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GNGA FOR SEMILINEAR ELLIPTIC PDE ON A FRACTAL REGION:
SYMMETRY AND AUTOMATED BRANCH FOLLOWING.

JOHN M. NEUBERGER, NANDOR SIEBEN, AND JAMES W. SWIFT

ABSTRACT. We apply the GNGA (Gradient-Newton-Galerkin-Algorithm) of Neuberger-Swift to
find solutions to a semilinear elliptic Dirichlet problem on the region whose boundry is the Koch
snowflake. In a recent paper, we described an accurate and efficient method for generating a
basis of eigenfunctions of the Laplacian. In that work, we used the symmetry of the snowflake
region to analyze and post-process the basis, rendering it suitable for input to the GNGA. The
GNGA uses Newton’s method on the eigenfunction expansion coefficients to find solutions to the
semilinear problem. This article introduces the bifurcation digraph, an extension of the lattice of
isotropy subgroups, which describes the possible symmetries of solutions and the generic symmetry-
breaking bifurcations. We use continuation methods to solve the problem of choosing an initial
guess for Newton’s method, and to find at least one solution of each of the 23 symmetry types that
we predict should exist. Such computationally intensive investigations necessitated the writing of
automated branch following code, whereby symmetry information was used to reduce the number of
computations per GNGA execution and to make intelligent branch following decisions at bifurcation
points.

1. INTRODUCTION.

We seek numerical solutions to the semilinear elliptic boundary value problem
Au+ f(u) =0in Q
(1.1) u = 0 on 01,
where A is the Laplacian operator and 2 C R? is the (open) region whose boundary 52 is the Koch

snowflake. As far as we know, this article is the first to consider a nonlinear PDE on a region with
fractal boundary. In this paper, we will choose the nonlinear function f : R — R to be defined by

(1.2) flu) = Mu + u?,
treating the parameter A = f’(0) as a bifurcation parameter. Except for certain aspects of our
symmetry analysis, all of our experiments could easily be done for other choices of nonlinearity, in

particular, for f non-odd. For convenience, we refer to  as the Koch snowflake region. It is well
known that the eigenvalues of the Laplacian under this boundary condition satisfy

(1.3) 0< A <A< > o0
and that the corresponding eigenfunctions
(1.4) {¥j}jen
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are an orthogonal basis of both the Sobolev space H = Hé’2(Q) and the larger Hilbert space
Ly = Ly(2), with the inner products

<u,'u)H:/Vu-Vvdx and (u,v)zz/ufudx,
Q Q

respectively. Using the Gradient-Newton-Galerkin-Algorithm (GNGA, see [NS]) we seek approxi-
mate solutions u = Z]Nil a;1; to (1.1) by applying Newton’s method to the eigenfunction expansion
coefficients of the gradient VJ(u) of a nonlinear functional J whose critical points are the desired
solutions. The definition of J, the required variational equations, a description of the GNGA, and
a brief history of the problem are the subject of Section 2.

The GNGA requires as input a basis spanning a sufficiently large but finite dimensional subspace
span{n,...,%¥n}, corresponding to the first M eigenvalues {A]-}j”il. As described in [20], a grid
Gn of N carefully placed points is used to approximate the eigenfunctions. These are the same
grid points used for the numerical integrations required by Newton’s method. Section 3 briefly
describes the process we use for generating the eigenfunctions.

Section 4 concerns the effects that the hexagonal symmetry of the snowflake region have on
the solutions to equation (1.1) and their bifurcations. The symmetry theory for linear operators
found in [20] is summarized and then the extensions required for nonlinear operators are described.
In particular, there are 23 different symmetry types of solutions to (1.1). These are traditionally
organized in the lattice of isotropy subgroups (see [7]). While this theory is well-known, we give
a new way to organize the results in a bifurcation digraph. This directed graph generalizes the
lattice of isotropy subgroups, in that it includes information about the generic bifurcations among
symmetry types.

We use repeated executions of the GNGA or a slightly modified algorithm (parameter-modified
GNGA) to follow bifurcation branches containing solutions to (1.1) of any desired symmetry. The
solution of the previous execution becomes the initial guess for the next. Typically, we vary A
slightly between executions. Near bifurcation points, we treat A as a variable and instead fix
one of the eigenfunction expansion coefficients. We use our symmetry knowledge to make our
computations of gradients and Hessians more efficient, as well as to make intelligent branch following
decisions. Starting with the trivial solution, the bifurcating branches are followed automatically,
thus eliminating the need to guess approximate solutions for input into Newton’s method. In
this way solutions with all 23 symmetry types are found automatically. Section 6 describes the
automated continuation techniques that makes this possible.

In our experiments, many bifurcation diagrams were generated by applying the techniques men-
tioned above. A selection of these diagrams are provided in Section 7, along with contour plots of
solutions to (1.1) corresponding to each of the 23 symmetry types predicted to exist. We include
evidence of the convergence of our algorithm as the number of modes M and grid points N increase.

Many extensions to our work are possible, including enforcing different boundary conditions
on the same region, solving similar semilinear equations on other fractal regions, applying the
methodology to partial difference equations (PdE) on graphs, and porting the scalar code to a
parallel environment. We briefly discuss these and other ideas in the concluding Section 9.

2. GNGA.

We now present the variational machinery for studying (1.1) and follow with a brief description
of the general GNGA. Section 6 contains the details of the implementation of the algorithm for our
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specific problem. Let F'(u fo s)ds for all 4 € R define the primitive of f. We then define the
action functional J : H — ]R by

(2.1) J(u) = /Q {%|Vu|2 _ F(u)} dz.

The class of nonlinearities f found (for example) in [2, 3, 18] imply that J is well defined and of
class C? on H. The choice (1.2) we make in this paper belongs to that class. It is well known that
critical points of J are in fact solutions to (1.1) (see for example [21]), and vice versa. Take A;
and ; as in (1.3) and (1.4), with the eigenfunctions normalized in Lo; given a coefficient vector

a € RM | we expand u = Z]]Vi1 a;v;. Integrating by parts, we can see that

(2.2) T (u)(4py) = /Q (V- Vi — f(u) 3} = a;); / flu
and
(2.3) J" (u) (¥, k) = /Q{V%' Vip — f'(u) i e} = Xk — /Qf(u) ¥ P,

where §;;, is the Kronecker delta function. Note that there is no need for numerical differentiation
when forming gradient and Hessian coefficient vectors and matrices in implementing Algorithm 2.1;
this information is encoded in the eigenfunctions.

The heart of our code is Newton’s method in the space of eigenfunction coefficients:

Algorithm 2.1. (GNGA)

(1) Choose initial coefficients a = {a;}i,, and set u =) agi.

(2) Loop
(a) Calculate the gradient vector g = {J'(u)(¢%)}}., from equation (2.2).
(b) Calculate the Hessian matrix h = {J"(u)(@bj,z/)k)}%k:l from equation (2.3).
(c) Exit loop if ||g|| is sufficiently small.
(d) Solve hy =g for the Newton search direction xy € RM,
(e) Replace a < a — x and update u = ) axg.

(3) Calculate sig(h) and J for the approximate solution.

If Newton’s method converges then we expect that v approximates a solution to the PDE (1.1),
provided M is sufficiently large and the eigenfunctions and numerical integrations are sufficiently
accurate. Our estimate for the Morse index (MI) of the critical point of J is the signature of h,
denoted sig(h), which is defined as the number of negative eigenvalues of h. This measures the
number of linearly independent directions away from u in which J decreases (quadratically).

