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ABSTRACT. This article is a survey of successful numerical experiments
which use variants of the Gradient Newton Galerkin Algorithm of Neu-
berger & Swift, together with a list of open problems and conjectures in
semilinear elliptic PDE. The application is primarily to problems of the
form Aw + f(u) = 0 on regions @ C R? with zero Dirichlet boundary
condition. By characterizing solutions to the PDE as critical points of
an “action” functional, we consider Newton’s method on the gradient
of that functional. We use a Galerkin expansion, in eigenfunctions of
the Laplacian, to find solutions of arbitrary Morse index. For general
regions, generating this basis is one of the more computationally chal-
lenging portions of the algorithm. We often take f'(0) to be a parameter,
and analyze the resulting bifurcations. We also consider a one-parameter
family of regions, where we then have two free bifurcation parameters.
If the region or the nonlinearity has symmetry, it is often advantageous
to use this information. We also report on several new numerical results
and discuss related conjectures and on-going experiments.

1. Semilinear Elliptic BVP.

The Gradient Newton Galerkin Algorithm (GNGA, see [36]) is a general
method for finding approximations of critical points of a functional. Given
a Hilbert space H and a C? functional J : H — R, we work in a sufficiently
large M-dimensional subspace G C H and iteratively seek a function u € G
so that the projection PgVJ(u) = 0. For many of the semilinear elliptic
Dirichlet problems that are our frequent objects of interest, it is reasonable
to take G = span{t;}i=1,.. m, where {1;};cn are the eigenfunctions of —A
with zero Dirichlet boundary condition in €2, and
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are the corresponding eigenvalues. In this case we assume that the eigen-
functions are normal in Le = L9(02) and of course orthogonal in both the
Sobolev space H = H& 2 () and in Ly, with inner products

<u,'u)H:/Vu-VU and (u,’u)gz/uv
Q Q

respectively (see [1], [24], or [42]). It is a chief goal of ours to demonstrate
the importance of these eigenfunctions to the theory and numerical solution
of related nonlinear elliptic equations.

Our interest in variational methods for nonlinear elliptic boundary value
problems (BVP) began with [8], where we proved the existence of a third
nontrivial solution to a superlinear Dirichlet problem of the form

Au+ f(u)=0 inQ
u=0 on 09,

where among other hypotheses, we have f(0) = 0 and f/(0) < A;. This solu-
tion, if nondegenerate, is shown to be of Morse index (MI) 2 (see [33]). The
techniques of proofs were natural extensions of the Mountain Pass Lemma
(see [2]), and were similarly constructive. Recently, we extended this re-
sult in [11] to the case where f'(0) < Ag. Similarly to the Mountain Pass
Algorithm (MPA) of [13], we were able to develop the so-called Modified
Mountain Pass Algorithm (MMPA) (see [34]) for approximating the new
higher MI solution through a gradient descent method with two constraints.
The proof in [8] and the MMPA were suitably modified in [35] to handle
a slightly different non-linearity allowing f(0) # 0 where the variational
structure is more complex than the frequently studied “Nehari Manifold”.
In [15], our steepest descent techniques are further modified to realize the
Lyapunov-Schmidt reductions found in [9] and [10], where asymptotically
linear problems are considered. In [17], we use both the MMPA and numer-
ical high-linking methods (see [16]) together with gradient flow invariant
sets to take advantage of symmetries of {2 to approximate solutions with MI
greater than 2.

In seeking a general method to find solutions of MI greater than 2, we
take advantage of the minimax nature inherent to Newton’s Method in order
to find saddle point type critical points. In [36], we developed the GNGA
for exactly this purpose, and were able to describe in a fairly complete
way all of the solutions of reasonable MI to a standard class of superlinear
Dirichlet problems on the square. For the PDE (1.2) on a square region
Q= (0,1) x (0,1), it is well-known that the (doubly indexed) eigenvalues
and eigenfunctions of —A are

(1.3) A = (m? +n?) 7% and 4, = 2sin(mmz) sin(nry),

(1.2)

where m and n range over all positive integers. We featured primarily the
nonlinearity f(u) = Au + u®, and were thus able to analyze the possible
types of symmetry on all of the branches bifurcating from the trivial branch
at the first 6 eigenvalues of the Laplacian, as well as secondary and tertiary
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bifurcations off of those branches. In [7], we performed analogous exper-
iments when Q was a disk in R?, using the well known basis generated
from Bessel functions in that case. In [21], we began an ambitious effort
to understand the basins of attraction for Newton’s Method in general, and
the GNGA for our semilinear problems in particular. One could see this
effort as an attempt to generalize the finite dimensional result in [43] to
the significantly more complicated infinite dimensional case arising from the
variational study of semilinear elliptic PDE. Efforts along these lines are
still on-going. We are attempting to relate these experiments to the well
known Lazer-Mckenna conjecture and subsequent Dancer counterexample
(see [29] and [18] ). In [39], we apply GNGA to systems of nonlinear ellip-
tic BVP. In particular, we are able to approximate a triple junction solution
to a vector equation of Ginzburg-Landau type (see also [22]). We are in-
terested in and see the potential for applying our general methods to more
complicated equations from physics, such as the full Ginzburg-Landau and
Monge-Ampere equations (see [42], and [4]).

Our current efforts have focused on generating eigenfunctions of the
Laplacian for general regions (2 C R? and then applying GNGA for (1.2) on
that region. We present recent results for two interesting cases. In the first,
we let Q = Q4 be a family of Bunimovich stadia (see [25], [45], and [6]). In
this case, the parameter d (radii of the end cap semicircles) is treated like a
second bifurcation parameter. We observe the persistence of the well-known
eigenvalue crossings and avoided crossings from the linear to the nonlinear
case. Most recently, we considered the case where 2 is the Koch Snowflake.
After first reproducing (and possibly improving upon) the approximations
to the linear problem found in [27], we studied the nonlinear problem (1.2).
Our focus here is on the symmetry of solutions, where we once again find
guidance for the nonlinear problem by first understanding what happens in
the linear case. These experiments rely heavily on the package ARPACK,
an implementation of the Arnoldi process called the Implicitly Restarted
Arnoldi Method, most useful in finding eigenvalues and eigenvectors to very
large sparse matrices. At the time of this writing, we are porting both linear
and nonlinear code to work in a parallel environment on a Linux cluster.

In Section 2 we will present the general GNGA algorithm, define pre-
cisely the nonlinearities for a class of semilinear elliptic BVP, and describe
the variational framework for studying this class. Furthermore, we will pro-
vide some details for implementing the GNGA for these types of nonlinear
PDE. In order to make the point of the generality of the numerical method,
we also include a very simple ODE example where a basis other than eigen-
functions is used. In Section 3 we provide a brief historical overview of the
constrained steepest descent methods (MPA, MMPA) used to find MI 1 and
MTI 2 solutions of problems of a similar type. In Section 4, we outline previ-
ous results where the GNGA was applied to BVP where the region 2 was
a square or a disk. Section 5 contains an application to a system of PDE,
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with discussion of the applicability of the method to various scientific appli-
cations such as the full Ginzburg-Landau equation. Section 6 contains brief
previews of several new results, where the basis of eigenfunctions for non-
standard regions is generated in order to further illuminate the relationship
between linear and nonlinear problems. Section 7 contains several historical
conjectures, some new conjectures, and describes ongoing experiments de-
signed to further understanding of these conjectures. In Section 8, we list a
number of open problems, as yet unperformed numerical experiments, and
new ideas. Section 9 is the conclusion of this article.

2. GNGA and Variational Problems.

Suppose that one wants to find critical points of a C? functional J :
H — R, where H is some Hilbert space. If one has good reason to be-
lieve that some of the critical points of interest lie almost entirely in an
M-dimensional subspace G C H, then it should be fruitful to seek func-
tions u € G so that the orthogonal projections P;VJ(u) are nearly zero.
Let G = span{%;}i—1,..m be such a subspace, where it is assumed that the
1 are orthogonal and suitably normalized. We use the notations J(u) =
J(X agp;) = J(a) interchangeably. In its most general form, we have
damped Newton’s Method with stepsize ¢:

ALGoORITHM 2.1. GNGA
(1) Choose initial coefficients a = a® = {a;}2L |, set u = u® = " ayy,
and set n = 0.
(2) Loop
a) Calculate g = g" ! = (J'(u) ()L, € RM (gradient vector).
k=1
b) Calculate A = A" = (J"(u) (20, v5)) " _, (Hessian matrix).
J 7,k=1
¢) Compute ¥ = x"t! = A~1lg by computing inverse or pseu-
(c) X =X g by 8
doinverse, solving system, or implementing least squares.
(d) Set a = a™*! = a™ — §x and update u = v =" apipy.
(e) Increment loop counter n.
(f) Calculate sig(A(a)) and J(a) = J(u) if desired.
Calculate approximation /g-g of ||VJ(u)||; STOP if suffi-
g
ciently small.

If the process converges to a nondegenerate saddle point u, then we ex-
pect that sig(A(a™))) := {number of negative eigenvalues of A(a")} to equal
the MI of the critical point for n sufficiently large. The proper function
spaces for semilinear elliptic BVP and other critical point problems are of
course of paramount importance in both analytical and numerical investi-
gations.

In the following simple ODE example, we take G to be spanned by the
first M Legendre polynomials and J(u) = %f_ll((u +1) = (u+1))?ds =
: f_ll(u’ — u — 1)2dz. Naturally, we are interested in global minima of
J, satisfying the fundamental ODE u' = u. This simple type of problem
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is treated at length in [42], where the more obvious technique of steepest
descent (in the proper Sobolev space) is used; we present the example here
only to demonstrate the generality of GNGA. Let {1} } be the set of Legendre
polynomials in Ly(Q2) with Q@ = (—1,1), normalized if desired. For our
example, let M = 4 so that

G = span{ 1.2247z,—0.7905 + 2.371722, —2.8062z + 4.6770z3,
0.7954 — 7.9549z2 + 9.2807z%}.

