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Abstract. In a recent result (See Castro-Cossio-Neuberger [2]), it was
shown via a variational argument that a class of superlinear elliptic
boundary value problems has at least three nontrivial solutions, a pair
of one sign and one which sign changes exactly once. These three and
all other nontrivial solutions are saddle points of an action functional,
and are characterized as local minima of that functional restricted to
a codimension one submanifold of the Hilbert space Hé’z(Q) or appro-
priate higher codimension subsets of that manifold.

In this paper we present a numerical Sobolev steepest descent algo-
rithm (see [10], [11], and [12]) for finding these three solutions. Of pri-
mary interest is the method of projecting iterates of elementsin Hé’z(Q)
onto the submanifold and its subsets. When applied to the ordinary
differential equation, the algorithm is extended to find additional solu-
tions possessing a greater number of internal zeroes, and in that case
the solutions are compared to independent numerical calculations ob-
tained by Euler’s method. We further test the algorithm on partial
differential equations on the unit square. With or without a symmet-
ric nonlinearity, numerical computations for PDEs on the square yield
four exactly-once sign-changing solutions of Morse Indez 2 and supply
evidence that suggests that there may exist four more of MI 3.
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1 Introduction

In this section we define our elliptic PDE, define the action functional
whose critical points are the solutions we seek, and state the main ex-
istence result from [2]. In Section 2 we briefly summarize the method
of proof in that work. The algorithm presented in Section 3 is based on
the proof of that result, where the primary innovation lies in a projec-
tion of sign-changing functions onto a special subset of a codimension 1
submanifold of Hy?(). In Sections 4 and 5 we present numerical data
for several examples. Section 6 contains a summary of interesting phe-
nomena observed in our experiments and outlines several conjectures
and future research projects.

Let Q be a smooth bounded region in R¥, A the Laplacian operator,
and f € CYR,R) such that f(0) = 0. We seek solutions to the

boundary value problem

Au+ f(u)=0 inQ
{ u =0 1in 0N. (1)

We assume that there exist constants 4 > 0 and p € (1, %) such that

|f'(uw)] < A(JulP~ + 1) for all w € R. It follows that f is subcritical,
i.e., there exists B > 0 such that |f(u)| < B(|u[f+1). Also, we assume
that there exists m € (0,1) such that

5w > F(u), (2)

where F(u) = [5' f(s)ds, for all w € R. A vital assumption that we
make is that f is superlinear, i.e.,

lim M

|u|—>oo u

= o0. (3)
Finally, we make the assumption that f satisfies

fl(u) > @ for u # 0. (4)

Let H be the Sobolev space Hé’z(Q), in which case the zero Dirichlet
conditions allow the inner product (u,v) = [oVu - Vvdz (see [1], [6],
or [10]). We define the action functional J : H — R by

J(u) = /Q{%|Vu|2 ~ F(u)} de.



One easily sees that critical points of J are weak solutions to (1). In
fact, by regularity theory for elliptic boundary value problems (see [6]),
u is a solution (classical) to (1) if and only if u is a critical point of the
action functional J.

Let 0 < A1 < Ay < A3 < --- be the eigenvalues of —A with zero

Dirichlet boundary condition in Q. The following result is proved in
[2]:
Theorem 1.1 If f/(0) < A1, then (1) has at least three nontrivial so-
lutions: wy > 0 1n Q, wy < 0 1n Q, and wz. The function ws changes
sign ezactly once in (1, i.e., (w3) (R —{0}) has ezactly two connected
components. If nondegenerate, the one-sign solutions are Morse index
1 critical points of J, and the sign-changing solution has Morse index
2. Furthermore,

J(w3) > J(w1) + J(w2).

To the best of our knowledge, the above theorem is the first to establish
the existence of a sign-changing solution to (1). We note that if f'(0) >
A1, then by multiplying (1) by an eigenfunction corresponding to A;
and integrating by parts, it is easily seen that (1) does not have one-
signed solutions. We conjecture that a pair of sign-changing exactly-
once solutions exist provided that f'(0) < Ay. This is known to be true
for the ODE and was numerically observed in one of our experiments
for a specific PDE. We will use the terminology “1-Hump” function to
refer to functions with no internal zeroes, “2-Hump” for exactly-once
sign-changing functions with exactly one connected internal zero set,
and so on.

2 Variational characterization

In this section we include some definitions and theorems from [2]. Our
assumptions on f imply that J € C?*(H,R) (see [13]), and that

J'(w)(w) = (VJI(u),v) = /Q {(Vu- Vo — f(up)}dz, forallve H. (5)
Define v : H — R by v(u) = (VJ(u),u) = [o{|Vu|* — uf(u)} dz, and

compute

Y(u)(v) = (Vy(u),v)

= 2[qVu-Vvdz — [of(u)vdz — [of (vw)uv dz.