The basic Algorithm 2.1 is modified to take advantage of the symmetry of our problem. The
number of integrations required in step (a) and (b) of the loop can be reduced from M + M? to a
smaller number if the initial guess has nontrivial symmetry.

We often use a “parameter-modified” version of the GNGA (pmGNGA). In this modification,
A is treated like an unknown variable and one of the M coefficients a;, is fixed. This allows us to
force symmetry-breaking membership on a new branch. Along a given branch, symmetry generally
forces many coefficients to be zero. When a bifurcation point is located by observing a change in
MI, we can predict the symmetry of the bifurcating branches using the symmetry of the critical
eigenfunctions. By forcing a small nonzero component in the larger invariant subspace (orthogonal
to the old branch’s smaller invariant subspace), we can assure that the pmGNGA will not converge
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to a solution lying on the old branch. Another benefit of the pmGNGA is that it can handle a curve
bifurcating to the right as well as one bifurcating to the left. Finally, the branches that bifurcate
to the right often have saddle node bifurcations where they turn around and go to the left. The
pmGNGA can follow such branches while the normal GNGA cannot.

The implementation of pmGNGA is not difficult. The M equations are still

gi = J'(u) (i) =0,
but the M unknowns are

a= (ala"' aa'k:—laxaak‘—l—la"' aa'M)a
and the value of one coefficient, ay, is fixed. Consequently, we replace the Hessian matrix h with a
new matrix h where the k-th column is set to dg;/OX = —a;:
- hij ifj#k
£ —a; lfj =k

The search direction ¥ is the solution to the system h¥ = g. The pmGNGA step is

G+ a-—x,
and then u and A are updated. After Newton’s method converges, the k-th column of the original
hij is calculated and the MI of the solution, sig(h), is computed.

We conclude this section with a very brief history of the analytical and numerical aspects of the
research into (1.1) given our type of nonlinearity f. Our introduction to this general subject was
[2], where a sign-changing existence result was proven. This theorem is extended in [3]; we indicate
briefly in Section 7 where this so-called CCN solution can be found on our bifurcation diagrams.
The GNGA was developed and announced in [19], wherein a much more detailed description of
the variational structure and numerical implementation can be found. The computational efforts
related to this current project are somewhat more sophisticated. The more important aspects of our
improvements are explained in Sections 4 and 6. This article might be the first of our published
works concerning GNGA for general regions; a successful but as yet unsubmitted investigation
for the case Q is a disk in R? and the work in progress [12] where Q is a Bunimovich stadium
further demonstrate this generality. The article [4] was our first success in using symmetry to find
higher MI solutions. The details concerning the grid, basis generation, and subsequent symmetry
analysis for the snowflake are in [20]. The article [11] provides a historical overview of the authors’
experimental results using variants of the Mountain Pass Algorithm (MPA, MMPA, HLA) and the
GNGA, as well as recent analytical results and a list of open problems; the references found therein
are extensive.

3. THE BASIS OF EIGENFUNCTIONS.

In [20], we describe theoretical and computational results that lead to the generation of a basis
of eigenfunctions solving

(3.1) Au+du=0inQ, u =0 on 90.

The paper details the grid technique and symmetry analysis that accompanied the effort; we briefly
summarize those results in this section.
The Koch snowflake is a well known fractal, with Hausdorff dimension logs 4. Following Lapidus,

V3

Neuberger, Renka, and Griffith [9], we take our snowflake to be inscribed in a circle of radius %5
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FIGURE 1. The Koch snowflake 9 with N = 13 labelled grid points {z;}2, at
level £ = 2. At this level, the grid used by [9] consists of the Nyyr(2) = 37 large
and small points inside the snowflake, along with the 48 small points on 9€2. The
points outside of the snowflake, some labelled g;, are ghost points we use to enforce
the boundary conditions; these ghost points are not used by our nonlinear code.

211121 3 4 5 6
N |1|13|133|1261 | 11605 | 105469

TABLE 1. The number of interior grid points with spacing h = hxss(£) = 2/3¢. We
gria_tamdypically use level £ =5 in our nonlinear experiments.

centered about the origin. With this choice, the polygonal approximations used in the fractal
construction have side length that are powers of 1/3. We use a triangular grid Gy of N points to
approximate the snowflake region. Then, we identify u : Gy — R with v € R, that is,

(3'2) U(.TZ) = U;

at grid points z; € Gn. Figure 1 depicts a low level grid used in [20] to compute eigenfunctions;
we use this same grid for our nonlinear experiments. The number of grid points on other levels are
in Table 1.

Our method of imposing the zero-Dirichlet boundary conditions can be summarized as

2
—Au(z) =~ 3ﬁ((12 — number of interior neighbors)u(z)—

(3.3)
Z{interior neighbor values of u}).

Using the differencing scheme in (3.3) and the grid depicted in Figure 1, we computed [20]
eigenvalues and eigenfunctions for (3.1) using ARPACK. Table 2 lists approximations of the first
ten eigenvalues; these values are primary bifurcation points. The ARPACK is based upon an
algorithmic variant of the Arnoldi process called the Implicitly Restarted Arnoldi Method (see
[14]) and is ideally suited for finding the eigen-pairs of the large sparse matrices associated with
the discretization of the Laplacian.

grid
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k 1 2 3 4 5 6 7 8 9 10
)\kR 39.4|97.4 1974|1654 | 165.4 | 190.4 | 208.6 | 272.4 | 272.4 | 312.4

TABLE 2. Approximate values for the first ten eigenvalues to the Dirichlet problem.
Richara_ptFOT oTe values with greater precision see [20].

4. SYMMETRY: THE LATTICE OF ISOTROPY SUBGROUPS AND THE BIFURCATION DIGRAPH.

This section describes equivariant bifurcation theory (see, for example [7] or [8]) as it applies
to the branching of solutions to equation (1.1). We are able to describe in general all expected
symmetry types of solutions to 1.1, as traditionally arranged in a lattice of isotropy subgroups.
In the first subsection we introduce the bifurcation digraph, essentially a refinement of the lattice,
which shows every possible generic bifurcation from one symmetry type to another as a directed
edge which is labelled with information about the bifurcation. This digraph is of interest in its own
right and summarizes the essential information required by our automated branch following code. In
this project, GAP (Groups, Algorithms, and Programming, see [6]) is used to verify our symmetry
analysis; in our continuing projects GAP is a necessary tool when the symmetry calculations are
too complicated to be done by hand. In the second subsection, we apply this methodology to the
snowflake domain being considered in this paper. The analysis shows that solutions fall into 23
symmetry types, and that there are 64 generic symmetry breaking bifurcations.

4.1. Group Actions and the Bifurcation Digraph. Let I' be a finite group and V be a vec-
tor space. A representation of T' is a homomorphism « : I' — GL(V). Every representation «
corresponds to a unique group action of I' on V by the rule v - v := a(y)(v) for all v € T and
v € V. We will usually use the action rather than the representation. The group orbit of v is
'v={y-v|yeTl}

Let us recall some facts about group actions, following [7]. Let I" be a finite group acting on a
vector space V. The isotropy subgroup or stabilizer of v € V is

Stab(T',v) ={y €T | v-v=uv}.