Since J is quadratic and hence VJ(u) is linear, GNGA converges in one
iteration to a nearby solution:
(1) Set a =(0,0,0,0) (for example) and form u = a191 + - - - + a4¥y.
(2) Loop (one iteration suffices)

(a) Calculate gp = J'(u)(yr) = 1, (u' —u — 1)(4} — o) dz, k =

1,....4.
(b) Calculate hj, = J'(u)(vs, ) = [ (W} — ;) (W} — ) da,
jk=1,... 4

(¢c) Compute x satisfying hyx = g.
(d) Set a = a — x and update u = a191 + - - - + a41s.
(3) Output a, u+ 1, and /g-g = PgVJ(u).
The above calculation yields a scalar multiple (solutions are not unique)
of

u =14 0.9962z + 0.4989z2 + 0.1788z° + 0.044022*,

which is exactly Pgy for an exact solution y = e®, with ||y—u||2 = 0.0007534.
Figure 1 shows plots for this example. If the above example is too obvious,
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FiGURE 1. The graph on the left is of an initial guess and
the 4th degree Taylor polynomial approximation of an exact
solution y = e®. The graph on the right compares the Taylor
approximation to the function u = Pgy obtained via the
Newton iteration step.

we tested the method in a similar fashion on initial value problems such as
y' =14+y% oy = —zy, and (y')? + y? = 4, where more than one iteration is
required.
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We now devote our attention to (1.2). Let F(u) = [ f(s)ds for all
u € R define the primitive of f. We then define the action functional
J:H — R by

(2.1) T(u) = /Q {%|Vu|2 - F(u)} da.

We will make assumptions on f so that J is well defined and of class C?
on H. Taking )\; and 1; as in (1.1) and integrating by parts, a calculation
shows that

(2.2) J'(u)(qbi):/Q{Vu-Vlﬁi—f(u)wi}dx:ai)\i—/ﬂf(u)vdx

and
(2.3)

J" (u) (i, ;) = /Q{Vi/fz' - Vipy — f(w) i} de = Nibiy — /Qf(u) Vi ;) dz,

where §;; is the Kronecker delta function. In this case, note that there is
no need for numerical integration when implementing Algorithm 2.1. This
information is encoded in the solutions (eigenpairs) of the linear problem.
It is well known that critical points of J are in fact solutions to (1.2) (see for
example [46] and [24]). For the types of nonlinearities f we will consider,
most if not all nontrivial solutions are saddle points of J. Roughly speaking,
the Morse index is the number of linearly independent directions in function
space in which J “curves down” at a (nondegenerate) solution u. This is
the number of negative eigenvalues of the Hessian D?.J(u), and for M and
n in Algorithm 2.1 sufficiently large, also equal (one hopes) to sig(A4). See
[33] for more information about Morse index (MI).

We now give a precise statement of the hypothesis on the nonlinearity f
that leads to existence and nodal structure theorems as well as the numerical
approximation of solutions (see for example [2], [8], [34], [9], [10], [11], [36],
[47], and [48]). In particular, we take f € C'(R,R) such that f(0) = 0. In
general we assume that f/(0) < A;. This is necessary in order to find one-
sign solutions. In [11] we assume that f/'(0) < A2 and are able to prove the
existence of a sign-changing exactly-once solution; we also demonstrated the
existence of a solution which changes sign at most &k times when f'(0) < A.

We assume that there exist constants A > 0 and p € (1, %) such that
If(v)| < A(JulP~! + 1) for all u € R. Tt follows that f is subcritical, i.e.,
there exists B > 0 such that |f(u)| < B(Ju[P +1). For N =1 this condition
is omitted, while for N = 2 it suffices to have p € (1,00) (see [46]). Also,
we assume that there exists m € (0,1) such that

(24) 5wy > F(u),
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(in fact this need only hold for |u| > p for some p > 0), and that f is
superlinear, i.e.,
(2.5) lim ) =00

|lu| =00 U

Finally, we make the assumption that f satisfies
(2.6) f'(u) > @ for u # 0.

For convenience, we will call (1.2) with all of the above conditions on f
“the superlinear problem”. Recall that subcritical growth and the Sobolev
Embedding Theorem (see [1]) imply that H is compactly embedded into
Ly, which in turn shows that J is well defined on all of H. Under this
hypothesis, J is in fact twice differentiable on H (see [46]).

In [8], the Mountain Pass argument used in [2] to find one-sign solutions
to the superlinear problem was extended to find a sign-changing solution.
Rather than one constraint, the theorem uses two constraints to find a MI 2
(if nondegenerate) solution to (1.2) using a subset of the well known Nehari
manifold S = {u € H\ {0} : J'(u)(u) = 0}:

THEOREM 2.1 (The CCN Theorem [8]). If f(0) < Ay, then the super-
linear problem (1.2) has at least three nontrivial solutions: wi; > 0 in Q,
wy < 0 in Q, and ws. The function ws changes sign ezactly once in €, i.e.,
(w3) 1R\ {0}) has ezactly two connected components. If nondegenerate,
the one-sign solutions are Morse index (MI) 1 critical points of J, and the
sign-changing solution has MI 2. Furthermore,

J(wg) > J(wl) + J(wg).

For convenience, we call wsg the CCN solution. In this f/(0) < A; super-
linear case, the trivial solution v = 0 has MI 0 and is the only local minimum
of J. All other critical points (solutions to (1.2)) are saddle points. With
uy = maxqg{u,0} and u_ = ming{u,0}, we can define the subset

(2.7) Si={u€eS:uy €Su_ €S}
which allows us to restate the CCN Theorem:

THEOREM 2.2 (CCN). For the superlinear problem, given f'(0) < A\
there ezxist solutions w; > 0, wy < 0, and ws which changes sign exactly
once, where wy and wo are local (possibly global) minimizers of J|s and
J(w3) = ming, J.

In [11] we find that the MI 2 CCN solution persists when f'(0) € [A1, A2),
which suggests that one let A = f/(0) vary as a bifurcation parameter. Using
GNGA, we are able to accurately and thoroughly construct the portion
of the bifurcation diagram corresponding to the first few eigenvalues (how
few essentially depends only on the choice of M for the dimension of G).
Ultimately, we seek to prove the existence and describe the nodal structure
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of all solutions to the superlinear problem (and indeed PDE (1.2) with other
types of nonlinearities).

Although theory tells us that the so-called weak solutions in H are in
fact in C2, it is necessary to use the Hilbert space H as the domain of the
functional J in order to find existence proofs. When considering numer-
ical steepest descent methods, it is essential that one not use the poorly
performing (and only densely defined) Lo gradient (see [42]). We will be
restricting our approximations to the finite dimensional subspace G of Lo,
which consists of twice continuously differentiable functions. In this case,
we may use the Ly gradient Vo.J(u) and Hessian D3.J (u), since the Newton
search direction is seen to satisfy

x = (DyJ ()™ Vg (u) = (D3 (u)) ' VaJ (u).

Thus, our implementation of Algorithm 2.1 approximates the infinite dimen-
sional Newton iteration

(2.8) U1 = g — (D7 (wg)) ™ Vi I (up),
and the corresponding continuous infinite dimensional “flow” (ODE)
(2.9) u'(t) = —(DE I (u(t)) ' Vi (u(t)).

As a practical matter, since D?J(u) may be noninvertible or ill condi-
tioned, one should consider using singular value decomposition and pseudo
inverses, least squares, or a system solver which handles our possible types
of singularities when computing this search direction. At nondegenerate so-
lutions, the Hessian is nonsingular in a neighborhood of the solution and the
pseudoinverse is not needed. However, we are sometimes interested in de-
generate solutions, for example at bifurcation points or non-radial solutions
to the PDE on a disk where there is a continuum of solutions. We have
found the algorithm to be surprisingly robust even when an actual inverse
is computed and used very near a singularity, an interesting phenomena
worthy of future study. In many cases the corresponding zero-eigenfunction
directions are nearly orthogonal to nearby gradients, and hence had little
effect on the “projected gradient” (Newton) search direction.

3. Mountain Pass and Modified Mountain Pass Algorithms

Historically, the MPA found in [13] represents the first numerical mini-
max technique applied to semilinear elliptic problems, although constrained
optimization was not itself a new idea. The MPA is based on the Moun-
tain Pass Lemma and the landmark existence theorem for one-sign solutions
found in [2]. We briefly present a version of this algorithm as applied to the
superlinear problem. We also describe the MMPA (see [34]) which likewise
was developed from the constructive proof found in [8]. Both algorithms are
applied here to the superlinear problem; different nonlinearities may signifi-
cantly change the variational structure and hence necessitate modifications.
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Since under the hypothesis of Theorem 2.1 the set S is a manifold, we
can use the facts that given u # 0 there exists a unique & > 0 such that
éau € S and that J(&u) = max,sg J(au) to project nonzero elements of H
on to S and sign-changing elements of H on to S;. The Sobolev gradient
ViuJ(u) = u+ 2z where Az = f(u) can be computed by solving a system via
standard algorithms.

ALGORITHM 3.1. MPA

(1) Choose u of one sign (Typically +ci).
(2) Loop

(a) Project u on to S by iterating u+ o1 P,V gJ(u) — u (Ascent).
(b) Solve a sparse system to compute Vg J(u) = u + (A)~Lf(u).
(c) Set u —ooVyJ(u) — u (Descent).
(d) Stop when ||V J(u)||g is sufficiently small.

