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Abstract

In this paper, we investigate numerically sign-changing solutions of superlinear elliptic equations on symmetric domains.
Based upon the symmetric criticality principle of Palais, the existence of sign-changing solutions which re2ect the symmetry
of � is studied 3rst. A simple numerical algorithm, the modi3ed mountain pass algorithm, is then proposed to compute
the sign-changing solutions. This algorithm is discussed and compared with the high-linking algorithm for sign-changing
solutions developed by Ding et al. [Nonlinear Anal. 37 (1999) 151–172]. By implementing both algorithms on several
numerical examples, the sign-changing solutions and their nodal curves are displayed and discussed. c© 2001 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Let �⊂RN be a bounded connected domain with regular boundary @�. Consider the following
semilinear elliptic equation subject to Dirichlet boundary condition:{−Cw = f(w) in �;

w = 0 on @�:
(1.1)
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The diIerential operator −� can be replaced by a more general second-order uniformly elliptic
operator in divergence form. Nonlinear elliptic equations of type (1.1) arise naturally in physics,
engineering, mathematical biology, ecology, geometry, etc. It is known that many such equations
have multiple solutions, and most of them are sign-changing solutions. The study of sign-changing
solutions of (1.1) has attracted the attention of many pure and applied mathematicians during the
past two decades.

Let us assume that f satis3es the following regularity and growth conditions:
(A1) f ∈ C1(R ;R ), f(0) = 0, and f′(0)¡�1 (the 3rst eigenvalue of −�);
(A2) there are constants C1 and C2 such that

|f(t)|6C1 + C2|t|p;
where 06p¡ (N +2)=(N−2) for N¿3. If N =1, (A2) can be dropped. For N =2, it suJces
that

|f(t)|6C3 exp( (t));

where  (t)=t2 → 0 as t → ∞ and C3 is a constant.
(A3) there are constants �¿ 2 and M ¿ 0 such that for |t|¿M ,

0¡�F(t)6tf(t);

where F(t) =
∫ t

0 f(s) ds.
Condition (A1) implies that (1.1) has the trivial solution w(x) = 0, and condition (A2) says

that f is subcritical. Under conditions (A1) and (A2), it is well-known [18] that the functional
J : H 1

0 (�) → R de3ned by

J (w) =
∫
�

(
1
2
|�w|2 − F(w)

)
dx (1.2)

is continuously FrLechet diIerentiable, i.e., J ∈ C1(H 1
0 (�);R ), and its critical points correspond to

weak solutions of (1.1). Moreover, any weak solution is also in C∞(�) ∩ C0; �( M�) by standard el-
liptic regularity estimates. Condition (A3) implies that F(t) grows at a “superquadratic” rate and
f(t) grows at a “superlinear” rate as |t| → ∞. Thus, problem (1.1) is a “superlinear” Dirichlet
problem. With assumptions (A1)–(A3), it can be veri3ed [18] that J satis3es the Palais–Smale
condition. Then, by applying the Mountain Pass Theorem due to Ambrosetti and Rabinowitz [1]
after suitable truncations on f(t), it can be shown that problem (1.1) has at least two nontrivial
solutions, one of which is a positive mountain pass solution and the other is a negative mountain
pass solution.

The question whether (1.1) has, in general, one or more sign-changing solution is much more
delicate. When f(t) is an odd nonlinearity (i.e., f(−t) = −f(t)), the existence of in3nitely many
sign-changing solutions can be established [1,2]. Also, when � has certain symmetry properties,
multiple sign-changing solutions can be obtained by applying the Mountain Pass Theorem to J (w)
in suitable symmetric subspaces of H 1

0 (�) and using the principle of symmetric criticality due to
Palais [17]. However, if f(t) is not an odd nonlinearity and � has no symmetric properties, the
question of existence of multiple sign-changing solutions is more challenging. Under assumptions
(A1)–(A3), Wang [20] 3rst proved that (1.1) admits at least three nontrivial solutions. Under
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conditions (A1)–(A4), where

(A4) f′(t)¿
f(t)
t

for any t �= 0;

Castro, Cossio and Neuberger [4] proved that (1.1) has at least two mountain pass solutions and
one sign-changing solution. Under conditions (A1)–(A3) with the weaker assumption f′(0)¡�2,
where �2 is the second eigenvalue of −�, Bartsch and Wang [3] proved that (1.1) has at least one
sign-changing solution.

In the past few years, numerical algorithms for computing unstable solutions of (1.1) have at-
tracted the attention from both pure and applied mathematicians [6–9,11,14,16]. In general, those
unstable solutions of (1.1) correspond to “saddle-type” critical points of J (w). The 3rst ingenious
numerical algorithm for computing mountain pass solutions of semilinear elliptic equations, the
Mountain Pass Algorithm, was proposed by Choi and McKenna [8]. In general, this algorithm
will 3nd only solutions of mountain pass type of Morse index 1 or 0. When the domain � is
symmetric about some hyperplanes in R N and f(t) is an odd nonlinearity, the Mountain Pass
Algorithm may also give some sign-changing solutions of (1.1) through the symmetry properties
of �. Mountain-pass-type algorithms have been successfully applied to semilinear wave equations
[9], the suspension bridge equation [14], the nonlinearly suspended beam [6], etc. Many inter-
esting mountain-pass-type solutions of semilinear elliptic equations on several typical symmetric
and nonsymmetric domains have been displayed in [7]. However, when � is not symmetric or
f(t) is not symmetric, the mountain pass algorithm cannot be used to 3nd any sign-changing
solutions.