Other notations for what we call Stab(T',v) are T', or the “little group” of v. The I' is necessary
when several groups act on the same space. If the group is understood, we may simply write Stab(v)
in place of Stab(I",v). The isotropy subgroup measures how much symmetry v has. The stabilizer of
a subset W C V is then defined as Stab(I', W) = {y € ' | v- W = W}. This must be distinguished
from the point stabilizer of a subset pStab(I', W) = ({Stab(I',v) | v € W}. Another commonly
used notation is T'y for the stabilizer and I'(yyy for the point stabilizer. Note that pStab(T', W) is
always normal in Stab(I', W), and Stab(T', W)/ pStab(I', W) acts faithfully on W.
If ¥ is a subgroup of I" then the fized point subspace of ¥ in V is

Fix(3,V)={veV| y-v=wforall y € £}

Often, we will drop the V when the space on which I' acts is clear.

An isotropy subgroup of the I' action on V is a stabilizer of some point v € V. For some group
actions, not every subgroup of I' is an isotropy subgroup. A necessary and sufficient condition for
Y to be an isotropy subgroup of a I' action on V is that ¥ = pStab(T’, Fix(V, X)), or when I' and
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V' are understood, simply
(4.1) Y is an isotropy subgroup <= X = pStab(Fix(X)).

An operator T : V. — V is I'-equivariant if T(y - v) = - T(v) for all v € I'. The isotropy
subgroups and fixed point subspaces are important because of the following simple yet powerful
results. See [7] or [8].

Proposition 4.2. Suppose I' acts linearly on V, T : V — V is I'-equivariant and % is an isotropy
subgroup of I'. Then

(a) If v € Fix(X) then T(v) € Fix(%).

(b) Stab(Fix(X)) = Np(X), the normalizer of ¥ in T.

(¢) Tlpix(z) is Nr(X)-equivariant.

(d) T|pix(s) i Nr(X)/Z-equivariant, and Np(X)/% acts faithfully on Fix(X).

Two subgroups X1, Xy of I' are conjugate (X1 ~ Xg) if £; = y3y ! for some v € T. Note that
Stab(y - v) = v Stab(v)y~!. We define the symmetry type of v € V to be the conjugacy class of
Stab(v). Thus, every element of a group orbit I - v has the same symmetry type.

Let S = {S;} denote the set of all symmetry types. The set S is a partially ordered set, with
S; < S; if there exits ¥ € S; and I' € S such that ¥ <T'. The inclusion lattice of S is called the
lattice of isotropy subgroups [7].

Consider a bifurcation problem of the form g(\, u) = 0, where g(A,:) : V — V is a ['-equivariant
operator and A is a real bifurcation parameter. Definitely, we have in mind the PDE defined by
(1.1) and (1.2), with T' = D x Zo, V is the appropriate function space, and g is the gradient vector
defined in Section (2). The specific calculations for this case are the material of the next subsection.
We define a branch of solutions to be a path of points (A, u) € R x H where the functions u are
solutions with a given symmetry. A branch of solutions B has a symmetry-breaking bifurcation
at the bifurcation point (\*,u*) € B if a different branch of solutions, By, has (A\*,u*) as a limit
point but (A\*,u*) ¢ Bs. We say that branch Bj is created at this bifurcation.

The trivial solution to (1.1) is u = 0, and the trivial branch is {{),0) | A € R}. A primary branch
is a branch that is created at a symmetry-breaking bifurcation of the trivial branch.

At a bifurcation point, D2J(\*,u*) = Dg(\*,u*) is not invertible. If Dg is invertible then
the implicit function theorem guarantees the existence of a unique local solution branch. We
define the null space of Dg(\*,u*) as the critical eigenspace, which we denote by E. The zero
eigenvalues and corresponding eigenfunctions in F are termed critical. We define the symmetry
group of the bifurcation as Stab(u*)/ Stab(E). That is, the group elements that fix E pointwise act
as the identity in the symmetry group of the bifurcation. At a symmetry-breaking bifurcation we
can translate (A\*,u*) to the origin, and do an equivariant Liapunov-Schmidt reduction to obtain
reduced bifurcation equations § : R x E — E where Dg(0,0) = 0, and g is Stab(u*)/ Stab(E)-
equivariant. The symmetry of the bifurcation, Stab(u*)/Stab(F), can be computed by purely
group-theoretic calculations without actually computing the Liapunov-Schmidt reduction.

Definition 4.3. PUT EBL stuff here, then define bifurcation digraph.

We use GAP to analyze all of the irreducible representations of I'; for one isotropy subgroup
in each of the symmetry types S;. This yields a wealth of information that is summarized in the
bifurcation digraph. In the next section, we develop the bifurcation digraph for the snowflake
domain problem where I' = Dy x Zs (see Fig. 2). Each edge is labelled with the symmetry group
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of the bifurcation. This is important because the symmetry constrains the type of branching that
can occur, and the normal form equations of bifurcations with many small symmetry groups have
been analyzed.

Typically, a change of MI is an indicator for the presence of a symmetry breaking bifurcation.
The MI also changes on a branch at a saddle-node “bifurcation.” The branch of solutions is not
monotonic in A at a saddle-node bifurcation, but there is no intersection of branches and hence no
symmetry-breaking bifurcation. Our code can follow the branch as it turns over at a saddle-node
bifurcation using the pmGNGA.

A characteristic of a saddle-node bifurcation is that the critical eigenvector lies in Fix(u*). Hence
I =T, and a saddle-node bifurcation is a bifurcation with trivial symmetry. I think I is never
defined. In contrast, at a symmetry-breaking bifurcation, the critical subspace E is orthogonal
the Fix(u*), and T'/T" is nontrivial.

When a solution with symmetry I' has a symmetry-breaking bifurcation, it is important to
analyze the action of I' on the critical eigenspace E. The lattice of isotopy subgroups of this
action are computed. If Fixg(X) is a one-dimensional fixed point subspace, then the Equivariant
Branching Lemma (EBL) says that “generically” a solution with isotropy ¥ will be created at the
bifurcation. We refer the reader to [7] or [8] for a discussion of the EBL and genericity. Suffice it
to say that we only expect to see generic properties in our numerical investigations. We define a
mazimal isotropy subgroup of a I' action to be a maximal proper isotropy subgroup. Suppose ' acts
on E with Fix»(I') = 0. Then dimFixg(X) = 1 implies that ¥ is a maximal isotropy subgroup of
I'. The converse is not true. For the group Zj acting on R? as rotations , the trivial group (1) is
a maximal isotropy subgroup of Z3, but Fix((1)) = R2. This example is relevant to our PDE (1.1)
when a solution with isotropy Zs has a symmetry-breaking bifurcation. Typically, such a solution
would have a Hopf-bifurcation, but this is not possible in a gradient system, such as our PDE (1.1)
wich can be written as VJ(A,u) = 0. In a symmetry-breaking bifurcation of a gradient system,
generically a branch is created with isotropy ¥ for every maximal isotropy subgroup of I' ([7],[10],
[24]). We call such solution branches, that are not guaranteed to exist by the equivariant branching
lemma, non-EBL branches.