(6)



Definition 2.1 For v € L'(Q), we define uy(z) = max{u(z),0} €
L'(Q) and u_(z) = min{u(z),0} € L*(Q). Ifu € H then uy,u_ € H
(see [5]). We say that u € L'(Q) changes sign if uy # 0 and u_ # 0.
For uw # 0 we say that u is positive (and write w > 0) if u_ = 0, and
similarly, u is negative (u < 0) if uy = 0.

Lemma 2.2 The function h: H — H defined by h(u) = uy is contin-
uous. Also, h defines a continuous function from LPY1(Q) into itself.

The two most important subsets of H defined in [2] are

S = {ue H-{0}:v(u)=0}

S1 = {ueS: up #£0,u_ #0,y(uy) =0},

where we note that nontrivial solutions to (1) are in S (a closed subset
of H) and sign-changing solutions are in S; (a closed subset of 5).

Lemma 2.3 Under the above assumptions we have:

(a) 0 is a local minimum of J. If u € H — {0}, then there ezists a
unique A = A(u) € (0,00) such that Au € S. Moreover, J(du) =
maxyso J(Au) > 0.

(b) The function A € C*(5§%,(0,00)). The set S is closed, unbounded,
and a connected C'— submanifold of H diffeomorphic to S*.

(c) uw € S is a critical point of J iff u is a critical point of J|s.

(d) J|s is coercive, i.e., J(u) — oo as ||u|]| > o0 in S. Also, 0 ¢ S
and infg J > 0.

Lemma 2.4 Given w € S which changes sign, there exists a path r €

C([0,1], S) such that

(a) 7(0) = awy € S for some a >0, r(l)=>bw_ € S for some
b>0, andr(i;)=w.

() r(3) =aw; +bw_ € 51 and r([0,1]) N S1 = {r(3)}.

(c) J(r(0)) < J(r(t)) < J(r(3)) for t € (0,3) and J(r(1)) <
J(r(t)) < J(r(3)) for t € (5,1).



From (2.3) one sees that there exists o € C'(H — {0}, (0, 00)) so that
r(t) = at)(a(l — t)wy + btw_) € S. ()

This path satisfies the above conditions and is essential to the proof of
the following lemma.

Lemma 2.5 (a) Positive and negative elements of S are separated

b’y Sl.

(b) Ifwe S, w>0 and J(w) = mingues.usop J, then w is a critical
point of J.

The proof of the following sign-changing lemma relies on an application
of the Deformation Lemma to the path in (7).

Lemma 2.6 Ifw € S and J(w) = ming, J, then w is a critical point

of J.

Sketch of proof of Theorem 1.1.

Using the Sobolev Imbedding Theorem, the coercivity of J, and prop-
erties of 7, one can show that the minimizers of J from Lemma 2.5 (b)
and Lemma 2.6 exist, and hence the solutions w; > 0, wy < 0, and w3
(sign-changing) of Theorem 1.1 exist. Furthermore, since ws is a clas-
sical solution and hence continuous, one can show that wz changes sign
exactly once. Loosely speaking, a solution with three or more humps
must have an action functional value higher than that of ws, since each
hump (or rather its zero extension to all of ) would itself be on S. We
observe that

J(ws) = J((ws)1) + J((ws)-) > J(wr) + J(w2),

where we have used the fact that w; and w, are minimizers of J over the
positive and respectively the negative elements of S. In the case that
our critical points are nondegenerate, the Morse index of our three
solutions follows naturally from their variational characterization as
local minima on S and S, respectively.

3 Numerical algorithm

The algorithms presented in this section depend on choice of grid, dif-
ferentiation, and integration methods. For purposes of simplicity and



since we consider only simple regions (), we use a regular grid, central
differencing, and standard rectangular integration schemes. One ex-
pects that increased accuracy and efficiency would be gained by using
more sophisticated methods; the descent method should similarly bene-
fit from such refinements as the conjugate gradient method or optimal-
step-size calculation (see [10], [11], [12]).

Given a nonzero element v € H and a piece-wise smooth region
Q C RY, we will use the notation u to represent an array of real
numbers agreeing with u on a grid € C Q. In our experiment, we
will take the grid to be regular, but it is clear that irregular grids with
finer meshes near large gradient locations would increase accuracy and
efficiency. Also, more sophisticated grid techniques will be necessary to
investigate solutions when {2 is itself more complicated than an interval
or a square.

At each step of our iterative process, we are required to project
nonzero elements of H onto the submanifold §. By Lemma 2.3, we see
that the projection of VJ(u) onto the ray { u: A > 0} is given by

O REON

(u, ) [lul]>

Thus, the sign of y(u) determines the uphill direction, which suggests
the following one-dimensional gradient ascent method:

Algorithm 3.1 Let u be a nonzero element of H, represented by u
over the grid Q. Let s; = .5, or another perhaps optimally determined
small positive constant. Define ug = u and

u
Upy1 = Ui + 81 il k)zllk for k> 0.
|||
We will use the notation Pi(u) = limuy, provided that limit exists, to
represent the unique positive multiple of u lying on S (See Lemma 2.3

a)).