When � is not symmetric and f(t) is not an odd nonlinearity, the task of computing numeri-
cally sign-changing solutions of (1.1) is much more challenging. This diJculty was overcome by
Ding et al. [11] and Neuberger [16] based upon diIerent ideas. The algorithm proposed in [11],
the High-Linking Algorithm, was inspired by the elegant work in [20], and provides at least two
sign-changing solutions by starting at two mountain pass solutions obtained by the Mountain Pass
Algorithm and by constructing a local linking. This algorithm was tested on problem (1.1) with �
being several typical symmetric and nonsymmetric domains. The sign-changing solutions were also
displayed in [11]. The algorithm proposed in [16], the Projection Algorithm, was inspired by the
elegant work in [4]. However, the algorithm was only tested on problem (1.1) with � = [0; 1] and
� = [0; 1] × [0; 1], and with f(t) being an odd nonlinearity.

The main objective of this paper is to investigate numerically sign-changing solutions of superlinear
elliptic equation (1.1) on symmetric domains. Based upon the symmetric criticality principle due to
Palais [17], the existence of sign-changing solutions which re2ect the symmetry of � is proved
3rst. By implementing numerically that principle for group actions which re2ect the symmetry of
�, we propose a simple numerical algorithm, the modi3ed mountain pass algorithm, to compute
the sign-changing solutions. This algorithm is inspired by the Mountain Pass Algorithm [8] and the
elegant work in [4]. The High-Linking Algorithm [11] is also adopted to compute the sign-changing
solutions. Both algorithms are tested and compared on several numerical examples. The sign-changing
solutions and their nodal curves are displayed and discussed.

The organization of this paper is as follows. In Section 2, we discuss the existence of sign-changing
solutions to (1.1), which re2ect the symmetry of �. In Section 3, numerical algorithms for com-
puting sign-changing solutions are introduced and discussed. Numerical examples on several typical
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symmetric domains are presented in Section 4, while some further discussions on numerical algo-
rithms and sign-changing solutions are given in Section 5.

2. Existence of symmetric sign-changing solutions

Let H =H 1
0 (�). Assume that there is a unitary representation {T (k)}k∈G of a compact topological

group G on the Hilbert space H [15]. In other words, T (k) : H → H is a linear isometric operator
for any k ∈ G, and satis3es the following properties:
(a) T (0)u = u, ∀u ∈ H ;
(b) T (k1)T (k2) = T (k1 + k2) for any k1; k2 ∈ G;
(c) (k; u) 
→ T (k)u is continuous on G × H .
The 3xed set of the representation {T (k)}k∈G, denoted by Fix(G), is de3ned as the closed subspace
of H given by

Fix(G) = {u ∈ H |T (k)u = u; ∀k ∈ G}:
In the following discussion, we always assume that Fix(G) is a nontrivial subspace of H . Assume
that the functional J : H 
→ R de3ned by (1.2) is invariant under {T (k)}k∈G, i.e.,
(d) J (T (k)u) = J (u), for all u ∈ H , k ∈ G.
In this paper, we will consider representations which satisfy also an additional condition,
(e) u ∈ Fix(G) implies u+, u− ∈ Fix(G),
where u+(x) = max{u(x); 0}, u−(x) = min{u(x); 0} and u = u+ + u−.

There are many examples of such group representations [15]. One example is the following. Let
�⊂R 2 be an equilateral polygonal domain centered at the origin with n corners, G=Zn, and x ∈ �
be represented by the polar coordinates (r;  ). De3ne the representation {T (k)}k∈Zn on H = H 1

0 (�)
by rotations:

T (k)u(r;  ) = u
(
r;  +

2k�
n

)
; k = 0; : : : ; n− 1:

The 3xed set of {T (k)}k∈Zn is given by

Fix(Zn) = {u ∈ H |T (k)u = u; ∀k ∈ Zn}:
It consists of those functions which are “generated” by the n rotations T (1); : : : ; T (n) of the functions
v ∈ H 1(�0) de3ned on a “fundamental subdomain” �0 = {(r;  ) | 06 62�=n}. It is easy to verify
that {T (k)}k∈Zn satisfy the above properties (a)–(e). Another example is the isometric representation
{T (k)}k∈S1 of S1 on H = H 1

0 (�), where �⊂R 2 is the unit disk [10].
Under the above assumptions, we are interested in sign-changing solutions of (1.1) in Fix(G).

The following theorem can be obtained.

Theorem 2.1. Under assumptions (A1)–(A4) and (a)–(e); Eq. (1:1) admits at least one sign-
changing solution in Fix(G).

The proof of this theorem follows from an application of the principle of symmetric criticality
[17] together with the argument in [4]. Indeed, from the equivariance of �J , we have �J (T (k)u)=
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T (k)�J (u). Thus �J (u) ∈ Fix(G) if u ∈ Fix(G). It then follows that a critical point of J restricted
to Fix(G) is also a critical point of J on H . Next, for the sake of completeness and for understanding
the numerical algorithms to be introduced later, we include a sketch of the proof of Theorem 2.1.

Let $(u) = 〈�J (u); u〉 =
∫
� (|�u|2 − uf(u)) dx for any u ∈ H , and introduce the sets

S = {u ∈ Fix(G) | u �= 0; $(u) = 0}; S1 = {u ∈ Fix(G) | u+ ∈ S; u− ∈ S}:
Under assumptions (A1)–(A4), it is well-known that S is a closed and unbounded C1-submanifold
of Fix(G) with codimension 1. Furthermore, J (u) is coercive on S and inf u∈S J (u)¿ 0. By the
continuity of $ and of the mappings u 
→ u± on H , S1 is a closed subset of S. From the de3nitions
of S and S1, all nontrivial solutions of (1.1) in Fix(G) belong to S, and all sign-changing solutions
of (1.1) in Fix(G) belong to S1. So, the proof of Theorem 2.1 can be obtained in two steps:

