$$

$$F = 96,500 \text{ J/V} \cdot \text{mol}$$

$$E_{\text{cell}}^{\circ} = E_{\text{oxi}}^{\circ} + E_{\text{red}}^{\circ}$$

$$E_{\text{cell}}^{\circ} = \frac{0.0257 \,\text{V}}{n} \ln K$$
 at 25°C

$$E = E^{\circ} - \frac{0.0257 \,\text{V}}{n} \ln Q \text{ at } 25^{\circ}$$

Acid Ionization Constants (25°C)

Acid	Formula	Ka	pKa	
Hydrofluoric	HF	7.1×10^{-4}	3.15	
Nitrous	HNO ₂	4.5×10^{-4}	3.35	
Benzoic	C ₆ H ₅ COOH	6.5×10^{-5}	4.19	
Acetic	CH ₃ COOH	1.8×10^{-5}	4.74	
Carbonic	H ₂ CO ₃	4.2×10^{-7}	6.38	
Bicarbonate ion	HCO ₃	4.8×10^{-11}	10.32	
Hypochlorous	HOCl	3.2×10^{-8}	7.49	
Ammonium ion	NH ₄ ⁺	5.6×10^{-10}	9.25	
Hydrocyanic	HCN	4.9×10^{-10}	9.31	

Standard Reduction Potentials

Half-Reaction	E° (Volts)
$Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	-2.37
$\operatorname{Mn}^{2+}(aq) + 2 e^{-} \to \operatorname{Mn}(s)$	-1.18
$\operatorname{Zn}^{2+}(aq) + 2 e^{-} \to \operatorname{Zn}(s)$	-0.76
$\operatorname{Cr}^{3+}(aq) + 3 e^{-} \to \operatorname{Cr}(s)$	-0.74
$Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$	-0.44
$2 \operatorname{H}^{+}(aq) + 2 \operatorname{e}^{-} \to \operatorname{H}_{2}(g)$	0.00
$\operatorname{Sn}^{4+}(aq) + 2 e^{-} \to \operatorname{Sn}^{2+}(aq)$	+0.13
$Fe^{3+}(aq) + e^{-} \rightarrow Fe^{2+}(aq)$	+0.77
$Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$	+0.80
$NO_3^-(aq) + 4 H^+(aq) + 3 e^- \rightarrow NO(g) + 2 H_2O(l)$	+0.96
$\operatorname{Br}_2(l) + 2 e^- \rightarrow 2 \operatorname{Br}^-(aq)$	+1.07
$\text{Cr}_2\text{O}_7^{2-}(aq) + 14 \text{ H}^+(aq) + 6 \text{ e}^- \rightarrow 2 \text{ Cr}^{3+}(aq) + 7 \text{ H}_2\text{O}(l)$	+1.33
$\operatorname{Cl}_{2}(l) + 2 e^{-} \rightarrow 2 \operatorname{Cl}^{-}(aq)$	+1.36
$ClO_3^-(aq) + 12 H^+(aq) + 10 e^- \rightarrow Cl_2(g) + 6 H_2O(l)$	+1.47
$Ce^{4+}(aq) + e^{-} \rightarrow Ce^{3+}(aq)$	+1.70

Answer Key

1) c	2) d	3) a	4) e	5) a	6) c	7) c	8) d	9) b	10) a
11) b	12) a	13) b	14) b	15) e	16) d	17) c	18) a	19) b	20) c
21) d	22) b	23) d	24) c	25) c	26) e	27) d	28) c	29) d	30) e
31) b	32) d	33) a	34) c	35) b	36) a	37) b	38) e	39) c	40) b