In our bifurcation digraph, for every isotropy subgroup I' < Dy X Zso, we compute the isotypic
decomposition of U under the action of I'. The irreducible spaces of the I' action on U corresponding
to the nontrivial irreducible representations of I' are the possible critical eigenspaces F;(I') (where
i labels the irreducible representation). We compute the lattice of isotropy subgroups of I' acting
on E;(T"). The bifurcation digraph has an edge from T' to every maximal isotropy subgroup X
of the action on each E;(I"). The edge is labelled with the symmetry group of the bifurcation,
I’/ Stab(E;(T")). Furthermore, there is an arrow type, either solid, dashed or dotted. The arrow type
depends on the quotient group Nt (X), which is the effective symmetry group of the PDE, restricted
to Fix(X), in the neighborhood of a point u with isotropy I'. The arrow in the bifurcation digraph
is solid if Fixp,r)(X) is one-dimensional and Nr(X) = Zo. This means that there is a pitchfork
bifurcation. There are two bifurcating branches that belong to one group orbit of branches. The
arrow in the bifurcation digraph is dashed if Fixg,)(2) and Np(X) = (1), the trivial group. In
this case there are two non-conjugate solution branches. Usually the bifurcation is transcritical,
meaning that one branch bifurcates to the left while the other bifurcates to the right. Note that
Nr(X) must be either Z, or the trivial group if the dimension of Fixg,r)(¥) is one. Finally, the
arrow in the bifurcation digraph is dotted if the dimension of Fiin(F)(Z) is larger than one. This
means that we expect a non-EBL solution branch in a gradient system.
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4.2. The Digraph for D X Zy. The symmetry group of the snowflake region 2, as well as the
set of grid points Gy, is isomorphic to the dihedral group

Aut(Q) =D == (p,0 | p° = 0% =1, po = op°).

It is convenient to define 7 = p30. Note that o7 = 70 = p?, and p® commutes with every element
in Ds. The standard action of Dg on the plane is

p-(z,y) = (%w + By, — V3o + %y)
g- (w,y) = (_xay)
T (w,y) = (:L‘, _y)'

(4.4)

In this action p is a rotation by 60°, o is a reflection across the y-axis, and 7 is a reflection across
the z-axis.

For a given grid Gy = {z;}),, the Dg action on the plane (4.4) induces a group action on
the set {1,..., N} defined by z,.;, = v - z;. There is also a natural action of D on the relevant
spaces U = Ly(2) and U = RY corresponding to a grid Gy defined by (v -u)(z) = u(r~—!-z) and
(v - u); = u,-1,; respectively.

To discuss the effects of symmetry on the nonlinear PDE (1.1) we define the Dg x Zy action on
Lo(2) and U, where Zy = {—1,1}. For all (v,z) € Dg X Zg, define

(v,2) - u=2z(v-u).

We will denote (v,1) by v and (v, —1) by —v. With this natural notation (—v)-u = —(v-u), which
we call simply —v - u.

Every subgroup of the D action on the function space L2(2) is an isotropy subgroup. To see
this, start with a function ug with compact support, such that the support of - ug is disjoint for
the twelve elements v € Dg. Then, for any subgroup ¥ < g, the function nyel“ v - ug has isotropy
3. Note that this argument carries over to the s action on the space of functions on a single group
orbit of size 12, which function space can be identified with R'?. The same holds for functions on
the grid Gy, provided there is at least one group orbit of grid points of size 12. This happens
in our grids at level £ > 3, which have N > 133 grid points. In contrast, the D action on R
corresponding to the level 2 grid shown in Figure 1 does not have (p as an isotropy subgroup. This
is related to the fact that every grid point in Figure 1 is on a line of reflection symmetry.

In what follows, we will use U to stand for a vector space for which every subgroup of D is an
isotropy subgroup of the g action on U.

Any of these choices for U also have the save isotropy subgroups for the Dy x Zs action on U.
Assume that ¥ is an isotropy subgroup of this action. Therefore ¥ = Stab(Dg X Zso, u) for some
u € U. If —1 € Stab(Dg X Zso,u), then —1-u = u which implies that © = 0 and Stab(IDg X Zg,u) =
Dg x Zo. For the Mg x Zsg action on U where every subgroup of I is an isotropy subgroup, it can
be shown that £ $ Dg x Zy is an isotropy subgroup if, and only if, —1 ¢ ¥. This result allows us to
determine all of the isotropy subgroups for this group action by hand. We verified our calculations
using GAP and the characterization in Equation (4.1) for the action of Dg x Zy on U = R!2.

There are exactly 23 conjugacy classes of isotropy subgroups for the Dg x Zg action on Lo(€2).
Thus, a solution to the PDE (1.1) has one of 23 different symmetry types. The types are listed in
2.
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4 2L
FIGURE 2. The reduced bifurcation digraph of symmetry types, which incorporates
the well-known lattice of isotropy subgroups (see [7]). The vertices of the digraph
are the equivalence classes of symmetry types. A name is given and a representa-
tive isotropy subgroup is indicated. Contour plots of solutions with each of these
symmetry types are given in Figure 11 and Figure 12. The directed edges of the
digraph are bifurcations with the indicated symmetry groups. A solid line denotes a
pitchfork bifurcation, a dashed line is a transcritical bifurcation, and a dotted line is
a more complicated bifurcation that is not predicted by the Equivariant Branching
Lemma (EBL). The digraph is “reduced” because several edges from one box to an-
other are identified: The small numbers on the edges tell the number of connections

emanating from each symmetry type in a box. A missing small number means 1.
The details of the edges from symmetry type Se are shown in Figure 3.

Sz (—1) Sao  (—p®)
Sis
Sa2 (1)

digraph
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The nonlinear PDE (1.1) can be written as (A + f)(u) = 0, where A + f is a Dg x Zs-equivariant
operator. (There are subtleties due to the fact that the domain and range of A are different spaces.
See [4] for a careful treatment.) In particular, (A + f)(—u) = —(A + f)(u), since f is odd. As a
consequence, if u is a solution to (1.1), then so is every element in its group orbit (Dg x Zs) - u.
The Newton’s method mapping is also Dg X Zo-equivariant. We will describe later how this fact is
exploited by our branch following code.

As a consequence of Propostion 4.2, we can solve the PDE (1.1), written as (A + f)(u) = 0,
by restricting u to functions in Fixy,(X). This leads to a simpler problem since the function
space Fixp,(X) is simpler than Ls. An example of this is in Costa, Ding, and Neuberger [4]. The
techniques of that paper, applied to our problem, would find solutions with Morse Index 2 within
the space Fix(Dg). Proposition (4.2) also implies to the GNGA, since the Newton iteration mapping
is equivariant. If the initial guess is in a particular fixed point subspace, all the iterates will be in
that fixed point subspace. Newton’s method can converge to a solution with more, but not less,
symmetry than the initial guess.

If we use a grid of level £ > 3 to obtain the function space U then there exists a Dy orbit with 12
distinct grid points, then a subgroup I' < Dy X Zg is an isotropy subgroup if and only if (-1 € T
implies that I' = Dg x Z5). In particular, the structure of isotropy subgroups is the same as that
of the I'y action on Ly(€2).

We used a GAP [6] program and the level £ = 3 grid G113 to find all the isotropy subgroups and
the corresponding fixed point subspaces. The isotropy subgroups fall into 23 conjugacy classes.

For one isotropy subgroup from each symmetry type, I'; € S;, the GAP program also did all of
the calculations necessary to classify the bifurcations of solutions with isotropy subgroup I';. The
bifurcation digraph in Figure 2 summarizes the results of those calculations. Figure 3 gives some
of the details of the calculation for solutions with symmetry 'y = (p, —o, —7) = Dg.