Similarly,

ALGORITHM 3.2. MMPA
(1) Choose u which changes sign exactly once (Typically +ctbo).

(2) Loop
(a) Project uy on to S by iterating uy + 01P,, VyJ(uy) = ug
(Ascent).
(b) Project u_ on to S by iterating u_ + o1 P, VgJ(u_) = u_
(Ascent).

(c) Add u =uy +u_ € 5.

(d) Solve a sparse system to compute VyJ(u) = u + (A) L f(u).
(e) Set u — ooV yJ(u) — u (Descent).

(f) Stop when ||V J(u)||g is sufficiently small.

In both cases the step sizes o1 and o9 may be taken to be 1 if the initial
guess is sufficiently close to a solution.

In general, the above methods will only find MI 1 and MI 2 solutions, re-
spectively. It is easy to make guesses near higher MI solutions, and observe
“instability” as iterates approach then fall away from such higher energy
critical points. In [17] the MMPA is modified so that iterates u and cor-
responding gradients Vy J(u) are constrained to invariant subspaces corre-
sponding to symmetry groups for a given region 2. One simply inserts a step
after the projection on to S; whereby wu is replaced with Pu, the projection
of u on to the invariant subspace. As an example, when Q = (0,1) x (0,1)
for the superlinear problem with f(u) = u3, we can find a MI 8 solution
which is 90° rotationally invariant and changes sign exactly once. In prac-
tice, this is implemented by replacing an iterate with the average of all four
90° rotations.

So what does one do to find higher Morse index solutions? The existence
of higher codimension sets analogous to S and S is open. If we had such
sets we would have the theory to prove the existence of many more solutions.
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One scheme we have tried successfully (see [42]), if not efficiently, is to find
global minimizers of the functional ¢ defined by

$(u) = 511V T ().

Obviously all critical points of J are now zeroes of the non negative func-
tional ¢. We suggest [42] as a reference for this and other steepest descent
techniques. The potential exists for doing analysis on the behavior of ¢
(similar to that done on J in [8] and elsewhere) which might well lead to
existence proofs. Since

x = (D*J(w)"'VJI(u) =) %PeiVJ(u) with D2J(u)e; = Bies,

Newton’s method on the gradient can be viewed as a natural extension of
the MPA and MMPA. In directions e; where §; > 0 (and hence J is concave
up), one is doing steepest descent. Conversely, when f3; < 0, steepest ascent
is performed. In this way, GNGA simulates constrained steepest descent
when finding critical points of arbitrarily high MI.

4. Newton’s Method and Morse Index: The Unit Square and
Disk.

On regions other than those where the eigenfunctions are known in closed
form there will be a substantial effort required to generate the basis, as de-
scribed in Section 6. This effort will only have to be done once for each given
region and eliminates the need for numerical differentiation when computing
Newton search directions. However, when Q = (0,1)2 or B;(0) C R?, the
exact basis is known in terms of sines, cosines, and/or Bessel functions. In
this section we briefly describe the numerical results found in [36] and [7].

Newton’s method converges very well given a good initial guess and is
unpredictable given a poor initial guess. Understanding basins of attraction
is difficult, interesting, and very important. Qur rule of thumb for superlin-
ear problems is to use an appropriate multiple of an eigenfunction having a
prescribed nodal structure and signature. When f is odd, this works well
provided the multiple is in the right ball park; we can use the numerical ob-
servation that lim,_, . sig(a;) = oo for all 7 € N to obtain the appropriate
multiplier.

When f is not so nice, solutions may have nodal structures that do not
closely match that of eigenfunctions, whereby multiples of eigenfunctions
may not be good starting points. Since our nonlinearity is of the form
f(u) = Mu+g(u) with ¢'(0) = 0, we can use A as a bifurcation parameter and
look for solutions which do closely resemble eigenfunctions by first starting
near primary bifurcation points off of the trivial branch at A just less than
the corresponding eigenvalue. One then decrements (or increments) the
bifurcation parameter to follow the branch towards the desired solution at
(say) A = 0. At each step we use the solution at the previous A as the next
initial guess. The matter is somewhat more delicate at secondary bifurcation
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points. In this case we add a small linear combination of zero-eigenfunctions
of D2.J(u) to a nearby element of the primary branch, where u is the singular
bifurcation point. The same philosophy applies for finding tertiary branches
off of secondary branches. In most of our experiments, we are able to use
symmetry to make intelligent initial guesses. Our continuation techniques
are effective but could no doubt be refined (see for example [31]).

In [36] we additionally provide an efficient method for implementing
the GNGA scheme when f is polynomial. In that case, J, g, and A are
themselves polynomials in a, and once various integrals are calculated, no
further integration needs to be performed. In that work we also investigated
numerically polynomials which did not satisfy our exact CCN superlinear
hypothesis. We present here a few excerpts of the superlinear results, in
particular the bifurcation diagrams constructed therein when investigating
the BVP (1.2) on the square Q = (0,1) x (0,1) with f(u) = Mu+u3, where )
is treated as a bifurcation parameter. In [36], we spend considerable effort
to use the symmetry of the square to explain and analyze the expected
proliferation of solutions. Figure 2 depicts the first 9 primary branches that
bifurcate from the origin at A < Ag3 = 1372.

At a bifurcation from a simple eigenvalue, there is a pitchfork bifurca-
tion that creates two solutions with the same action J. Hence one branch
is observed bifurcating from 272 and 872 in Figure 2. Double eigenvalues
lead to two types of bifurcation, pure modes and mized modes. Near the bi-
furcation, the pure modes are asymptotically a multiple of an eigenfunction
+4); ; or £1);;. The mixed modes are asymptotic to a multiple of one of the
four combinations of eigenfunctions +1); ; £ 1); ;. Naturally the behavior is
more complicated at higher multiplicity eigenvalues. Of the branches seen
in Figure 2, the solutions which bifurcate from A 3 are the most interesting.
Leaving the details to [36], we observe in Figures 3 and 4 secondary and
tertiary bifurcations off of these primary branches. The tertiary branch we
found contained solutions with no symmetry whatsoever. We are confident
that we completely classified and numerically found all possible types of
solutions found emmenating from this double eigenvalue, although we cer-
tainly do not have existence proofs. We do not include here our tests on the
convergence of our results as Ny, increases.

In a similar but technically more challenging application, we considered
in [7] the case where Q = B;(0) C R?. The eigenvalues of —A with zero
Dirichlet boundary values on the disk are determined by the zeroes of the
various Bessel functions of the first kind. The corresponding eigenfunctions,
which form an orthonormal basis, are divided into three components. The
radial component is defined by

Pi = aiJO(\/;? ),
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FiGURE 2. Bifurcation diagram showing v/ J as a function
of A, for f(u) = Au + »3. Only the primary branches (the
ones which bifurcate from the origin) are shown. The MI is
indicated by the small numbers. The dots indicate where the
MI changes at secondary bifurcations which create solutions
that are not shown in this figure. More detail of the three
branches that bifurcate from A; 3 is given in the next two
figures. This figure is adapted from Figure 4 in [36], used
with permission of the IJBC.

where Jp is the Bessel Zero function, /A is the i zero of Jy(r), and

a; = ———2 . That is to say, a;, is calculated so that i ¢f = 1.

Ja Jo(W/A7 )
The remaining two components of the orthonormal basis are the nonradial
components and are given by

(pi’j = bi,jJZ’( A; 7") COS(ZP)

and

Xi,j = bi,jJi( )xz r) sin(iﬂ).

Here J; denotes the various Bessel functions for i # 0, 4/ )\j- is the j** zero of
the i"* Bessel function, and bi ; is calculated so that [ 9012’3- =1,and [ X?, j=
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FI1GURE 3. Detail of Figure 2 for the branches that bifurcate
from A; 3. The supremum norm, |lul/s, is plotted against A
because it gives a good separation between the branches. The
solutions with MI 5 are solid lines, and the solutions with MI
6 are dotted lines. This figure was computed with Ny =9
(81 Fourier modes). Figure adapted from Figure 5 in [36],
with permission from the IJBC.

1. Thus, given u € L? there exist constants {a;}, {b;;}, and {c; ;} so that
W=D i) ) bieig+ YD i
i i i

Using this basis in exactly the same way as described above for the square, we
were able to find many solutions to the nonlinear problem. In particular, we
found the radial solutions guaranteed to exist by [12], as well as the expected
nonradial ones. The symmetry can be analyzed as in [36], and bifurcations
from the trivial branch predicted. At this time, we have not conclusively
found any secondary bifurcations nor concluded that they do not exist. The
matter remains open, and so we are not including a bifurcation diagram in
this article. Figure 5 depicts a GNGA-approximated MI 2 CCN solution on
the disk.

5. GNGA and Semilinear Systems.

In [39] we investigate the application of GNGA to systems of elliptic
BVP. In particular, we find a triple junction solution conjectured to exist in
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el oo

33 34 35 36 37 38 39 40
FIGURE 4. Further detail of Figure 2. The “radial” solu-
tion undergoes a bifurcation with D4 symmetry at A = 40,
creating the vertex and edge solutions. These secondary so-
lutions in turn bifurcate, creating a branch of tertiary solu-
tions that exist for A in the approximate interval [35.1, 37.5].
These tertiary solutions have no symmetry. The Morse in-
dices are indicated by the line type: MI 6 are dotted, MI 7
are solid, and MI 8 are dashed lines. Along with the black
region, showing where u < 0, the contours at u = 1/3||u||e0
and u = 2/3||ul|c are shown to better see the symmetry of
the patterns. This figure was computed with Npax = 7 (49
Fourier modes). Figure adapted from Figure 6 in [36], with
permission from the IJBC.