Step 1: Prove that there exists an w ∈ S1 such that J (w) = inf u∈S1 J (u);
Step 2: Prove that if w ∈ S1 and J (w) = inf u∈S1 J (u), then w is a critical point of J

restricted on Fix(G).
To accomplish Step 1, let c3 = inf u∈S1 J (u)¿ 0 and {un}⊂S1 be such that limn→∞ J (un) = c3. By
using the coercivity of J (u) on S and the local weak compactness of H , there exists a subsequence
of {un} (which we continue to denote by {un}) and w ∈ H such that

lim
n→∞ un = w weakly in H:

Since Fix(G) is a closed subspace of H , we have w ∈ Fix(G) and, consequently, w+ ∈ Fix(G) and
w− ∈ Fix(G). Recalling J (u) = J (u−) + J (u+), we have

lim
n→∞ (un)+ = w+ weakly in H:

By using the Sobolev Embedding Theorem and the subcriticality of f, we also have

lim
n→∞

∫
�
F((un)+) dx =

∫
�
F(w+) dx and lim

n→∞

∫
�
f((un)+)(un)+ dx =

∫
�
f(w+)w+ dx:

Noting that (un)+ ⊂S, we have $((un)+) = 0 and∫
�
f(w+)w+ dx = lim

n→∞

∫
�
f((un)+)(un)+ dx = lim

n→∞ ||(un)+||2 ¿ 0:

Thus w+ �= 0. Similarly w− �= 0. By using the weak lower semicontinuity of || · ||, we obtain
J (w+)6lim inf n→∞ J ((un)+). Similarly J (w−)6lim inf n→∞ J ((un)−). Thus,

J (w) = J (w+) + J (w−)6 lim inf
n→∞ [J ((un)+) + J ((un)−)] = lim inf

n→∞ J (un) = c3:

Step 1 will be complete once we prove that w ∈ S1. Suppose w �∈ S1. Then, without loss of
generality, we may assume that w+ �∈ S. Since

$(w+) = ||w+||2 −
∫
�
f(w+)w+ dx6 lim inf

n→∞

[
||(un)+||2 −

∫
�
f((un)+)(un)+ dx

]
= 0;

we have ||w+||2 ¡ lim inf n→∞ ||(un)+||2. Under conditions (A1) and (A4), it is straightforward to
show that there is an �¿ 0 such that �w+ ∈ S. Similarly, there exists an & satisfying &¿ 0 such
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that &w− ∈ S. Thus �w+ + &w− ∈ S1 and

J (�u+ + &w−) ¡ lim inf
n→∞ J (�(un)+ + &(un)−)

= lim inf
n→∞ [J (�(un)+) + J (&(un)−)]

6 lim inf
n→∞ [J ((un)+) + J ((un)−)]

= lim inf
n→∞ J (un) = c3;

which is a contradiction. Therefore w ∈ S1.
To accomplish Step 2, we need to prove that �J (w) = 0. Let TwS be the tangent space to S at

w, where TwS = {u ∈ Fix(G) | 〈�$(w); u〉 = 0} and

〈�$(w); u〉 = 2
∫
�
�w�u dx −

∫
�
f(w)u dx −

∫
�
f′(w)wu dx:

By using condition (A4), we have 〈�$(w); w〉¡ 0. Thus w �∈ TwS. Since �J (w) = 0 is equivalent
to Pw�J (w) = 0, where Pw is the orthogonal projection from Fix(G) to TwS, we only need to
prove that Pw�J (w) = 0. Assume Pw�J (w) �= 0. Let 0¡ j¡ 1

2 min{||w+||; ||w−||} and B = {u ∈
S | ||u− w||¿j}. By a version of the Deformation Lemma on Banach manifolds [12, p. 55], there
exists a 2ow ( ∈ C1([0; 1] ×S;S) and t0 ¿ 0 such that for all 06t ¡ t0,

(i) ((0; u) = u for all u ∈ S,
(ii) ((t; u) = u for all u ∈ B,
(iii) ((t; ·) is a homeomorphism from S onto S,
(iv) J (((t; u))6J (u) for all u ∈ S,
(v) J (((t; w))6J (w) − t

4 ||Pw�J (w)||.
Consider the linear combination (1 − t)w+ + tw− for 06t61. Under conditions (A1)–(A4), it is
straightforward to show that there exists � ∈ C1([0; 1];R+) such that

r(t) = �(t)[(1 − t)w+ + tw−] ∈ S:

It is obvious that �(0)=1, �( 1
2)=2, �(1)=1, and J (r(t))¡J (w) for t �= 1

2 . De3ne r1(t)=((t0=2; r(t)).
By properties (iv) and (v), we have

J (r1(t))6J (r(t))¡J (w) for t �= 1
2

and

J
(
r1

(
1
2

))
= J

(
(
(
t0
2
; w

))
6J (w) − t0

8
||Pw�J (w)||¡J (w):

Hence

max
t∈[0;1]

J (r1(t))¡J (w) = inf
u∈S1

J (u):

On the other hand, it is known [4] that, under conditions (A1)–(A4), S is separated by S1 into
two connected components,

S+ = {u ∈ S | u¿0 or $(u+)¡ 0} and S− = {u ∈ S | u60 or $(u−)¡ 0}:
Since r1(0) ∈ S+ and r1(1) ∈ S−, r1(t) ∩S1 is not empty, which provides a contradiction to the
last inequality. Therefore Pw�J (w) = 0. This concludes the sketch of the proof of Theorem 2.1.
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Finally, we note that an application of Theorem 2.1 to the equilateral n-polygonal domain (with
the representation {T (k)}k∈Zn) considered in the beginning of this section yields the existence of
a sign-changing solution w “generated” by the n rotations T (1); : : : ; T (n) of some sign-changing
function v ∈ H 1(�0) de3ned on the “fundamental subdomain” �0 = {(r;  ) | 06 62�=n}. Similarly,
in the case of the unit disc (and the representation {T (k)}k∈S1), we obtain a radially symmetric
sign-changing solution.