Let us summarize how symmetry effects the eigenvalue equation (3.1). There are six Dg-invariant
subspaces in our decomposition of RY = @?:1 V@ corresponding to the six irreducible represen-
tations of Dy (see [20]). For the 2-dimensional irreducible representations of Dg (i = 5 and i = 6)
the Dg-invariant spaces can be further decomposed into spaces that are invariant under the Lapla-
cian, even though they are not Dg-invariant. Thus V(%) = 1(5) @ V2(5) and V) = VI(G) & V2(6).
For multiplicity-two eigenvalues of the Laplacian, the ARPACK program gave us two orthonor-
mal eigenvectors in either V(®) or V) that do not respect this decomposition. In these cases we
projected the eigenvectors onto the two Laplacian-invariant subsapces, for example V1(5) and V2(5),
using the parities under = and y reflections. Hence, we give another set of names, V), 4, to the
8 Laplacian-invariant spaces, where p, and p, describe the parity of the functions under the re-
flections ¢ and 7 respectively, and d is the dimension of the associated irreducible representation,
i.e., the multiplicity of the corresponding eigenvalue. Some calculations allow us to give simple
descriptions of these Laplacian-invariant spaces:

(4.5) Vigr=VW =fuelU|pu=u, oc-u=u, 7-u=u}
Vo, =VO =fueUl|pu=u o-u=—u, 7-u=—u}
Vi =V ={uelU|p-u=—-u, c-u=u, 7-u=—u}

Vo=V ={ueclU|p-u=-u, c-u=—u, 7-u=u}
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<P, -0, _T> <P, ) _T> <P; ) _T> <P, -0, <p’ ) _T)
(

")
P, e
N (o)

<_O" _T>

FI1GURE 3. The five generic bifurcations of a solution with symmetry I' = I's =
(p,—0,—7) € S2. The five diagrams are the lattices of isotropy subgroups for the
five nontrivial irreducible representations of Dg = I". An edge in the bifurcation
digraph joins T" to all maximal isotropy subgroups in each of the irreducible repre-
sentations. The minimal isotropy subgroup of the i-th irreducible representation is
the stabilizer of the critical eigenspace E; at the bifurcation. The symmetry group of
the bifurcation, I'/ Stab(E;), is indicated as a label on the edge (either Zsy, Dg, or Ds
in this example). This figure shows several details which are left out in Figure 2. For
example, the submaximal isotropy subgroups are not indicated in Figure 2. Also,
the identified arrows of the reduced bifurcation digraph shown separately here: The
arrows from T to (p?, —7) and to (p?, —o) are identified in Figure 2. Similarly, the
arrows from I" to (—7) and to (—o) are identified in Figure 2.

15 T T I
i iy i
— E ‘—‘("'./
1 & o ]
™ 0 fF——
_ R ---------------------------
5 = q D e B
0 — S x} qﬂxxjij;:;-/
o 1 1 1 5 bt 1 : ;
0 5 100 150 200 0 50 100 150 200
! A

FIGURE 4. Bifurcation diagrams of the sixth primary branch, showing ||u||? and
u(2/27,44/3/27) as a function of A. Since |[u||2 is a Mg x Zo-invariant function
of u, each conjugacy class of solution branches is shown as one curve. The dis-
advantage of plotting ||u||3 is that the curves are not well separated. The point
(2/27,4+/3/27) is not on any of the reflection axes of the snowflake region. There
are 2 primary branches with symmetry Si, four conjugate secondary branches with
symmetry Sg, and four conjugate secondary branches with symmetry Sig. Our
choice for the bifurcation diagrams in this paper combines the advantages of both
views: u(2/27,4v/3/27) is plotted as a function of A for exactly one branch (the
solid lines) from each conjugacy class.

bif2

fig.verbose



u(2/27,3"24/27)

FIGURE 5. A partial bifurcation diagram of the 14-th primary branch showing a
D, a D3 and several Zo bifurcations. At the Dy point, 12 branches of two different
At the D3 point, 6 branches of the same symmetry
bifurcate. In accordance with Figure 4, only two branches need to be followed in
both cases. For clarity, the branches bifurcating from 3 of the Z, bifurcations are
not followed. The numbers next to a branch indicate the MI of the solution. The

symmetry types bifurcate.
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MI changes by 2 at a square, and by 1 at a circle.
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|o-u=—-u, 7-u=—u}
|o-u=u, 7-u=—u}
|o-u=—-u, 7-u=u}

390

D ={uelU|p’ u=u, utp® u+p* u=0}
6):{u€U|p3-u:—u utp?utptu=0}
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fig.d3_d6

Contour plots of eigenfunctions with each of the eight symmetry types are shown in [20]. As we
will see, this this decomposition of the function space is useful in the description of the symmetry
types of solutions to (1.1).

Every fixed point subspace decomposes as a direct sum of the invariant spaces defined in (4.5).
In fact, the possible symmetry types of the eigenfunctions of the Laplacian are Sy, ...
of this correspondence, the symmetry type of a solution u € U determines the possible nonzero

, Sg. Because
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FIGURE 6. The Djs-bifurcation of the 13-th primary branch (left). This is the only
observed Ds-bifurcation that is not transcritical. A Zs-bifurcation of a secondary
branch of the 24-th primary branch (right). This bifurcation is not predicted by the
EBL. The only remaining bifurcation symmetry type in Figure 2 is Zg. We only
observed such a bifurcation with M = 100 modes. fig.d3b

coefficients of the expansion of u. For example, a solution with symmetry type Sis is a linear
combination of eigenfunctions in VYUV (2). We use this information to find solutions on bifurcating
branches and to remain on a certain branch.

In our bifurcation diagrams we plot approximate solutions u evaluated at a generic point
(2/27,4+/3/27) versus the parameter \; other choices for the vertical axis such as J(u) or |[u/|s
lead to less visible separation of branches. The generic point was chosen to be a common point on
every level’s grid, with a full Dg orbit. With this choice, solutions with different symmetry types
are expected to have distinct and varying values on bifurcation diagrams. The points (), 0) define
the trivial branch, the only branch of symmetry type Sy. The branches bifurcating at eigenvalues
of the Laplacian along the trivial branch are called primary branches and contain solutions with
symmetry types Si,...,Ss. The digraph in Figure 2 explains the further symmetry breaking which
occurs at secondary bifurcations.

5. SYMMETRY AND COMPUTATIONAL EFFICIENCY

Several modifications of the GNGA (2.1) take advantage of symmetry to speed up the calcula-
tions. The fixed point subspace of the initial guess is computed. Suppose that there are M modes
in our computation, but the dimension of Fix(X) is My. Only My of the M components of the
gradient (2.2) are nonzero, so the numerical integrations are not done for the zero components.
Furthermore, M% rather than M? numerical integrations are needed to compute the part of the
Hessian matrix needed by the GNGA algorithm. (The numerical integration in (2.3) is done only if
1; and 9y, are both in Fix(X). The \; §;,term is included for all j € {1,..., M} so that the Hessian
is nonsingular.) We then solve the full linear system hy = g with M equations and M unknowns.
We could solve a reduced system with My equations and My, unknowns, but this would not speed
up the algorithm very much since the majority of the time is spent doing the numerical integrations.
After Newton’s method converges to a solution, the full Hessian needs to be calculated in order to
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To=Dg x Zyg — | T Iy Ty Iy
v | v@ |6 | @ V()

I's,Ts (I' =T19)

I'7,Tg (I" =Ty)
v (6)

/T = Dy
Np(2)/% = Z,

/T = D
Np(2)/2 = Z,

Iy=(po,7) > |Tis | Ty | Ty | T[5(I"=T1) |T15T16 I' =T2)
FlX(Fl) = V(l) V(2) V(?’) V(4) V(5) V(6)

FQ = <pa —0, _T> — P13 PH P12 P6 (F’ = P19) P17,P18 (I‘I — P22)
Fix(Ty) = v | v | v® | y®) V6 0