[22] to the vector Ginzburg-Landau type problem:

(5.1)

where Q = (0,1) x (0,1), u : © — R2, W : R? — [0,00) is a triple-
well potential, 7 is the unit outer normal to the boundary, and ¢ > 0 is
a parameter. The gradient in VW (u) is with respect to u, hence VW =
(OW/0uy,0W/0ug). The triple-well potential W achieves a global minimum
of zero at 3 points, and has 7 critical points in total. Figure 6 shows the

—?Au+ VW (u) =0 inQ

g—Z:O on 012,

contour graph of the potential that we used in our experiments.

41
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FIGURE 5. MI 2 CCN Solution on the unit disk.

FIGURE 6. The triple-well potential W. The graph shows
the minima and local maximum of W as dots, as well as
the contours through the 3 saddle points and around the
local extrema. Figure adapted from Figure 1 in [39], with
permission from the IJBC.

We worked with sufficiently smooth functions u € Ly x Lo. Since this
problem is again on the square, we use known eigenfunctions similar to
those found in (1.3) to form a basis for Ly, and then take a product to get a
basis for Lo X Lo. Specifically, the (doubly-indexed) eigenvalues of —A are
Amn = (m? + n?)n? and the eigenfunctions 9, , of —A, normalized in Lo,
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are given by:

1 form=n=20
Ymn(®,y) = V2cos(mmz)cos(nmy) for m =0,n#0o0rn=0,m#0
2cos(mmz) cos(nmy) for m # 0 and n # 0,

where m and n range over all of the nonnegative integers. It is well known
that {4y, 5, } forms a basis for Ly and H = H%?(Q) [Adams, 1975]. We obtain
a finite sub-basis (basis for a subspace) of Ly or H by choosing a positive
integer k, and including all eigenfunctions whose eigenvalues are strictly
less than w2k2. These eigenvalues are then ordered and singly indexed as
A1 =0 < A2 < A3 < ... < Ag7- This yields a singly indexed basis, {4;},

of size M. In our experiments, typically k is an even integer ranging from
k=8 (M =56) up to k = 18 (M = 269). As a rule of thumb, we trust a
numerical calculation if the results are not significantly changed when the
cutoff parameter k is increased by 2. We use the following Galerkin subspace

of H x H and L9 X Lo:

G = Span{¥;}}1, := Span{ ( Q(p)i ) }Z U { ( ’22' ) }Zl ’

which is of dimension M = 2M. The energy functional whose critical points
are solutions to (5.1) is defined by

(5.2) Je(u) = 1/Q (62—2|Vu|2 + W(u)) dz dy.

€

A calculation shows that the directional derivative of J at u in the ¥;
direction is

gj(u) = J'(u)(7;)

1
/ (eVu -V, + ;\Ifj . VW(u)) dx dy
Q

= ‘/Q (62 a; (V; - V\Ifj) + %‘I’j . VW(U)> drdy

i=1
1
= eaj\;+ E/Q\IIJVW(U) dzx dy.

Second directional derivatives can be computed similarly, whence GNGA
(Algorithm 2.1) can be implemented. When wu is identically a constant
critical number of W, we have a trivial solution. Figure 7 depicts a diagram
of solutions bifurcating off of the trivial branches corresponding to the saddle
and local maxima of W, as ¢ — 0. Figure 8 shows the various types of
symmetries found in such solutions. Note that for small e, the solutions
tend towards step functions whose piecewise constants are critical numbers
of the triple well potential W. It may well be that there are alternate choices
for a basis with superior behavior in approximating the near step function
solutions depicted in Figure 8, as there is no longer a dominant eigenmode
in the expansion for such functions.
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FiGure 7. This bifurcation diagram shows the saddle so-
lution, the maximum solution, and the solutions which bi-
furcate off these trivial solution branches at the first bifurca-
tion as € is decreased. The minimum solution, which is not
shown, has J = 0 and MI 0 for all e. The dots indicate a
bifurcation point, where the MI changes. The lowest MI 2
secondary branch bifurcating off of the trivial maximum so-
lution converges to the triple junction as € — 0. The MI of
the branches is indicated by “color”; subsequently we have
preferred to identify branches by symmetry type rather than
MI. Figure adapted from Figure 2 in [39], with permission
from the IJBC.

17

We are also interested in the so-called full Ginzburg-Landau equation,
other physical applications such as the Monge-Ampere equation, and finding
a CCN-type solution for a system (see Section 8). In order to make this last
problem statement precise, we present here a possible set of hypotheses to

consider when looking for sign-changing solutions to superlinear systems.

We wish to generalize the hypotheses from [8] to the following system,
in hopes that the techniques and results from that work will apply. In
particular, we consider

(5.3)

Au+VW(u) =0 inQ
u=0 1in 09,
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J D

1001 111-1 0011

—

key

0010 1100 1000

FIGURE 8. All of these solutions are computed at ¢ = 0.1,
where the nonlinear corrections to the critical eigenspace are
significant. The key at the upper left shows a few contours of
the potential W to indicate how the color codes the value of
u(z,y). The diagram with the 111 — 1 symmetry is the MI 2
triple junction solution which bifurcates off of the maximum
trivial branch, as conjectured in [22]. See [39] for the color
version of these graphics which are somewhat more illumi-
nating (used here with permission from the IJBC).

where W : R? = R is a C? function and u : Q — R?. Let H be the Sobolev
space H& ’2(Q). We want a sufficient hypothesis on W so that the functional
J:H x H— R defined by

T = [ GIVuf W} ds
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has the appropriate properties so that we may mimic the variational ar-
guments found in [CCN]. Corresponding to the hypothesis made on f in
[CCN], we may consider assuming that W satisfies the following conditions.
Assume that

W has a local minimum W (0) = 0.

Note that this implies that VW (0) = 0, which corresponds to f(0) = 0. Let
B1 < B2 be the eigenvalues of D?W (0), which are both positive since W has
a local minimum at 0. Assume that

ﬁZ < )\15

a condition that parallels the CCN assumption that f'(0) < A\;. Corre-
sponding to the CCN convexity assumption f'(v) > f(v)/v for all |v| # 0,
we assume that

D*W (u)u - u > VW (u) - u.
The coercivity assumption %tv f(v) > F(v) for some m € (0,1) where F(v) =
Jy f(s) ds becomes

%u VW (w) > W (u),

again for some m € (0,1). In CCN, we required that f be superlinear, i.e.,
that f(v)/v — oo as |v| = co. Similarly, for the gradient system one would
require that either
VW (u)] VW (u)-u
——— S 00or ———— — 0, as |u| = oo.
We are not certain which is the most natural assumption. Both assumptions
appear to imply that
W (u)
——= — o0 as |u| = oo,
Uu-u
where |u| is the Euclidean norm of » in R%. Finally, we need to assume
a subcritical growth of W. One possibility is to assume that there exists
A > 0 so that
D?W (uw)u - u < A(julP~" 4 1)|ul?.

When N = 2 this assumption is unnecessary, but for higher N it is required
in order for the application of the Sobolev Imbedding Theorem. The “crit-
ical hyperboloid” found in the literature suggests that perhaps the above
subcritical condition might not be the best possible subcritical assumption.

The question now is whether a CCN-type solution exists to (5.3). If one
takes this to mean the existence of a w = (u,v) € H x H where both u and
v change sign exactly once and w has the smallest J value among all such
solutions, then numerical experiments suggest that the solution will be of MI
4 (and hence require 4 constraints for any minimax existence argument). In
our research preliminary to the Ginzburg-Landau problem outlined above,
we considered systems of scalar equations such as

Au+ u? + cuv = 0, and Av + v® + cuv = 0.
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For various reasonable values of the coupling parameter ¢, we were able to
numerically find solutions w where:

(1) wis MI 1, u is of one sign, and v is small.

is MI 1, v is of one sign, and u is small.

is MI 2, u and v are of one sign.

is MI 2, u is small, and v changes sign exactly once.

is MI 2, v is small, and u changes sign exactly once.

is MI 3, w is of one sign, and v changes sign exactly once.
is MI 3, v is of one sign, and u changes sign exactly once.
(8) w is MI 4, u and v change sign exactly once.

ggegegeg e

Clearly the results from [8] confirm the above results when the system is
decoupled via setting ¢ = 0. It seems reasonable to apply techniques similar
to that found in [8] to prove the existence of the first three solutions. We
are currently unsure as to how to proceed in looking for an existence proof
for sign-changing solutions. Note that one could consider the third solution
to be a MI 2 sign-changing solution if 4 and v were one sign solutions of
opposite sign.

6. GNGA for General Regions.

We present here a preview of two new results. For general regions,
one must first generate a suitable basis for the M dimensional subspace
G. In the previous section, we saw an example where, although a basis of
eigenfunctions of —A worked, it might not have been the best choice. Here,
we are back in the territory of superlinear problems where the linear theory
is clearly key in investigating the nonlinear phenomena.

Both experiments use the package ARPACK. At the time of this writ-
ing, we are porting both linear and nonlinear code to work in a parallel
environment on a Linux cluster. Our scalar processing code uses LAPACK,
BLAS, and ARPACK libraries. The parallel code uses MPI together with
PARPACK, PBLAS, and SCALAPACK. Once our test platform is upgraded
we will be able to repeat experiments with a much higher order of accuracy,
as well as perform other experiments such as PDE on high dimensional
regions €2 that currently are beyond our computational capabilities.