3. Numerical algorithms for sign-changing solutions in Fix(G )

In this section, we focus on developing numerical algorithms for computing sign-changing solutions
of the superlinear Dirichlet problem (1.1) in Fix(G), whose existence have been discussed in the
previous section. Two numerical algorithms are proposed in this section. One algorithm is inspired
by the proof outlined in Section 2, while the other is adopted from the High-Linking Algorithm
[11].

Before presenting these two algorithms, let us 3rst introduce the Mountain Pass Algorithm (MPA)
proposed by Choi and McKenna [8] for computing mountain pass solutions of (1.1). We have adopted
their algorithm, whose 2owchart is given below.

Mountain Pass Algorithm
Step 1: Take an initial guess w0 ∈ Fix(G) such that w0 �= 0 and J (w0)60;
Step 2: Find t∗ ¿ 0 such that J (t∗w0) = maxt∈[0;∞) J (tw0), and set w1 = t∗w0 ∈ S;
Step 3: Compute �J (w1) and set v =�J (w1) ∈ Fix(G);
Step 4: If ||v||6), then output w1 and stop;

else, goto the next step;
Step 5: Let w = −v + w1 and 3nd t∗ ¿ 0 such that J (t∗w) = maxt∈[0;∞) J (tw);
Step 6: If J (t∗w)¡J (w1), set w1 = t∗w ∈ S and goto Step 3;

else, set v = 1
2v and goto Step 5.

Remark 3.1. The element v =�J (w1) in Step 3 is understood as follows: v is the unique element
in E such that 〈J ′(w1); u〉E′ ; E = 〈v; u〉 for any u ∈ E, where E′ is the dual of E, J ′(w1) ∈ E′ and
〈· ; ·〉E′ ; E is the duality pairing between E′ and E. By the equivariance of �J , v ∈ Fix(G) because
w1 ∈ Fix(G). Thus −v is, in fact, the steepest descent direction of J |Fix(G) at w1. To calculate v in
Step 3, we 3rst need to compute the gradient of J at w1. For any u ∈ E,

〈J ′(w1); u〉E′ ; E = lim
)→0

J (w1 + )u) − J (w1)
)

=
∫
�

(�w1 ·�u− f(w1)u) dx

=
∫
�
(−Cw1 − f(w1))u dx:
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Note that

〈J ′(w1); u〉E′ ; E = 〈v; u〉
=

∫
�
�v ·�u dx

=
∫
�

(−Cv)u dx:

Therefore, v can be determined by the following linear elliptic equation:

Cv = Cw1 + f(w1) in �;

v = 0 on @�: (3.1)

Eq. (3.1) can be solved by any numerical elliptic solver. Even though it is theoretically true that
v ∈ Fix(G), the numerical solution v of (3.1) may however not be in Fix(G) due to round oI errors.
Therefore, v should be replaced by the average of {T (k)v | k ∈ G} to guarantee v ∈ Fix(G).

Inspired by the proof of Theorem 2.1 and the MPA described above, we propose a numerical algo-
rithm, called the Modi3ed Mountain Pass Algorithm (MMPA), to compute sign-changing solutions
of (1.1) in Fix(G). The algorithm is described below.

Modi3ed Mountain Pass Algorithm
Step 1: Take an initial guess w0 ∈ Fix(G) such that (w0)+ �= 0; (w0)− �= 0,

J ((w0)+)60, and J ((w0)−)60;
Step 2: Find t∗1 ¿ 0 such that J (t∗1 (w0)+) = maxt∈[0;∞) J (t(w0)+), and 3nd t∗2 ¿ 0 such

that J (t∗2 (w0)−) = maxt∈[0;∞) J (t(w0)−), and set w1 = t∗1 (w0)+ + t∗2 (w0)− ∈ S1;
Step 3: Compute �J (w1) and set v =�J (w1) ∈ Fix(G);
Step 4: If ||v||6), then output w1 and stop;

else, goto the next step;
Step 5: Let w = −v + w1 and 3nd t∗ ¿ 0 such that J (t∗w) = maxt∈[0;∞) J (tw);
Step 6: If J (t∗w)¡J (w1), set w0 = t∗w ∈ S and goto Step 2;

else, set v = 1
2v and goto Step 5.

Remark 3.2. The idea of splitting a sign-changing function into its positive and negative parts and
implementing the steepest descent technique was also used in [16].

Remark 3.3. Instead of projecting w0 to S as in the MPA, Step 2 of the MMPA projects w0 to
S1, which is the only diIerence between the MPA and MMPA. It should be pointed out that even
though the MMPA works on some numerical examples to be presented in the next section, this
algorithm, however, has two disadvantages in implementation. One is that the choice of w0 in Step
1 is sometimes diJcult if the geometry of � is complicated. The other is that the convergence is
not stable. Even though Step 6 forces the functional value of J to decrease on S along the steepest
descent direction, the value of J , however, may increase or oscillate on S1. Enforcing that the value
J decreases on S1 along the steepest descent direction in Step 6 will put the algorithm to death
due to the nature of line searching of Step 2 and the fact that the codimension of a tangent space
to S1 is 2 in general. These disadvantages have been overcome in the next algorithm.
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Inspired by an elegant work by Wang [20], who proved that (1.1) has at least three nontrivial so-
lutions by using linking and Morse-type arguments, a High-Linking Algorithm (HLA) for computing
sign-changing solutions of (1.1) on a general domain was proposed in [11]. The idea of the HLA
is to construct a local linking from a known critical point, which is a local variant of the global
linking in [20], leading to a new critical point. To construct such a linking, one needs to have some
knowledge of the local behavior of the functional J (w) at the known critical points. Since the local
behavior of the functional J (w) at a positive and a negative mountain pass solution is known [20],
one is able to 3nd sign-changing solutions from them by using the HLA. By adopting the HLA in
Fix(G), we introduce the following algorithm called again the High-Linking Algorithm since there
is no signi3cant diIerence between the HLA in [11] and the algorithm below.