I's=(-p,0,—7) > | Tu | Ty | ' L7 (I =Ty) |Tis5 Tz IV =Ty)
FlX(Fg) = V(3) V(4) V(l) V(2) V(6) V(5)

F4 = <_pa _0',7'> — F14 F12 FIO Fs (FI = ]_—‘20) ]'—‘167]-—‘18 (1"/ — 1-\22)
Fix(T[y) = V® ve | v@ | y®) v (6) V5

F:Dﬁ P/Plg]D?: P/FI§D6
Ne(2)/2=(1) | Ne(%)/E=7Z
F5 = <U7T> - F19 F15 F16

5 6 6
V(2) o ‘/'2( ) V(3) D Vl( ) V(4) D ‘/2( )

Lo = (=0, —7) = T BT Tz
Fix(De) = V@ o V® | v a v | vO o v® | v® o ®
Fix(T) = V@ o V9 | vW o V® | vO o v | v® o v”

Iy =(—0,7) > Ty Ts Ty

V(3) D V1(6) V(2) D ‘/'2(5) V(l) D ‘/1(5)

TABLE 3. The 64 generic symmetry-breaking bifurcations. This Table and the next
show the results that are summarized in the reduced bifurcation digraph, Figure 2.
For each isotropy subgroup I';, the first row shows the symmetry of the solutions
created at the bifurcations. The second row shows the the isotypic decomposition
U = @j Vr(f) of the I'; action on U. Barring accidental degeneracy, the critical
)

eigenspace F lies in one of the Vr(f components. The maximal (proper) isotropy

subgroup, ¥, and the minimal isotropy subgroup, I/, of the I'; action on Vr(f ) are
computed by GAP. Thus, I'; =T' 2 ¥ > I'". Branches with ¥ symmetry, listed after
the arrow, are known to bifurcate in a gradient system such as ours. The minimal
isotropy subgroup, I, is listed if it is not the same as X. The symmetry group of
the bifurcation, I'/T", is listed if it is not Zg. If ¥ # I, the symmetry of the PDE
restricted to Fix(X), namely Np(X)/%, is listed. The pitchfork bifurcations, with
symmetry group I'/T” = Zs have a one-dimensional critical eigenspace. The others,
for which I'/T" is listed, have dim(E) = 2, indicating that the Morse Index of the
base solution changes by 2 at the bifurcation. Most of the bifurcating solutions
have dim(Fixg(X)) = 1, indicating that the EBL holds, and it is easy to follow
the bifurcating branch by choosing a perturbation with a critical eigenvector with
isotropy X. Table 4 indicates the bifurcations where dim(Fixg(X)) = 2. In these
cases no critical eigenvector has more symmetry that the others, and the EBL does
not hold. Nevertheless, in gradient systems solution branches with the maximal

bifTablea 1SOtrOpy 2 are created at the bifurcation.
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FQ - <p2,0'> — F21 F15 (F’ = F22)
Fix(Ty) =V o v® | v gov®) Vo) @ V6

INTES <ﬂ2,7'> — I I'6 (F, = P22)
Fix(T'1) = VW av® | v@ gv® V) @ v©)

Fll = <p2, —’T> — F21 F17 (F’ = F22)
Fix(T1) =V g V@ | VW) oV V©) g v
Fix(l'12) =V® avV@ | v gy O Ve gy ®)

o /T =Dy
r~D
’ Ne(E)/2 2 (1)
Ti3 = (P) Lo T'1g Ty
FIX(F13) V @ V( ) V(3) D V(4) V(5) V(G)
[y =(-p) = Loy a0 Ty
Fix(I'y) =V@Wav® | v@ gv® 0 a0
I'=2s Ne(D)/S=Z; | No(E)/S=Z
dimFixp(X) =2 | dimFixg(2) = 2
I35 = (o) — Too
Fix(T15) =V o VB @ Vl( ) @ V1(6) RO ) V2(6) © V2(5)
I = (1) = Too
Fix(Te) = VO o V@ o VO 0 v | v® 0 V@ 6 v g V¥
[z =(-7) = Too
Fix(Ty7) = VO a V@ e V¥ 0 V¥ | vO g v® g v g V¥
Ig=(—0)— Ty
FiX(Flg) = V(4) o) V(Q) D ‘/'2(6) ® ‘/'2(5) V(l) @ V(3) ® V1(5) ® Vl(ﬁ)
I'=7Z
Tig = (p°) = Too
Fix(T'19) = VD o V@ o VO | VO g v g VO
Ty = (—p°) = Ty
Fix(Te) = VW a V@ g vO | v@ g v g v
=7,
Ly = (p°) = T
Fix(To) = VW o V@ gvWev@ |  vE gy®
T/ = 7,
I'=2s Nr(3)/5 = Zs

dim Fixp(3) = 2

TABLE 4. Continuation of Table 3.
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compute the MI. Here, too, we can take advantage of the symmetry. Since h is a Y-equivariant
operator, hj;, = 0 if 9; and 1) are in different subspaces of the decomposition into A invariant

spaces Vj(z) of the ¥ action on U. In other words, the Hessian is block diagonal in the isotypic
decomposition of the X action on U.

For example, the symmetry type ¥ = Dg € S; has My = 30 when M = 300. When all of the
90300 numerical integrations were done it took about 44 seconds to do one iteration of Newton’s
method. With the symmetry improvements it takes about 1.5 seconds per Newton iteration, and
then about 11 seconds to compute the full Hessian and the Morse index.

6. AUTOMATED BRANCH FOLLOWING AND SYMMETRY.

The branch following code is a complex collection of about a dozen Perl scripts, Mathematica and
Gnuplot scripts and a C++ program. These programs write and call each other fully automatically
and communicate through output files, pipes and command line arguments. A complete bifurcation
diagram can be produced by a single call to the main Perl script.

The C++ program implements the GNGA algorithm. Its input is a vector of coefficients a € RM
for an initial guess in Newton’s method, an interval for X\, a stepsize for A and several other
parameters such as the level and the number of modes used in the expansion of solutions. It finds
solutions on a single branch of the bifurcation diagram. Every solution is written as a single line
in an output file. This line contains all the information about the solution such as the level, the
number of modes, the symmetry of the solution, the stepsize, etc. Each line in the output file can
be used to write an input file for a later call to the C++ program.

The C++ program has a main branch that it finds at a starting A using the supplied coeflicients
as a guess for Newton’s method. It attempts to follow this branch all the way to the final A, usually
0. Heuristics are used to double or halve the A stepsize when needed, keeping the stepsize in the
interval from the initial stepsize (input to the C++ program) to the initial stepsize over 32. For
example, the stepsize is halved if Newton’s method does not converge, if it converges to a solution
with the wrong symmetry, or if more than one bifurcation is detected in one A step.

The Morse index is computed at each A value on the main branch. When the MI changes a
subroutine is called to handle the bifurcation before the main branch is continued. If the MI
changes from m; to mg, we define m = max{m;,my}. Then the bifurcation point is approximated
by using the secant method to set the m-th eigenvalue of the Hessian h(u) to zero as a function of
A. The GNGA is needed at each step of the secant method to compute u = u(A). We find that the
GNGA works well even though we are approximating a solution for which the Hessian is singular.

I’'m not sure I improved over the old version

At a Morse index change the code adjusts the A\ stepsize to determine the number of bifurcation
points stepped over. For each bifurcation point, the secant method is applied to find the value of
A making the appropriate near zero eigenvalues of the Hessian critical within tolerance; Newton’s
method is used at each secant iteration to get a new approximation of the bifurcation point and
calculate the new near critical eigenvalues.