In [25], we consider the case where Q@ = Q; C R? is a Bunimovich
stadion, or so-called billiards table or stadium (see [6] and Figure 9). The
well-developed linear theory includes such interesting phenomena as cross-
ing eigenvalues and the avoided crossing of eigenvalues. We are able to find
many solutions to (1.2), construct bifurcation diagrams using either or both
of the parameters A = f/(0) and the stadion dimension d describing the
radii of the end caps of ;. We do indeed observe the swapping of sym-
metry as d passes through a value where an eigenvalue crossing occurs and
the corresponding eigenfunctions swap symmetry. The persistence of linear
phenomena in nonlinear cases is a theme we return to time and time again.
Figure 10 shows the well known symmetry swapping / avoided swapping
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FI1GURE 9. A family of Bunimovich stadions, often referred
to as billiards or stadiums. Here the length is 1 for each
stadium; the represented radii are labeled.

phenomena at a crossing and avoided crossing of eigenvalues. Figure 11 de-
picts solutions obtained by fixing A = f/(0) at the crossing value and varying
the radius parameter d.

FIGURE 10. The figure on the left depicts the Ay and Ag
crossing as the radius d ranges from d = .19 to d = .21,
along with the accompanying symmetry swapping of 14 and
5. The symmetries are different, that is one branch starts
as even in z and odd in y while the other starts as odd in
z and even in y; symmetry swapping occurs at the multi-
ple eigenvalue. The figure on the right depicts an avoided
crossing of Ag and Ag; the symmetries are the same (even in
both variables) and no symmetry swapping occurs. In both
graphs a third branch of a different symmetry type is nearby,
but has no influence on the symmetry of linear and nonlin-
ear solutions corresponding to the crossing / avoided crossing
feature.
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>

FiGure 11. Contour plots of solutions on the two branches
bifurcating from A4 and A5. Here, the bifurcation parameter
A = f'(0) is held fixed near the multiple crossing eigenvalue
and the second parameter d (radii of endcaps) is varied as
in the left graphic in Figure 10. The swapping of symme-
try for the nonlinear problem is thus evident. Solutions were
selected at random from either the initial branch or the neg-
ative of that branch; either choice has the same symmetry
and nodal structure, differing only by a multiple of —1. The
article [25] contains more detailed bifurcation diagrams, in-
cluding secondary bifurcations and deeper symmetry analy-
sis.

We have investigated the case where ) is the Koch Snowflake. The
generation of eigenfunctions required us to essentially repeat the earlier work
[27]. In our paper, we discuss possible refinements to or at least alternative
methods for performing the linear computation. Once a basis was generated,
we proceeded as in [36], [7], and [25]. Figure 13 shows a lower level grid
approximating the Koch Snowflake. The key to invoking the ARPACK
code to calculate eigenvalues of a linear map is in a user provided subroutine
wherein the action of the map acting on a vector is coded. For the discretized
—A operator and the equilateral grid, this can be easily done. As in Figure
12,lete; = %54—@5, eo =1, and e3 = %i—@} Then u"(z)(e1,e1) ~ %g“’,
u”(z)(eg, e2) & C*i—g*'d, and u"(z)(es, e3) =~ e—i‘;”. Using the bilinearity of
u”(z), a simple calculation shows that

2
—Au(z) =~ W(6o—(a+b+c+d+e+f)),
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which is a generalization of the well-known 5-point rectangular second dif-
ference formula to this hexagonal situation. Figure 14 contains an example

Shi

SE

FIGURE 12. A center point z with value o and its 6 neigh-
bors x & hei, £ £ heg, and z £ hes, with values a, b, ¢, d, e,
and f. The gridsize h is proportional to 37%, where k is the
level of the polygonal approximation to the fractal snowflake.

of automated bifurcation branch following output that can be obtained by
careful application of the GNGA (see [38]). The provided diagram was ob-
tained via repeated calls to an implementation of the GNGA which follows
a single branch and saves off initial data for following secondary and ter-
tiary branches when zero eigenvalues of the Hessian Do J(u) are encountered.
Many refinements to our previous branch following methods are possible,
for example by using knowledge of the lattice of possible symmetry types
obtained by considering isotropy subgroups of the symmetry group of the
snowflake Dg crossed with Z, (given our odd choice of nonlinearity). For in-
stance, we can seek only branches of a particular symmetry and/or compute
only terms of gradients and Hessians corresponding to a branch’s symmetry,
hence gaining substantial computational efficiency and some added accu-
racy. Symmetry information can guide search direction choices at multiple
bifurcation points, and be provided as output. Figure 14 contains solutions
of 8 symmetry types, among the possible 23 proven to exist in [38]. The
seven dots on the vertical axis indicate nontrivial solutions of distinct sym-
metry type; in Figure 15 we present these 7 solutions as well as a solution
not found on this particular set of branches, namely a solution with no sym-
metry (type S2s in our notation). The article [38] describes in detail the
symmetry analysis for this region, the techniques used to invoke the GNGA
to perform automated branch following, and a complete graphical descrip-
tion of all solutions to (1.2) on the Koch Snowflake region up to solutions of
a moderately high MI. The article [37] describes the method used for obtain-
ing the basis of eigenfunctions used in that nonlinear effort via careful usage
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of ARPACK, as well as more details concerning our symmetry analysis of
the region.

ree

=X R
=X

FI1GURE 13. Level 3 grid of equilateral triangles used in the
ARPACK eigenfunction generation code. We typically use
Levels 4 and 5 in our nonlinear experiments and to compare
eigenvalues with those previously calculated by [27]. Our
current basis generation codes use a somewhat modified grid,
placing the boundary of the region between grid points and
using “ghost points” outside the region to enforce the zero
Dirichlet (or Neumann) boundary conditions (see [37]).

7. The Lazer-McKenna Conjecture, Dancer Counterexample,
Basins of attraction.

The interested reader should consult [28], [29], [18], and references both
therein and subsequent by those authors. The issues discussed in these im-
portant papers have come to represent to this author the general question
of existence and multiplicity of solutions to semilinear elliptic problems. In
particular, complete resolutions of the explicit and implied questions within
those articles would settle the matter of the conjectured existence of in-
finitely many solutions to our superlinear problem. Essentially, Lazer and
McKenna conjectured that (1.2) should have 2k solutions when f had the
asymptotically linear form

fw) =Au+g(u) — hi(z) — s¢u,
where ¢; is a (normalized) eigenfunction corresponding to the first eigen-
value A1, hi is orthogonal to ¢1 in Lo, s is sufficiently large, and f € Clis
such that limsup,_, . (Au+g(u))/u < A1 and Ay < limy,o(Au+g(u))/u <
Ak+1- This would prove the existence of arbitrarily many solutions to a sub-
class of problems of type (1.2), as the number of enclosed eigenvalues in-
creased. However, Dancer proved via a now famous counterexample that
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FI1GURE 14. Bifurcation diagram for the first four primary
branches of (1.2) on the Koch Snowflake. The z-axis is the
bifurcation parameter A = f'(0); the y-axis is the value of the
solution evaluated at a generic point of the fractal domain,
a technique which yields good visual separation of branches.
Two secondary bifurcations and 8 of the 23 possible sym-
metry types are depicted in this graphic. See Figure 15 for
contour plots of solutions of the 7 nontrivial symmetry types,
that is, not including the zero solution with symmetry type
S1. The fourth primary branch is the second occurrence of
symmetry type Sa; its contour plot is also not included. See
[38] for a complete list of all symmetry types and examples
of bifurcation diagrams where each type of solution can be
found.

this conjecture is in general false. A key ingredient in the counterexample’s
construction was the usage of multiple eigenvalues. Assuming that €2 was a
ball, f € C*°, and that k + 1 eigenvalues were crossed, Dancer provided an
example where only 4 solutions existed for all large s.

This author wishes to state a slightly different conjecture, and to provide
a high-level description of some ideas that might be useful in investigating
the conjecture’s veracity.
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S11

FiGure 15. Contour plots of solutions corresponding to the
7 nontrivial symmetries found in Figure 14. The third plot
is the CCN solution (symmetry type Sg). The eighth plot
depicts a non-symmetric solution (symmetry type Ss3) found
on a higher branch.

CONJECTURE 7.1. Let f € C! satisfy f(0) = 0 and assume that there
exists m € (0,1) such that % f(u)u > F(u), for [u| > p, some p > 0, and
that f'(u) > @ for u # 0. If the interval (o, 8) defined by a = f'(0) < Xy
and A\j < 8 =1limy 400 f(u)/u < Aj41 contains k distinct eigenvalues, then
there exist 2k + 1 solutions to (1.2).

Under this hypothesis (see Figure 16), one of these solutions is the trivial
solution v = 0. It is not difficult to see that the superlinear arguments can
be applied to get the 3 nontrivial solutions found in [2] and [8] even to this
asymptotically linear problem, provided that 8 > Ao.

One cannot help but gain confidence in the existence of many solutions
to (1.2) when observing them numerically using the GNGA. It appears that
given a proof of existence of a solution, it should be possible to prove that the
GNGA converges to that solution for a suitable initial guess. Conversely, if
one could prove that GNGA converged for a given guess, one might be able
to conclude analytically that the solution exists. This line of reasoning was
the starting point for the Research Experience for Undergraduates (REU)
work of Joel Fish (see [21]), where we set out to better understand basins
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FIGURE 16. Asymptotically linear f € C! with f/(0) = ¢,
f'(£00) =1+ ¢ > 0 defined by f(z) = (1 + ¢)z — tanhz.

of attraction of continuous Newton’s method. To see what is possible, refer
to [43] for a very simple finite-dimensional example where the basins of
attraction are completely understood. A potentially far-reaching analytical
result using continuous Newton’s method as a tool can be found in [44];
therein an elegant result nearly analogous to the celebrated Nash-Mosher
theory is proven in a vastly simpler fashion. We must admit up front that the
remainder of this section is almost completely conjecture, only marginally
supported by numerical evidence. Even if true, the proofs may well be
intractable. Never the less, we find that the material suggests intriguing
research directions that may well be quite fruitful.