The HLA preassumes that a mountain pass solution w1 ∈ Fix(G) of (1.1) is given or computed
by the MPA. It is known [13] that the Morse index of w1 is either 1 or 0, where the Morse index
of w1 is de3ned as the maximal dimension of a subspace where J ′′(w1) is negative de3nite. By
applying the Morse Lemma [5], one shows [20] that there exist u1; u2 ∈ Fix(G), and a +¿ 0 such
that

J (w1 + tu1)¡J (w1); J (w1 + tu2)¿J (w1); for 0¡ |t|6+: (3.2)

Thus a local linking can be constructed by using {w1; u1; u2}. The HLA is described below.

High-Linking Algorithm
Step 1: Take an initial guess w0 ∈ Fix(G) such that w0 �= 0 and J (w0)60;
Step 2: Apply the MPA to 3nd a mountain pass solution w1 ∈ Fix(G), and

u1; u2 ∈ Fix(G) satisfying (3.2);
Step 3: Find t1 ¿ 0 and t2 ¡ 0 such that J (w1 + t1u1)60

and J (w1 + t2u1)60, and set g1 = w1 + t1u1 and g2 = w1 + t2u1;
Step 4: Find t3 ¿ 0 such that J (w1 + t3u2)6J (w1), and set g3 = w1 + t3u2;
Step 5: Construct the triangle � in Fix(G) by

� = {�1g1 + �2g2 + (1 − �1 − �2)g3; | �1¿0; �2¿0; �1 + �261};
and 3nd w∗ ∈ � such that J (w∗) = maxg∈� J (g);

Step 6: If w∗ is an interior point of �, then goto the next step;
else, set u2 = w∗ − w1 and goto Step 4;

Step 7: Set w2 = w∗, compute �J (w2) and set v =�J (w2) ∈ Fix(G);
Step 8: If ||v||6), then output w2 and stop;

else, set u2 = (−v + w2) − w1 and goto the next step;
Step 9: Repeat the same procedures as Steps 4 − 6 to construct a new triangle

� and to 3nd an interior point w∗ ∈ � such that J (w∗) = maxg∈� J (g);
Step 10: If J (w∗)¡J (w2), goto Step 7;

else, set v = 1
2v and u2 = (−v + w2) − w1, and goto Step 9.

Remark 3.4. A more detailed discussion and justi3cation of the HLA can be found in [11]. Our
numerical examples (to be introduced in the next section) have indicated that the HLA is convergent
and stable, and is more reliable than the MMPA due to the fact pointed out in Remark 3.3.
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Remark 3.5. In Step 2, the direction u1 can be obtained by u1 = w1=||w1||, and the direction u2

can be found while computing w1 by the MPA. When implementing Step 5 of the MPA, we set
u2 = w1 − t∗w and normalize u2 by taking u2=||u2||. If a mountain pass solution w1 is obtained, then
u2 is obtained also. Both u1 and u2 found in this way will satisfy (3.2), which was justi3ed in [11].

Remark 3.6. The implementations of Steps 5 and 6 are explicit. The maximum point w∗ will not
be at any of the three corners, but it may be on the line segment joining g1 and g3 or on the line
segment joining g2 and g3. If this is the case, we need to adjust the triangle � along the direction
w∗ − w1. Note that all of these adjusted triangles are on the same plane, and the functional J can
always be expressed as J (w1 + tu1 +su2). Under assumption (A3), for any given nonzero u ∈ Fix(G),
there is always a t0 ¿ 0 such that J (w1 + t0u)60. Thus, after a 3nite number of adjustments of �,
we can 3nd w∗ as an interior point of � such that J (w∗)=maxg∈� J (g). It must be pointed out that
the adjustment of � in such a way that w∗ is an interior point is crucial for the linking argument.
Without such adjustments of �, the HLA may converge to the mountain pass solution w1, and thus
no additional solution is generated.

4. Numerical examples

In this section, we will apply both MMPA and HLA to the superlinear Dirichlet problem (1.1)
on � with three typical geometries: equilateral triangle, square and disc. For all examples discussed
in this section, conditions (A1)–(A4) are satis3ed. We use the 3nite element method with linear
splines to approximate solutions of the Dirichlet problems, and employ the uniform 3nite element
triangulation on � that is Zn–rotational symmetric, and 3x the partition number of � to be 100.
A detailed discussion of the 3nite element method can be found, for example, in [19]. We set
) = 1:0 × 10−2 as the control of convergence in all numerical computations of this paper, and use
the Maple software to graph numerical solutions.

Example 4.1. Let � = {(x1; x2) ∈ R 2| − 1¡x1 ¡ 1; 0¡x2 ¡
√

3(1 − |x1|)}. Let p¿ 1 and q¿ 1.
Consider the Dirichlet problem{−Cw = wp

+ + w−|w−|q−1 in �;

w = 0 on @�:
(4.1)

De3ne

J (w) =
1
2

∫
�
|�w|2 dx − 1

p + 1

∫
�
wp+1

+ dx − 1
q + 1

∫
�
|w−|q+1 dx:

It is easy to verify that w = 0 is a (trivial) solution of (4.1), and a local minimum of J (w). Let
G=Z3, and x ∈ � be represented by the polar coordinates (r;  ). De3ne the representation {T (k)}k∈Z3

on H = H 1
0 (�) by rotations

T (k)u(r;  ) = u
(
r;  +

2k�
3

)
; k ∈ Z3:

We are interested in sign-changing solutions in Fix(Z3).
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Fig. 1. Positive mountain pass solution of (4.1) with p = q = 5.

Fig. 2. A sign-changing solution of (4.1) with p = q = 5.