After the bifurcation point is approximated, a short segment of each bifurcating branch is com-
puted and one output file is written for each branch. If the Equivariant Branching Lemma (EBL)
holds then we know exactly which critical eigenvector to use for each branch. Let the Fourier
coefficients of the solution at the bifurcation point be a*, let the normalized critical eigenvector be
e € RM  and let k be defined by |ex| > |e;| for all i. We then use the pmGNGA with the initial guess
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a = a* +te, keeping the k-th component fixed and solving for A and the other M — 1 components of
a. We start with ¢t = 0.1, but this is decreased if Newton’s method does not converge. More points
on the bifurcating branch are computed in the same way, except that a* is the last solution found
on the branch. This short segment of the bifurcating branch ends when A reaches the bifurcation
value A* minus the stepsize, or when the pmGNGA does not converge even when t is extremely
small, or when a maximum number of points on the branch is computed.

Algorithm 6.1. (follow_branch)

(1) Input: bifurcation point (\,a), one
critical eigenvector e € RM and a stepsize AX < 0. The subroutine writes
a file with the first part of a bifurcating branch.

(2) Write (A, a) to output file. Set t=0.1. Set A, = A.

(3) Compute index k so that |ex| > |e;| for all i€ {1,...,M}.

(4) Repeat until Ay — A < AX, or t < 0.1/32 or some maximum number of points have
been written to the file.
(a) Do the pmGNGA with initial guess (\,a+te), fixing coefficient k.
(b) If Newton’s method converges replace (\,a) by the solution found and

write this point to the file, else t <« t/2

Note that the pmGNGA can follow a branch that bifurcates to the right or the left. Those
that bifurcate to the right usually turn over in a saddle-node “bifurcation” that does not offer any
difficulty for the pmGNGA. Some numerical methods use a Liapunov-Schmidt reduction, but our
method does not need to do this.

In the bifurcations with Zgz and Zg symmetry in our problem, the EBL does not hold: The
2-dimensional critical eigenspace does not have a one-dimensional subspace with more symmetry.
We handled this case with some heuristics. We plan to extend our code to problems with arbitrary
(finite) symmetry groups. In the general code we will check for bifurcating solutions that are not
predicted by the EBL by applying the pmGNGA with random (normalized) critical eigenvectors
repeatedly until it appears that all equivalence classes of solutions have been found.

The branch following code is called recursively by a main Perl script. Initially the C++ program
follows the trivial branch on a given X range. This results in an output file for the trivial branch
and another output file for each bifurcating primary branch. Then the short parts of the primary
branches are followed with more calls to the C++ program. Any bifurcating branch results in
a new output file, and the Perl script makes another call to the C++ program to continue that
branch. The main Perl script’s most important job is book keeping. It saves the output files with
distinct names, and calls the branch following code to continue each of the new branches. The
process stops when all the branches are fully followed.

In this way, a complete bifurcation diagram is produced by a single invocation of the main Perl
script. There is no need to guess initial conditions for input to Newton’s method, since the trivial
solution is known exactly (a = 0) and all the other solutions are followed automatically.

The main Perl script calls several other smaller scripts. For example, there is a script which
extracts solutions from output files and feeds them to the branch following code as input. Another
script creates Gnuplot scripts on the fly to generate bifurcation diagrams. Branch following results
in a great number of output files. The organization is an important task. Perl scripts are used to
automatically number and store the output files and create human readable reports about them.
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FIGURE 7. The complete bifurcation diagram for the first six primary branches
bifurcating from the trivial branch. Primary branch j is labeled by the eigenvalue A;
at which it bifurcates. The j-th primary branch has MI j near the bifurcation. The
second branch, with symmetry S7, contains the CCN solution. The dots at A =0
in Figures 7-10 correspond to solutions depicted in Figures 11 and 12. We used
the level 5 grid with 300 modes in creating all bifurcation diagrams. In Figure 15
convergence data for the solution of symmetry type Sig at A = 0 is provided. bif1-6

7. NUMERICAL RESULTS.

Our goal was to find solutions to (1.1) at A = 0 with all 23 symmetry types. The 24-th branch is
the first one with symmetry type Ss, so we followed the first 24 primary branches. With level £ = 5
and M = 300 modes, which gave our most accurate results, this found solutions with all symmetry
types except S11 and S14. We then searched the first 100 primary branches, only following solutions
with symmetry above S1; and Si4 on the bifurcation digraph (Figure 2.) In this way we found
solutions with all 23 symmetry types. The bifurcation diagrams which lead to these solutions are
shown in Figures 7-10. We chose one solution at A = 0 with each symmetry type by taking the one
descended from the lowest primary branch. These choices are indicated by dots in Figures 7-10,
and the corresponding contour diagrams of the solutions are shown in Figures 11 and 12. The
contour diagrams use white for 4 > 0 and black for v < 0, and gray indicates u = 0. Equally
spaced contours are drawn along with dots for local extrema. Details about these contour diagrams
are found in [20].

At level £ = 5 we have computed 300 eigenfunctions so M < 300 is possible. At level £ = 6 we
computed only 100 eigenfunctions. Due to our limited computational resources, using more than 100
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FIGURE 8. A partial bifurcation diagram showing some of the solutions bifurcating
from the 9-th and 10-th primary branches. Again, the dots at A = 0 indicate
solutions shown in Figures 11 and 12. bifB

modes on level 6 was not practical. We ran a small subset of our experiments using a range of modes
and levels in order to observe convergence and qualitative stability of the implementation of our
algorithm. In Figure 13 we fix £ = 5 and plot the sixth branch for M € {100,200, 300}. In Figure 14
we fix M = 100 and plot the same branch for £ € {4,5,6}. By definition, this branch bifurcates
from the trivial solution at Ag. Since our approximation to this eigenvalue depends on the level,
it is expected that the approximate branches emanate from the same point in Figure 13, but from
slightly different points in Figure 14. Also note that in Figure 14 the level 5 and 6 approximations
are virtually indistinguishable. This indicates that with the results with (¢, M) = (5,300) are more
accurate than those with (6,100). Based on this and other similar convergence results, we chose
to use level 5 with 300 modes in most of our numerical experiments. With these parameters, each
step of Newton’s method took from 1.5 to 44 seconds, depending on the symmetry of the solution.

In Figure 15 we present a visualization of the joint effects of the number modes and grid points
on the approximation of the solution with S19p symmetry on the this sixth branch at A = 0. The
horizontal segments of the graphs correspond to the addition of modes with zero coeflicients for this
solution. Notice that the level 4 graph crosses the levels 5 and 6 graphs between modes 50 and 51,
and back again between modes 51 and 52. In fact, on level 4 the eigenfunction corresponding to As;
has symmetry type S1 while on levels 5 and 6 this eigenfunction has symmetry type Ss. Similarly,
the symmetry type of the eigenfunction corresponding to As2 switches from Sy to S; when the level
is increased from 4 to 5.
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FIGURE 9. A partial bifurcation diagram providing three additional symmetry
types. For clarity, the trivial branch is not shown in this and the next figure.

8. MPA

We first briefly summarize the results from [2] and [4], and then prove the existence of several
solutions to our specific problem via mountain pass type arguments. Of interest to those seeking
to prove the existence of still more solutions, we also observe the existence numerically of other
solutions using mountain pass type algorithims.