We have observed that the low MI solutions are of simple nodal struc-
ture, and thus should have eigenfunction (Fourier) expansions with the first
few coefficients dominating. It thus seems reasonable that for sufficiently
large M € N, the M x M matrix A = A(u) = (J”(u)(iﬁi,%))%:l should
approximate D?J(u) well. One can view the approximation as good in the
following sense. Firstly, one should have sig(D?J(u)) = sig(A) and that the
first few eigenvalues of D?.J(u) and A closely agree. Secondly, the first few
eigenvectors of A in RM, thought of as coordinates in the Galerkin space
G = span{;},, appear to closely represent the first few eigenfunctions of
D%J(u) in H. Tf D?J(u) is invertible this seems provable. It is not clear
how to handle the case where the Hessian has one or more zero eigenvalues.
Given a nondegenerate solution v € H, we propose that given € > 0 there
exist M € N, v* = Zf\il aith; € G = Gy, and § > 0 such that V.J(a) = 0,
||lv* — v|| < €, and Newton’s method (continuous or discrete) converges to
v* € G given any initial approximation vy with |[v* — vg|| < §. Experimen-
tally, one uses a small step size to approximate the continuous Newton’s
flow

u'(s) = —(D*J(u(s))) 'V J(u), u(0) = ug.
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Multiplying by D2.J(u(s)) and undoing the chain rule results in the initial
value problem

(V) (u)'(s) = =V J(u(s)), VJ(u(0)) = VJ(uo).

The solution is VJ(u(s)) = VJ(ug)e™®, and so the gradient goes to zero
and
u'(s) = —(D?J(u(s))) V. J(ug)e ®.

If the inverse (pseudoinverse) of D?.J(u(s)) could be controlled, then con-
vergence of the flow to a critical point might be proven. The proof that J
satisfies the Palais-Smale condition (see [46] or [10]) or a similar argument
might be useful in showing that lim,_ . u(s) exists. The coercivity of J
(see [8]) might also be appealed to. It seems reasonable that the signature
should be constant along these flows, at least when the limit (solution) is
nondegenerate. Perhaps the most tractable of our conjectures is that there
exist initial values of arbitrarily large signature, whereby convergence along
signature-invariant flows would provide the existence of infinitely many so-
lutions.

It is known that the basins of attraction for continuous Newton’s method
are generally more straightforward than those of discrete Newton’s method,
typically lacking the fractal boundaries and accompanying dynamical com-
plexities. As in simple cases (where it can be easily proven), continuous
Newton’s method when applied to the variational formulation of (1.2) ap-
pears to have connected basins with measure zero boundary. Obviously if
one could describe the basins analytically and if there were infinitely many
of them, then one would have the highly desirable result that infinitely many
solutions exist.

Together with our Summer 1999 REU student Joel Fish, we have made
some progress towards understanding these basins and their boundaries.
There are simple examples where continuous Newton flows terminate in
finite time to points that are not roots, e.g., where a zero derivative is
encountered. The inflection sets (where D?.J(u(s)) is not invertible) almost
certainly contain such points. The experimental and novel work of our REU
student suggests that the collection of initial points that converge to such
“bad points” themselves belong to the set

I'={u € H:J(u)(e;) = 0 for some eigenfunction e; of D?J(u(s))},

which may itself be composed of infinitely many orthogonally intersecting
manifolds. It appears to be the case that the inflection sets form part of
the boundaries of the basins of attraction for our Newton flows, and that
part of I' forms the rest of the boundaries. Certainly it is clear that all
solutions must lie in ', possibly at the points where infinitely many (all but
one) manifolds intersect orthogonally. Degenerate solutions which belong to
both an inflection set and I' exist and add to the difficulty of finding a proof.
Finally, we have experimentally observed a subset of I' that very closely
resembles the manifold S used in CCN in that it appears to be a codimension
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1 submanifold diffeomorphic to the unit sphere which contains all nontrivial
solutions to (1.2). This very interesting set can be characterized as

I ={ue€H:J(u)e)=0,p <0},

where $; is the smallest eigenvalue of D2.J(u) and e; is the corresponding
eigenfunction.

The components of I" corresponding to a particular eigenfunction e; (at
least locally where unambiguously defined) apparently are both gradient and
Newton flow invariant sets. We have a numerical experiment where the one-
sign solutions for both the Q = (0,1) and Q© = (0,1) x (0,1) cases have been
found by following such “flows”. Specifically, starting with a small guess c1)1,
we iteratively project on to the set {u € H : D*J(u)VJ(u) = S1VJ(u)}
and take small gradient steps. This procedure terminates at a one-sign
solution approximation where the 1-dimensional set intersects ['*. Since
VJ(u) is parallel to e (u) along this set, we sometimes refer to this process
as “following the eigenflow”. We have had limited success in finding higher
MI solutions via this method. For the ODE, the only stumbling block is in
the smoothness of the map e; = e;(u). It is easy to see that e;(0) = v;, but
it does not work to continue to define e; as the i** eigenfunction of D2J (u).
When a multiplicity is encountered, care is needed to continue in the correct
direction, often requiring a reordering of the eigenvalues of D?J(u). For the
PDE, the matter is even more complicated. Our experiments on the unit
square have so far failed to work for all but the MI 1 solutions, likely due to
the multiplicity of the 2nd eigenvalue.

We believe that eigenflows corresponding to distinct simple eigenval-
ues A; should converge to one of two solutions, corresponding to the direc-
tions +1; = +e;(0). This contributes 2p solutions towards the conjectured
2k + 1, for the p simple eigenvalues found among the k distinct eigenvalues
in A\; < A <--- < Aj < Ajy1. The other 2(k — p) solutions are much more
complicated to understand. Ironically, in most of the situations that we have
encountered multiplicity leads to a proliferation of solutions of all possible
symmetries, rather than leading to nonexistence. For an eigenvalue )\; of
multiplicity » > 1, we envision an r-dimensional eigenflow-invariant mani-
fold emanating from the origin, intersecting the S-like set I'* in a r—1 dimen-
sional submanifold. The 2 solutions contributed by this distinct eigenvalue
would be a minimizer and maximizer of J restricted to this submanifold of
I'*. We have some numerical evidence that a solution corresponding to a
eigenfunction 1; will have a MI in the range {3,...,7 + r + s}, where r and
s are the multiplicities of A\; and the next distinct eigenvalue, respectively.

8. Open Problems and Future Directions.

We now present open problems requiring analytical investigation, feasi-
ble new numerical experiments, and new ideas that merit further study. We
proceed with the former:
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Zero-Set Conjecture. All of our numerical experiments support
the conjecture that the CCN solution to the superlinear problem
has an internal zero set which intersects the boundary 0. In
particular, if proven this would imply that the MI 2 CCN solution
on the ball is non-radial. When ©Q = (0,1) x (0,1), the solution
possessing 90° rotationally invariant symmetry (where the zero-set
is a closed loop in ) is the one corresponding to 91,3 + 131 (see
[17] and [36]). Our numerical experiment provides a MI greater
than 2, supporting that this is not the CCN solution. A starting
point for proving this conjecture is the theorem by Melas (see [32])
where it is proven that if Q is a bounded and convex region in R?,
then the second eigenfunction 5 has this property, i.e., its internal
zero set intersects the boundary in exactly two points. A related
question is whether or not the zero-set is connected. The author
feels that geometric arguments similar to the “Moving Planes” of
[23] may be the key (albeit some sign-changing variant).

The Second CCN Solution. As a first step towards finding more
solutions to our superlinear problem, one could try to find a second
CCN solution. This solution roughly corresponds to the negative
of the solution already proven to exist. As in the “8 solutions
on the square” problem below, one would generally expect more
solutions depending on the symmetry of the region 2. Finding
this solution might be very important, as a linking or mountain
pass argument restricted to S; (see (2.7)) might then lead to a
higher energy MI 3 solution. Potentially, if that argument in turn
was useful in obtaining a second MI 3 solution, there might be a
snowball effect whereby infinitely many solutions could be found.
Infinitely Many Solutions. It is widely (but not universally) be-
lieved that the superlinear problem has infinitely many solutions.
This is the logical extension to the facts that there are indeed in-
finitely many solutions when Q C R, Q is a ball in RY, or when
f is odd. We find that a series of papers by Lazer-McKenna and
Dancer is essential reading when considering this open question (see
for example [18] and [28], and Section 7 above.) This problem’s
difficulty is confirmed by the more than half a century of sustained
effort mathematicians have exerted since Ljusternik and Schnir-
rleman’s celebrated “f odd” result. Ambrosetti, Castro, Costa,
Dancer, and Rabinowitz, to name just a few involved in this effort,
have all given the problem considerable thought. Item C1 below
suggests a possible research direction to follow in considering this
problem.

Sublinear Dirichlet Problem. When the nonlinearity f is taken
to be sublinear, the hypothesis of Theorem 2.1 can be restated in

a natural way. For example, f(0) = 0, f'(0) > A, @ — 0 as
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lu| = oo, Buf(u) < F(u), and f'(u) < @ for u # 0. Our
numerical experiments suggest that a sign-changing exactly-once
solution analogous to the CCN solution persists. Like the situation
in [11], the Nehari manifold is degenerate at 0. Different techniques
must be used. It may be that the Lyapunov-Schmidt reduction
method will again prove useful.

A5 Eight Solutions on the Unit Square. In many of our numer-
ical experiments it has become obvious how to completely clas-
sify certain low energy, low MI solutions. For example, when
Q = (0,1) x (0,1), one might prove the existence of the 8 sign-
changing exactly-once solutions (4 MI 2 CCN solutions and 4 MI
3 solutions) depicted on the 2nd and 3rd branches bifurcating at
M2 = Aoy = 57? in Figure 2. Note that if f is odd, then one can
“stitch together” one-sign solutions on subregions and tile patterns
to get these solutions and many more.