We 3rst consider the odd nonlinearity case: p = q. By letting w0(x) = 10x2(x2 −
√

3x1 −
√

3)(x2 +√
3x1 −

√
3) and p = q = 5, the positive mountain pass solution of (4.1) obtained by applying the

MPA is shown in Fig. 1, where J (w) = 7:3859 and maxx∈� w(x) = 2:8376. The negative mountain
pass solution of (4.1) with p = q = 3, which is the negative of the solution shown in Fig. 1, can
be obtained by letting w0(x) =−10x2(x2 −

√
3x1 −

√
3)(x2 +

√
3x1 −

√
3) and by applying the MPA.

By applying the HLA at the positive mountain solution shown in Fig. 1, we obtain a sign-changing
solution of (4.1) with p = q = 5. The solution and its nodal curve are shown in Fig. 2, where
J (w) = 60:4952; maxx∈� w(x) = 3:8994 and minx∈� w(x) = −4:5047.

By letting w0(x1; x2) = 10x2(x2 −
√

3x1 −
√

3)(x2 +
√

3x1 −
√

3)(x2 +
√

3x1)(x2 −
√

3x1)(x2 − 0:5
√

3)
and by applying the MMPA to (4.1) with p = q = 5, we obtain a diIerent sign-changing solution.
The solution and its nodal curve are shown in Fig. 3, where J (w) = 59:6959, maxx∈� w(x) = 4:1560
and minx∈� w(x) = −3:7277. This solution can be also reproduced by applying the HLA with u2 =
x2(x2 −

√
3x1 −

√
3)(x2 +

√
3x1 −

√
3)(x2 +

√
3x1 + 0:2

√
3)(x2 −

√
3x1 + 0:2

√
3)(x2 − 0:6

√
3). The

comparison between the HLA and the MMPA is given in Table 1.
Table 1 shows that both algorithms are eIective on computing the similar type of solutions as

shown in Fig. 3. We wish to point out that, due to its nature of looking for the in3mum of J (w)
on S1, the MMPA cannot reproduce the solution shown in Fig. 2 because its functional value J (w)
is greater than that of the solution shown in Fig. 3.



310 D.G. Costa et al. / Journal of Computational and Applied Mathematics 131 (2001) 299–319

Fig. 3. A sign-changing solution of (4.1) with p = q = 5.

Table 1
Comparison between the HLA and the MMPA

p = q = 3 p = q = 5

J (w) maxw min w J (w) maxw min w

MMPA 408.9845 10.8102 −10:7336 59.6959 4.1560 −3:7277

HLA 409.2215 10.9053 −10:6563 59.7447 4.1458 −3:7131

Fig. 4. Comparison of nodal curves.

Even though both sign-changing solutions shown in Figs 2 and 3 have similar pro3les, they are
indeed very diIerent. The solution shown in Fig. 3 has a lower value of J (w) than that of the solution
shown in Fig. 2. Furthermore, the nodal curves of both solutions have completely diIerent geometries.
The comparison of nodal curves of sign-changing solutions similar to Fig. 2 is shown in Fig. 4,
where the nodal curves from the outside to the inside correspond to p= q= 3; p= q= 4; p= q= 5
and p= q= 6. As the value of p= q increases, the nodal curve shrinks toward the center of �. The
comparison of nodal curves of sign-changing solutions similar to Fig. 3 is shown in Fig. 5, where
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Fig. 5. Comparison of nodal curves.

Fig. 6. A sign-changing solution of (4.1) with p = 3 and q = 4.

the nodal curves from the inside to the outside correspond to p = q = 3; p = q = 4; p = q = 5 and
p = q = 6. As the value of p = q increases, the nodal curve moves to the corners of �.

Next we consider the non odd nonlinearity case p �= q. By letting w0(x) = 10x2(x2 −
√

3x1 −√
3)(x2 +

√
3x1 −

√
3), and by applying the HLA at the positive mountain pass solution, we obtain

a sign-changing solution of (4.1) with p = 3 and q = 4. The solution and its nodal curve are
shown in Fig. 6, where J (w) = 155:1658; maxx∈� w(x) = 7:1790 and minx∈� w(x) = −6:3139. By
applying the HLA at the negative mountain pass solution, we obtain another sign-changing solution
of (4.1) with p = 3 and q = 4. The solution and its nodal curve are shown in Fig. 7, where
J (w)=278:4613; maxx∈� w(x)=8:6114 and minx∈� w(x)=−9:2286. By letting w0(x1; x2)=10x2(x2−√

3x1 −
√

3)(x2 +
√

3x1 −
√

3)(x2 +
√

3x1)(x2 −
√

3x1)(x2 − 0:5
√

3), the MMPA can reproduce the
solution shown in Fig. 6. However, the MMPA fails to reproduce the solution shown in Fig. 7 due
to the instability of the algorithm discussed in Remark 3.3 and due to the fact that the support of
the negative part of the solution shown in Fig. 7 is relatively small.

An important observation from our numerical computation of sign-changing solutions of (4.1) in
Fix(Z3) is that we obtained at least four sign-changing solutions for the odd nonlinearity case p=q,
and at least two sign-changing solutions for the non odd nonlinearity case p �= q. Further numerical
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Fig. 7. A sign-changing solution of (4.1) with p = 3 and q = 4.

investigations have revealed that if p �= q and |p − q| is very small, then we can obtain at least
four sign-changing solutions. Due to the length of this paper, we omit the detail here.