Let W be the well-studied Nehari manifold W = {u # 0 : J'(u)(u) = 0}, and W7 be its sub-
set {u € W :uy,u_ € W} (where uy(z) = max{u(z),0} and u_— = min{u(z),0}). In [1], and
later in [2], the mountain pass theorem was applied to the functional J for a class of superlin-
ear/subcritical nonlinearites f to obtain the existence of a pair of one-sign solutions, positive and
negative respectively. These solutions can be characterized as global and/or local minima of J|y .
In [5], and later in [17], the mountain pass algorithm (MPA) was developed. The algorithm follows
the corresponding constructive existence proof and finds these solutions numerically by performing
(Sobolev) gradient descent constrained to W. In [2] the existence of a sign-changing solution to
the same class of superlinear /subcritical problems was found by minimizing Jyy,. Again in [17], the
MPA was extended to find this sign-changing solution. Essentially, ray projections of the positive
and negative parts are used to gain membership to Wi, whereby again steepest descent is used. In
[4], this method was termed the “modified mountain pass algorithm” (MMPA). In that work, both
the sign-changing existence proof from [2] and the MMPA were extended to find solutions with
symmetry on symmetric domains.

bifC
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FIGURE 10. A partial bifurcation diagram containing solutions of the seven remain-
ing symmetry types. Primary branch 24 is the first branch with symmetry type Ss.
The symmetry types Si4 and S1; were found by searching the first one hundred
primary branches, following only those branches which can lead to solutions with
the desired symmetry. These two solutions are included for completeness, but their
existence for the PDE would have to be confirmed with more modes and a higher
level approximation of the eigenfunctions. bifD

Specifically, the existence theorem in [4] assumes that there is a unitary representation {T'(k) }rec
of a compact topological group G, that the corresponding fixed point subspace Fix(G) is nontrivial
and closed by the taking of positive and negative parts, and that J is invariant under the repre-
sentation: J(T'(k)u) = J(u) for all w € H and k € G. As a result, it is shown that there exists a
sign-changing solution in y = Fix(G).

Several facts are clear. One, the finite dimensional group-theoretic vector results in the present
paper as applied to the grid certainly translate to the inifinite dimensional function setting. That
is to say, each of our 21 nontrival symmetry types provides such a setting. Secondly, the averaging
used in the MMPA in [4] to gain membership to the invariant subspace Fix(G) is a specific appli-
cation of our theoretical projection techniques; Our eigenfunction decompostion and corresponding
symmetry analysis makes this process now particularly easy. Also, the proof can be easily adpated
to the (unmodified) mountain pass setting; while originally used to obtain one-sign solutions, if a
given isotropy group inherently implies that the invariant space contains sign-changing elements
then minimization of J|ynw will yield sign-changing solutions.
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FiGUure 11. The action of the generators of Dy on the plane, along with contour

plots of solutions with symmetry types Sg,...,S1p at A =0.
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FIGURE 12. Contour plots of solutions with symmetry types Si2,...,S22 at A = 0.
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FiGURE 13. The sixth branch from Figure 7 plotted for level £ = 5, M €
{100, 200, 300} modes. bifliml

When minimizing J|ynw or J|ynw;, it may be that the solution obtained is the same one as
another for a different invariant subspace further down the lattice corresponding to an isotropy
subgroup of the isotropy subgroup for y. Hence, for our region and an odd nonlinearity f such
as the one used in our experiments, we can only prove that there exists a positive and negative
solution of symmetry type Si, and pairs (+) of sign-changing solutions of symmetry types Si,
So, S3, and S;. The MI 1 one-sign solutions can be approximated by using the MPA on J|sny
for x = Fix({p,0)). The sign-changing solutions correpsonding to that symmetry use the MMPA
on J|sny. For symmetry types Sy, S3, and Sy there is no difference between applying the MPA
and the MMPA, since members of the correpsonding invariant spaces are necessarily sign-changing
anyway. Beyond these 10 nontrivial solutions, we cannot prove the existence of more solutions with
symmetry using solely this technique. It seems that there should be a higher MI modification of
the MMPA that uses positive and negative parts of u restricted to sectors of €2, but we have not yet
investigated this idea. Experimentally, we did obtain more sign-changing solutions with symmetry
by applying the MPA and MMPA to each of the 21 invariant subspaces, although we did indeed
frequently find redundant solutions when working in spaces lower in the lattice. In Table 8 we show
the results of applying the MPA and MMPA to each of the subspaces; approximate solutions so
obtained were fed into the GNGA in order to verify correctness and more importantly, to compute
the MI. All included experiments were for A = f'(0) = 0, where the manifold W is nondegenerate.
Necessarily, when the group involves negation or the MMPA is used, the solution is sign-changing;



ar

cdn2

cdn

cm
GAP
vol2

26 JOHN M. NEUBERGER, NANDOR SIEBEN, AND JAMES W. SWIFT

H 14
4 12

= - 10

Al

&

o - 8

N~

(V]

&

1 6
- 4
42

0 50 100 150 200

A

FIGURE 14. The sixth branch from Figure 7 plotted for levels £ € {4,5,6}, M = 100 modes. bif1in2

for groups without negation where the MPA is used, only the (apparently unique) positive and
negative one-sign solutions of MI 1 and symmetry type Sz were found. The MI 2 sign-changing
solutions of symmetry type Sg are the “CCN” solutions from [2]; The MI 8 sign-changing solutions
of symmetry type So are the “radially symmetric” ones discussed in [4].

9. CONCLUSIONS.
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mpa

| S| group | possible modes | MPA/MI | MMPA /MI |
| 1 || Dg x Zy | none | NA | NA |
2 {p, o) 1,6,.. So/MI 1] Sy/MI 8
31 (p,—0) 24,37... S3/MI 17 | S3/MI 17
4 (=p,0) 7,14,.. Sy /MI7 | Sy/MIT7
5 | (—p,—0) 10,25,.. Ss/MI 10 | S5/MI 10
6 (o,7) 1,6,..,4,11,.. So/MI1 [ Sg/MI 4
7 | (—o,—7) 24,37,..,5,12,.. S;/MIL5 | S;/MI 5
8 [ (o,—17) 7,14,..2.8,.. Sg/MI 2 | Sg/MI 2
9 [ (—o,7) 10,25,..3,9... So/MI 3 | So/MI 3
10 (p) 1,6,..,24,37,.. So/MI1 [ Sy/MI 8
11| (p?,0) 1,6,..,7,14,.. Se/MI1 | S11/MI 6
12 (% 7) 1,6,..,10,25,.. So/MI1 | S19/MI 7
13| (p% —71) 7,14,..,24,37,.. Sy/MILT | Sy/MI7
14 | {p%, —0o) 10,25,..,24,37,.. S5/MI 10 | S5/MI 10
15 (-p) 7,14,..,10,25,.. Sy /MI7 | Sy/MIT
(16 (v [1,6,.,24,37,..,7,14,,10,25,.. | So/MI1 [ S;;/MI6 |
17 (%) 1,6,..,24,37,..,4,11,...5,12,.. | So/MI1 | Si7/MI 4
18 (o) 1,6,..,7,14,..,..,4,11,..2.8,.. | So/MI 1 | Sg/MI 2
19 (1) 1,6,..,10,25,..,4,11,...3,9,.. | So/MI 1 | So/MI 3
20 (—7) 24,37,..,7,14,...,512,...28,.. | Sg/MI 2 | Sg/MI 2
21 (—o) |24,37,..,10,25,..,5,12,..,3,9,.. | So/MI 3 | So/MI 3
22 (=p%) 7,14,..,10,25,..,2,8,...3,9.. | Sg/MI 2 | Sg/MI 2
23] (1) | all | So/MI1 | Sg/MI2 |
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