A6 Is S; a Manifold? If not, how and where does it fail? If S; (see
(2.7)) were a manifold, the existence proof found in [8] could be
considerably simplified. It appears that the lack of differentiability
of the map u — u4 plays a role here. A related but easier question
is whether or not S; is connected; we conjecture that this is so.

A7 Convergence of GNGA. It should be possible (for at least some
special cases) to prove that given a solution w to (1.2) and € > 0
that there exists a natural number M and a real number § > 0
so that if ||w — wg|| < 6, wg € G =span{#1,...,9¥n}, then the
GNGA with the initial guess ug will converge to a function @ € G
with ||w — @|| < e. A starting point for proving this might be
found in [19] and references both subsequent and therein. Using
their theory, it seems reasonable that one could prove that given
u € G, a natural number k, and a real number € > 0, there exists M
sufficiently large so that the first k eigenvalues of the M x M Hessian
approximation matrix A from (2.1) will be within e of the first &
eigenvalues of the true Hessian D2.J(u). This problem is likely very
difficult, although partial results may be more tractable.

The author hopes that the above problems have been stated precisely
enough so that the interested researcher could begin or resume thinking
about them immediately. The following list contains suggested numerical
experiments for the future. All of them could be investigated using the
GNGA; indeed some of them have already been partially attempted.

B1 Higher Dimensional Regions for GNGA. There is no reason
that one cannot implement GNGA for Q ¢ RV, N > 2. The diffi-
culties are largely related to efficiency and accuracy. ARPACK will
handle the eigenbasis generation on arbitrary regions, given proper
computational power. It may be that Monte-Carlo techniques will
be useful when performing numerical integration in calculating the
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gradient and Hessian. Some thought has been given to perhaps gen-
erating a random grid, where the vertices provide the Monte-Carlo
points and the graph (irregular grid) could be used by ARPACK
to approximate eigenfunctions.

More General Region Experiments. Using generic eigenfunc-
tion generating code (such as ARPACK) for arbitrary regions in
the plane (or indeed in higher dimensions), we can continue to re-
peat our nonlinear experiments for other interesting shapes, such as
dumb-bells, where the eigenfunctions may not be known in closed
form. One hopes that the effects of the choice of Q2 on the bifur-
cation diagrams will continue to be enlightening. A region that
interests the author and may present implementational challenges
is the Mandlebrot set. In general, one wonders how much effect
fractal boundaries have on solutions to (1.2). For example, in the
Koch Snowflake experiments, would the most interesting phenom-
ena be captured by studying the far simpler hexagon region with
apparently the same symmetries?

Fucik Spectrum and GNGA. There is every reason to believe
that numerical experiments for nonlinearities of the form f(u) =
aus —bu_ will be effective in shedding light on many open problems
concerning Fucik spectrum.

Secondary Bifurcations for Superlinear Problems on the
Disk. Our initial experiments are inconclusive. It should be fairly
straightforward to determine numerically if there is or is not sec-
ondary bifurcation analogous to that found in [36] when (2 is a disk
in R?.

Alternate Basis for GNGA. For our superlinear problem, it
seems clear that eigenfunctions of the Laplacian are the natural
choice. For other problems, such as the Ginzburg-Landau equation
in [39], this may not be the case. Whenever solutions tend towards
step functions, have “vortices”, or other more pathological features,
Fourier expansions leave something to be desired. We presented in
Section 2 a trivial example where Legendre polynomials were used.
Among other possibilities, wavelet and frame theory may suggest
suitable alternatives.

Full Ginzburg-Landau Application of GNGA. In [42] the
functional for this substantially difficult problem is given:

1 1 2
E(u, A) = / (EW — Ayl + 5|V x A~ Hol + (1 - |u|2)2) daz,
Q

The region €2 is a subset of RP, for p = 2 or p = 3. Here the
unknowns are the order parameter v € H%?(Q,C) and the vec-
tor potential A € H2(Q,RP). If the applied magnetic field Hy
is identically zero, then we can assume that A(z) = 0 and the
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Euler-Lagrange equation of (8.1) reduces to (5.1), where k = 1/e.
One challenge that presents itself in investigating this problem is
in dealing with the natural boundary conditions

(VxA)xn=Hyxnand (V—id)u) -n=0,

where 7 is as before the outward unit normal. There is a great body
of literature considering various facets of the analysis of Ginzburg-
Landau problems, of which we have referenced only a few select
works. References to numerical investigations of these problems
are somewhat sparse. Very little can be found concerning analy-
sis or numerics in the “full Ginzburg-Landau” case. We find that
GNGA using some suitable basis should be an effective tool for
investigating this important equation, as a similar but competitor
technique to those found in [42]. The same comment applies to the
following problem.

Monge-Ampere Application of GNGA. We can find almost
no literature concerning the numerical investigation of the Monge-
Ampere equation |D?u| = f(z,u) on @ C R (with suitable bound-
ary conditions). Indeed, there appears to be almost no analytical
work in cases where the choice of f leads to sign-changing solutions
and the principal part becomes in places non-elliptic. We have suc-
cessfully performed preliminary GNGA experiments on this equa-
tion, for simple examples such as the case = (0,1) x (0,1), with
zero-Dirichlet boundary conditions, f = 1, while seeking only neg-
ative solutions.

Nonlinear Partial Difference Equations (PdE) on Graphs.
The Laplacian operator L can be defined and has been well studied
on graphs G = (V, E) with m = |V| and n = |E| finite (see for
example [5]). When the graph is a regular grid, it can be shown
that this linear operator converges to the usual Laplacian (with
zero Neumann boundary conditions) as the mesh goes to zero. In
[40], we seek solutions v : V' — R, identified with vectors u € R™,
to the semilinear elliptic partial difference equation (PdE)

—Lu+ f(u) =0

on the graph G. Using a variational approach entirely analogous
to that used when studying the PDE (1.2), we successfully investi-
gated the PdE by finding critical points of the functional J : R™ —
R defined by

1 m
J(u) = §Du « Du — E;F(uz),
1=
where F' = f. In [40] and following [8] and [17], we are able to
prove the existence of one-sign and sign-changing solutions and to
prove the existence of solutions with symmetry. Additionally and
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following [34] and [15], we apply variants of the MPA and MMPA
to approximate low MI solutions numerically. Following [36], we
also apply a version of the GNGA suitably adapted for PdE to plot
bifurcation curves and provide MI, symmetry, and nodal structure
information.

In the spirit of our most recent works [37] and [38], it remains

to modify the ARPACK basis generating code to compute bases for
large graphs, analyze the symmetry of the resulting eigenfunctions,
apply our automated branch following techniques, and further an-
alyze and exploit the lattice of symmetries for the nonlinear PdE.
This project appears to be as open-ended as the subject of graph
theory itself.
Parallel implementation of GNGA. Larger problems and more
details may be handled by first using PARPACK, the parallel ver-
sion of ARPACK, to generate bases of eigenfunctions. One could
use SCALAPACK or other parallel libraries of matrix routines to
port the GNGA to this environment, but we are suggesting a sim-
pler scheme. Namely, it seems efficient to have scalar routines im-
plement the following of a single branch on each node, concurrently,
and then rely on a master script on the main node to farm out new
branch following jobs for secondary and tertiary branches as the
need to do so occurs. In this way, our methodology and implemen-
tation from [38] hardly changes; we just follow one branch per node
at the same time rather than proceed through the growing list of
branches sequentially.

above problems can be attempted immediately with GNGA, al-

though additional analytical insight might be required in picking appropri-
ate bases and initial guesses. The following problems are less well defined,
representing only suggested future research directions.

Cl1

C2

Following Eigenflows. Since our interest is primarily in proving
existence theorems in elliptic PDE, we are hopeful that GNGA
will be useful in providing insight (such as the MI of solutions)
and may be of direct use in proving such theorems by analyzing
continuous Newton flows. The algorithm suggested in Section 7
for following “eigenflows” needs to be refined and more carefully
studied, particularly for the PDE and multiple eigenvalues.

CCN Solutions for Systems. It seems reasonable to prove the
existence of sign-changing solutions to elliptic semilinear problems
for systems. The variational structure is clearly more complicated
than in the scalar case. In particular, the pseudo-linearity of the
maps u — uy used in [8] in conjunction with the separating prop-
erty of S; does not appear to persist. Experiments show that a
solution u = (u1,u2) where both u; and uy change sign exactly
once should be of MI 4, necessitating more constraints. There is a
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good, fairly well defined problem to solve here. See the ending note
in Section 5 for a precise statement of one possible hypothesis to
consider when looking for a CCN solution to a superlinear system,
as well as a brief report of an unpublished numerical experiment.

C3 Semilinear Parabolic Problems. It should be possible to apply
what we now know and what we conjecture for semilinear elliptic
problems to the non-steady state case. For example, can we find
and understand an unstable flow where the time slices are CCN
solutions to elliptic problems? We have extended the idea of PdE
(see item B8 above) to heat equations. Will it be fruitful to further
develop this to nonlinear parabolic PAE? Can pattern formation
and symmetry be explored in a new way in this setting?