Example 4.2. Let � = {(x1; x2) ∈ R 2|0¡x1 ¡ 1; 0¡x2 ¡ 1}. Let p¿ 1 and q¿ 1. Consider the
Dirichlet problem{−Cw = wp

+ + w−|w−|q−1 in �;

w = 0 on @�:
(4.2)

De3ne

J (w) =
1
2

∫
�
|�w|2 dx − 1

p + 1

∫
�
wp+1

+ dx − 1
q + 1

∫
�
|w−|q+1 dx:

One can check that w = 0 is a (trivial) solution of (4.2), and a local minimum of J (w). Let G =Z4,
and x ∈ � be represented by the polar coordinates (r;  ). De3ne the representation {T (k)}k∈Z4 on
H = H 1

0 (�) by rotations:

T (k)u(r;  ) = u
(
r;  +

k�
2

)
; k ∈ Z4

We are interested in sign-changing solutions in Fix(Z4).
We 3rst consider the odd nonlinearity case: p=q. By letting p=q=5 and w0(x)=20 sin(�x1)sin(�x2),

the positive mountain pass solution of (4.2) obtained by applying the MPA is shown in Fig. 8,
where J (w) = 8:9591 and maxx∈� w(x) = 3:1610. The negative mountain pass solution of (4.2)
with p = q = 5, which is the negative of the solution shown in Fig. 8, can be obtained by letting
w0(x)=−20 sin(�x1)sin(�x2) and by applying the MPA. By applying the HLA at the positive moun-
tain pass solution shown in Fig. 8, we obtain a sign-changing solution of (4.2) with p = q = 5.
The solution and its nodal curve are shown in Fig. 9, where J (w) = 97:4241; maxx∈� w(x) = 4:2496
and minx∈� w(x) =−5:9402. By letting w0(x) = 20 sin(�x1)sin(�x2)(x1 + x2 − 0:4)(x1 + x2 − 1:6)(x1 −
x2 − 0:6)(x1 − x2 + 0:6), the MMPA produces the same solution as shown in Fig. 9. The comparison
of nodal curves of sign-changing solutions similar to Fig. 9 is shown in Fig. 10, where the nodal
curves from the outside to the inside correspond to p = q = 3; p = q = 4; p = q = 5; p = q = 6
and p = q = 7. As the value of p = q increases, the nodal curve shrinks toward the center of �.
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Fig. 8. Positive mountain pass solution of (4.2) with p = q = 5.

Fig. 9. A sign-changing solution of (4.2) with p = q = 5.

Fig. 10. Comparison of nodal curves.

Unlike the equilateral triangle case in Example 4.1, we obtained at least two sign-changing solutions
in Fix(Z4).

Next we consider the non odd nonlinearity case p �= q. By letting w0(x) = 20 sin(�x1) sin(�x2),
and by applying the HLA at the positive mountain pass solution, we obtain a sign-changing solution
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Fig. 11. A sign-changing solution of (4.2) with p = 3 and q = 5.

Fig. 12. A sign-changing solution of (4.2) with p = 3 and q = 5.

of (4.2) with p= 3 and q= 5. The solution and its nodal curve are shown in Fig. 11, where J (w) =
188:0203, maxx∈� w(x) = 9:1191 and minx∈� w(x) = −5:6627. By applying the HLA at the negative
mountain pass solution, we obtain another sign-changing solution of (4.2) with p=3 and q=5. The
solution and its nodal curve are shown in Fig. 12, where J (w)=274:2947, maxx∈� w(x)=7:4345 and
minx∈� w(x)=−9:6297. By letting w0(x1; x2)=20 sin(�x1)sin(�x2)(x1 +x2−0:4)(x1 +x2−1:6)(x1−x2−
0:6)(x1 − x2 + 0:6), the MMPA can reproduce the solution shown in Fig. 11. However, the MMPA
fails to reproduce the solution shown in Fig. 12 due to the instability of the algorithm discussed in
Remark 3:3 and due to the fact that the support of the negative part of the solution shown in Fig.
12 is relatively small.

Example 4.3. Let � = {(x1; x2) ∈ R 2 | x2
1 + x2

2 ¡ 1}. Let p¿ 1 and q¿ 1. Consider the Dirichlet
problem{−Cw = wp

+ + w−|w−|q−1 in �;

w = 0 on @�:
(4.3)

De3ne

J (w) =
1
2

∫
�
|∇w|2 dx − 1

p + 1

∫
�
wp+1

+ dx − 1
q + 1

∫
�
|w−|q+1 dx:
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Fig. 13. Positive mountain pass solution of (4.3) with p = q = 3.

Fig. 14. A sign-changing solution of (4.3) with p = q = 3.

One can verify that w = 0 is a (trivial) solution of (4.3), and a local minimum of J (w). Let
G=S1 =R =2�Z, and x ∈ � be represented by the polar coordinates (r;  ). De3ne the representation
{T (s)}k∈S1 on H = H 1

0 (�) by

T (s)u(r;  ) = u(r;  + s); s ∈ S1:

We are interested in sign-changing solutions in Fix(S1).
We 3rst consider the odd nonlinearity case: p = q. By letting w0(x) = 20 cos((�=2)

√
x2

1 + x2
2) and

p=q=3, the positive mountain pass solution of (4.3) obtained by applying the MPA is shown in Fig.
13, where J (w) = 11:3232 and maxx∈� w(x) = 3:5937. The negative mountain pass solution of (4.3)
with p = q = 3, which is the negative of the solution shown in Fig. 13, can be obtained by letting
w0(x) = −20 cos((�=2)

√
x2

1 + x2
2) and by applying the MPA. By applying the HLA at the positive

mountain solution shown in Fig. 8, we obtain a sign-changing solution of (4.2) with p= q= 3. The
solution and its nodal curve are shown in Fig. 14, where J (w) = 306:5837, maxx∈� w(x) = 5:2555
and minx∈� w(x) = −12:9917. By letting w0(x) = −20 cos((�=2)

√
x2

1 + x2
2), the MMPA produces the

same solution as shown in Fig. 14, but is unable to reproduce those sign-changing solutions for
p= q relatively large. The comparison of nodal curves of sign-changing solutions similar to Fig. 14
is shown in Fig. 15, where the nodal curves from the outside to the inside correspond to p= q = 3,
p = q = 4, p = q = 5, p = q = 6 and p = q = 7. As the value of p = q increases, the nodal curve
shrinks toward the center of �.
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Fig. 15. Comparison of nodal curves.

Fig. 16. A sign-changing solution of (4.3) with p = 3 and q = 5.

Next, we consider the non-odd nonlinearity case p �= q. By applying the HLA at the positive
mountain pass solution and by letting w0(x) = 20 cos((�=2)

√
x2

1 + x2
2), we obtain a sign-changing

solution of (4.3) with p=3 and q=5. The solution and its nodal curve are shown in Fig. 16, where
J (w) = 106:8036, maxx∈� w(x) = 4:1372 and minx∈� w(x) = −6:8617. By applying the HLA at the
negative mountain pass solution, we obtain another sign-changing solution of (4.3) with p = 3 and
q=5. The solution and its nodal curve are shown in Fig. 17, where J (w)=146:7561, maxx∈� w(x)=
9:4084 and minx∈� w(x) = −2:6805. However, the MMPA cannot reproduce the solutions shown in
Figs. 16 and 17. In other words, no matter how to choose the initial guess, the MMPA diverges. The
failure of the MMPA to generate sign-changing solutions in this case may be due to the nature of
the MMPA and the instability of the algorithm discussed in Remark 3.3. Among two sign-changing
solutions shown in Figs. 16 and 17, the one shown in Fig. 16 has the lower value of J (w). One
can also note that the support of the negative part of this solution is relatively small. Since the
MMPA can produce in general sign-changing solutions with the smallest energy J (w) on S1, it
would generate the solution shown in Fig. 16 instead of that shown in Fig. 17 if it worked out.
Due to the relatively small support of the negative part of the solution shown Fig. 16, the instability
problem pointed out in Remark 3.3 becomes more signi3cant in this example than in the previous
two examples.
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Fig. 17. A sign-changing solution of (4.3) with p = 3 and q = 5.

5. Some further discussions

For the two numerical algorithms given in this paper for sign-changing solutions of superlinear
Dirichlet problems, our numerical examples indicate that each of them has certain advantages and
disadvantages. Before giving further discussions on these, we wish to point out 3rst that the group
G in both algorithms could not only be groups re2ecting the domain symmetries as discussed in the
examples, but also be some other group actions. As a typical example, by letting G be the trivial
group, then both algorithms can be applied to a superlinear Dirichlet problem on any domain. The
numerical investigation of sign-changing solutions of a superlinear Dirichlet problem on symmetric
and nonsymmetric domains is given in [11].

The MMPA is a modi3ed version of the MPA, and is then algorithmically simple. First, this algo-
rithm can produce positive and negative mountain pass solutions of a superlinear Dirichlet problem
if the initial guesses are positive or negative functions in Fix(G). In this case, the MMPA is the
same as the MPA, which is a very stable algorithm for mountain pass solutions (see the detailed
discussion in [8]). For the MPA, one can also use sign-changing functions as initial guesses. Second,
the MMPA can also produce those sign-changing solutions of a superlinear Dirichlet problem with
the smallest energy in S1 provided it is convergent. However, as pointed out in Remark 3.3, this
algorithm is not stable as shown in the Examples in Section 3. Furthermore, if the sign-changing
solution with the smallest energy J (w) on S1 has a relatively small support for its positive or neg-
ative parts, then the MMPA may be dead in Step 2. It seems that the local grid adaptive technique
may help to overcome this problem. However, due to the uncertainty of the location and geometry
of the support, such a technique is extremely diJcult to apply.

In contrast to the MMPA, the HLA is a very stable algorithm, and can provide more reliable
sign-changing solutions of a superlinear Dirichlet problem on any domain. For any superlinear Dirich-
let problem, this algorithm can always produce at least two sign-changing solutions (including those
sign-changing solutions found by the MMPA). However, this algorithm is not algorithmically sim-
ple as the MMPA. Since implementing the MMPA or the MPA for mountain pass solutions is a
necessary step for implementing the HLA, one should be recommended to test the MMPA 3rst for
sign-changing solutions, if one is only interested in the sign-changing solutions with the smallest
energy J (w) on S1 and if the MMPA is convergent. However, at present, the HLA is the only
reliable numerical algorithm for sign-changing solutions of a superlinear Dirichlet problem on any
domain.
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By using the HLA and the MMPA, we have investigated sign-changing solutions in Fix(G)
for superlinear elliptic equations on symmetric domains, and have obtained at least two numerical
sign-changing solutions in Fix(G). For a superlinear Dirichlet problem with an odd nonlinearity, the
two sign-changing solutions with the smallest energy J (w) on S1 obtained by either the HLA or the
MMPA are the negative of each other, and have the same nodal curves. Except for the equilateral
triangle case, Figs 10 and 15 indicate that the nodal curves shrink toward the center of the domain
when p = q increases.

Among three domain geometries, it was observed that the equilateral triangle discussed in Example
4.1 displays an interesting bifurcation phenomenon. We found that a superlinear Dirichlet problem
on an equilateral triangle may have at least four sign-changing solutions in Fix(G) for the odd
nonlinearity case, and may have at least two sign-changing solutions in Fix(G) for the the non-odd
nonlinearity case. As remarked at the end of Example 4.1, if p �= q and |p − q| is very small,
then we can obtain also at least four sign-changing solutions. This observation suggests that an
interesting bifurcation phenomenon may exist for the number of nontrivial sign-changing solutions
of (4.1). More precisely, it seems that there is a constant +(�)¿ 0 such that when |p− q|¡+(�),
(4.1) has at least four sign-changing solutions, and when |p − q|¿+(�), (4.1) has at least two
sign-changing solutions. Our numerical examples have indicated that superlinear Dirichlet problems
on other equilateral polygons or disc do not display that phenomenon.
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