9. Conclusion.

GNGA can be an effective tool for investigating nonlinear phenomena.
One needs a natural variational formulation, a suitable basis, and some
intuition guiding the choosing of initial guesses. The technique seems par-
ticularly well suited to semilinear elliptic problems, where one expects a
high degree of interaction with the linear problem whose solutions consti-
tute the basis. Thus, for these types of problems we have all three essential
ingredients in order to apply GNGA. Tongue in cheek, we like to think of
the method as “counter constructive”, i.e., it may at times suggest exis-
tence proofs just as a constructive proof suggests an algorithm. We believe
that eventually, and with possibly great effort, consideration of the basins
of attraction for continuous Newton’s method as applied to finding criti-
cal points of variational functionals for semilinear elliptic PDE will lead to
progress towards solving many of the subject’s open questions.

References

[1] Adams, R., Sobolev Spaces, Academic Press: New York (1975).

[2] Ambrosetti, A.; Rabinowitz, P. Dual variational methods in critical point theory and
applications., J. Functional Analysis 14 (1973), p349-381.

[3] Argyros, 1., The Asymptotic Mesh Independence Principal for Inezact Newton-
Galerkin-Like Methods, Preprint (1999).

[4] Aubin, T., Nonlinear analysis on manifolds. Monge-Ampre equations, Grundlehren der
Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences],
252, Springer-Verlag, New York, (1982).

[5] Bapat, R. B., The Laplacian matriz of a graph, Math. Student 65 (1996), no. 1-4,
p214-223.

[6] Bunimovich, L. A., On the ergodic properties of nowhere dispersing billiards, Comm.
Math. Phys. 65 (1979), no. 3, p295-312.

[7] Michael Butros, Newton’s method for semilinear BVP on the disk, M.S. Thesis (2000),
Northern Arizona University.

[8] Castro, A.; Cossio, J.; Neuberger, John M., Sign-Changing Solutions for a Superlinear
Dirichlet Problem, 27 (1997), no. 4, p1041-1053.



36 JOHN M. NEUBERGER

[9] Castro, A.; Cossio, J.; Neuberger, John M., On Multiple Solutions of a Nonlinear
Dirichlet Problem, Proceedings of the Second World Congress of Nonlinear Analysts,
Part 6 (Athens, 1996). Nonlinear Anal. 30, no. 6 (1997), p3657-3662.

[10] Castro, A.; Cossio, J.; Neuberger, John M., A Minmaz Principle, Index of the Critical
Point, and Ezistence of Sign-Changing Solutions to Elliptic Boundary Value Problems,
Electron. J. Differential Equations, No. 02 (1998), 18 pp.

[11] Castro, A.; Drabek, P.; Neuberger, John M., Sign-Changing Solutions for a Super-
linear Dirichlet Problem, II, Proceedings of the Fifth Mississippi State Conference on
Differential Equations and Computational Simulations, EJDE 10 (2003).

[12] Castro, A.; Kurepa, A., Infinitely many radially symmetric solutions to a superlinear
Dirichlet problem in a Ball, Proc. of the AMS 101 (1987), p57-64.

[13] Choi, Y. S.; McKenna, P. J., A Mountain Pass Method for the Numerical Solutions
of Semilinear Elliptic Problems, Nonlinear Analysis, 20 (1993), p417-437.

[14] Chow, S. N.; Hale, J. K., Methods of Bifurcation Theory, Springer-Verlag - Berlin,
New York (1982).

[15] A Numerical Reduction Method for Investigating Semilinear Elliptic PDE, Proceed-
ings of the Second World Congress of Nonlinear Analysts, (Catania, 2000). Nonlinear
Anal. 47, p3379-3390.

[16] Ding, Z.; Costa, D.; Chen, G., A high-linking algorithm for sign-changing solutions
of semilinear elliptic equations., Nonlinear Anal. 38 (1999), no. 2, Ser. A: Theory
Methods, p151-172.

[17] Costa, D.; Ding, Z.; Neuberger, John M., A Numerical Investigation of Sign-Changing
Solutions to Superlinear Elliptic Equations on Symmetric Domains, J. Comput. Appl.
Math. 131 (2001), no. 1-2, p299-319.

[18] Dancer, E. N., A counterezample to the Lazer-McKenna conjecture, Nonlinear Anal.
13 (1989), no. 1, p19-21.

[19] Descloux, J.; Nassif, N.; Rappaz, J., On spectral approzimation. I. The problem of
convergence, RAIRO Anal. Numr. 12 (1978), no. 2, p97-112, iii.

[20] Kinderlehrer, D.; Stampacchia, G., Introduction to Variational Inequalities and Their
Applications, Academic Press : New York (1979).

[21] Fish, J.; Neuberger, John M., Eigenflows and basins of attraction for Newton’s
method, unpublished REU report (2000).

[22] Flores, G.; Padilla, P.; Tonegawa, Y., Higher energy solutions in the theory of phase
transitions: a variational approach, Special issue in celebration of Jack K. Hale’s 70th
birthday, Part 3 (Atlanta, GA/Lisbon, 1998), J. Differential Equations 169 (2001),
no. 1, p190-207.

[23] Gidas, B.; Ni, W. M.; Nirenberg, L. Symmetry of positive solutions of nonlinear
elliptic equations in R"™, Mathematical analysis and applications, Part A, Adv. in
Math. Suppl. Stud., 7a, Academic Press, New York-London, (1981), p369-402.

[24] Gilbarg, D; Trudinger, N., Elliptic Partial Differential Equations of Second Order,
Springer-Verlag: Berlin, New York (1983).

[25] Hineman, J.; Neuberger, John M.; Swift, James W., Numerical Solutions to Semilin-
ear Elliptic BVP on Bunimovich Stadia, Work in Progress.

[26] Johnson, L.; Riess, R., Numerical Analysis, Addison-Wesley : Reading, Mass. (1982).

[27] Lapidus, M.; Neuberger, J. W.; Renka, R.; Griffith, C., Snowflake harmonics and
computer graphics: numerical computation of spectra on fractal drums, Internat. J.
Bifur. Chaos Appl. Sci. Engrg. 6 (1996), no. 7, p1185-1210.

[28] Lazer, A. C.; McKenna, P. J. On the number of solutions of a nonlinear Dirichlet
problem., J. Math. Anal. Appl. 84 (1981), no. 1, p282-294.

[29] Lazer, A. C.; McKenna, P. J., On a conjecture related to the number of solutions of
a nonlinear Dirichlet problem, Proc. Roy. Soc. Edinburgh Sect. A 95 (1983), no. 3-4,
p275-283.



GNGA: PROGRESS AND OPEN PROBLEMS 37

[30] Ljusternik , L.; Schnirrelmann, L., Methodes Topologique dans les Problems Varia-
tional, Hermann and Cie, Paris (1934).

[31] Z. Mei, Numerical bifurcation analysis for reaction-diffusion equations, Springer Series
in Computational Mathematics, 28. Springer-Verlag, Berlin (2000), xiv+414 pp.

[32] Melas, A., On the nodal line of the second eigenfunction of the Laplacian in R, J.
Differential Geom. 35 (1992), no. 1, p255-263.

[33] Milnor, J., Morse Theory, Princeton University Press : Princeton (1963).

[34] Neuberger, John M., A Numerical Method for Finding Sign-Changing Solutions of
Superlinear Dirichlet Problems, Nonlinear World 4, no. 1 (1997), p73-83.

[35] Neuberger, John M., A Sign-Changing Solution for a Superlinear Dirichlet Problem
with a Reaction Term Nonzero at Zero, Nonlinear Anal. 33, no. 5 (1998), p427-441.

[36] Neuberger, John M.; Swift, James W. , Newton’s method and Morse index for semi-
linear elliptic PDEs, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 11 (2001), no. 3,
p801-820.

[37] Neuberger, John M.; Sieben, N.; Swift, James W., Computing Figenfunctions on the
Koch Snowflake: A New Grid and Symmetry, submitted for publication (2004).

[38] Neuberger, John M.; Sieben, N.; Swift, James W., A semilinear elliptic PDE on a
Fractal Domain, Work in Progress (2004).

[39] Neuberger, John M.; Rice, Dennis; Swift, James W. | Numerical Solutions to a Vector
Ginzburg-Landau Equation with Triple- Well Potential, Int. J. Biff. Chaos. 13, No. 11
(2003) p3295-3306.

[40] Neuberger, John M., Nonlinear Elliptic Partial Difference Equations on Graphs,
preprint, submitted (2003).

[41] Neuberger, J. W., Constructive Variational Methods for Differential Equations, Nu-
merical Analysis, Theory, Methods, and Applications, 13, no. 4 (1988), p413-428.
[42] Neuberger, J. W., Sobolev Gradients and Differential Equations, Springer Lecture

Notes, (1997).

[43] Neuberger, J. W., Continuous Newton’s method for polynomials, Math. Intelligencer
21 (1999), no. 3, p18-23.

[44] Neuberger, J. W., A Nash-Moser theorem with near-minimal hypothesis, Int. J. Pure
Appl. Math. 4 (2003), no. 3, p269-280.

[45] Neuberger, B.; Neuberger, J. W.; Noid, D. W., Eigenfunctions on a Stadium Associ-
ated with Avoided Crossings of Energy Levels, http://arxiv.org/abs/math.NA /0105217
(2001).

[46] Rabinowitz, P., Minimaz Methods in Critical Point Theory with Applications to Dif-
ferential Equations, Regional Conference Series in Mathematics, 65, AMS : Providence,
R.I. (1986).

[47] Tehrani, H., H' versus C" local minimizers on manifolds, Nonlinear Anal. 26, no. 9
(1996), p1491-1509.

[48] Wang, Z. Q., On a Superlinear Elliptic Equation, Ann. Inst. H. Poincare Analyse Non
Lineaire 8 (1991), p43-57.

DEPARTMENT OF MATHEMATICS AND STATISTICS, NORTHERN ARIZONA UNIVERSITY
PO Box 5717, FLAGSTAFF, AZ 86011-5717, USA
E-mail address: John.Neuberger@nau.edu