In all of our numerical experiments, this process converged numerically,
provided only that the hypothesis to Theorem 1.1 was satisfied and that
ug was “reasonable” or s; was sufficiently small.

Remark 3.2 The map u — uy s effected on u by a simple grid loop
and conditional test. A more sophisticated handling of internal zero



points may lead to increased accuracy and efficiency, as differencing
schemes tend to be sensitive to approzimation. Using the well-ordered
property of the real numbers, in the ODE case we can extend the notion
of a positive and negative part to parsing sign-changing functions with
more internal zeroes to three (or more) “hump” functions.

Algorithm 3.3 Let u be a sign-changing element of H, represented
by u over the grid Q. By applying Algorithm 3.1 to the arrays uy
and u_ representing u; and u_, we define the resulting sum Py(u) =
Pi(uy)+Pi(u_). This array represents the element of S; corresponding
tor(3) (7).

The standard L? gradient is definitely not the gradient we are con-
sidering. It is of paramount importance that we use the Sobolev gradi-
ent (see [10], [11], and [12]), which in our case can be written down in
closed form after integrating by parts:

(VI(w),v) = J)(v) = fo{(Vu- Vo - f(u)v)}do
= Jof(Vu- Vo — (—A)(~A)(f(w))} do
= Jof(Vu- Vo + V(-A)(f(w)) - Vo)} do

= (u—(=A)"(f(w)),v).

Algorithm 3.4 Let u be an element of H, represented by u over the
grid Q. Then solving the linear system —Ag = f(u) for g allows one

(8)

to ezplicitly construct the array VJ(u) = u — g, representing VJ(u).

In order to solve this system, we used Gaussian-Elimination for the
ODE (N=1), and Gauss-Sidel with successive overrelaxation (SOR, w =
1.73) for the PDE (see [9]).

Remark 3.5 At one time this author projected Sobolev gradients V J(u)
onto tangent spaces T, S, thinking this necessary in order to keep iter-
ates “near” the surface S. This turns out not to be necessary (although
not particularly harmful), since projections of iterates uy onto S by Py
or P, after each gradient step effectively performs this operation.



Algorithm 3.6 Let u be an element of H, represented by u over the
grid . Let s, = 1 or another perhaps optimally determined small
positive constant. Define ug = u and

Ug41 = Pl(llk — SgVJ(llk)) fO’f‘ k Z 0,

where VJ(uy) is computed from Algorithm 3.4. The limit of this itera-
tive process, provided it exists, represents a positive solution to (1).

Algorithm 3.7 Let u be a sign-changing element of H, represented by
u over the grid ). Let s, = 1 or another perhaps optimally determined
small positive constant. Define ug = u and

Ug41 = Pg(llk — SgVJ(llk)) fO’f‘ k Z 0.

The limit of this iterative process, provided it exists, represents a sign-
changing solution to (1).

In all of our numerical experiments the iterative processes of Algorithms
3.6 and 3.7 converged numerically, provided only that the hypothesis
to Theorem 1.1 was satisfied, uo was “reasonable” or s; was sufficiently
small, and s, was sufficiently small. If there exists more than one
sign-changing solution of Morse Index 2, the Algorithm 3.7 should find
them provided the initial estimate ug is “reasonably close”, i.e., of
approximately the correct nodal structure.

4 Numerical results: the ODE

Let A =1, f(u) = v® + du, and Q = [0,1]. We numerically computed
1-hump, 2-hump, and 3-hump (i.e., solutions with 0, 1, and respectively
3 internal zeroes) solutions via our algorithm and compared the results
with independent Euler method calculations.

The data below used the first three eigenfunctions of —u"” = Au as
initial guesses. In Section 6 we note that it in fact suffices to use any
initial function with the correct nodal structure. As the well known
bifurcation diagram in this ODE case indicates, additional numerical
experiments verified that one does in fact get sign-changing solutions
for A > % = );, and solutions which change sign exactly once for
472 = Xy > XA > w2 = ). Additionally, using the eigenfunctions



Table I: Convergence data for the ODE.

grid its | [[VJ(uw)||lgz | J(u) | seconds
n = 5000 7 | 3.67-10°° 12.66 21
n=5000 | 40 | 2.53-107° | 239.68 220
n =40000 | 151 | 2.73-10"* | 1248.11 | 10117

N | O

Table IT: Approximations of solutions to the ODE.

‘ # places gives agreement with Euler’s Method ‘

Nl 3 D T 9
0.93583 | 2.67632 | 3.50717 | 2.67631 | 0.93581
3.82151 | 6.83475 | 0.0000 | -6.83475 | -3.82152
8.3832 | 2.9041 | -11.0588 | 2.9042 8.3830

—sin(jmz), 5 = 1,2,3 for initial estimates lead to numerical solutions
which were the negative of those in Table II. Care was needed when
switching the 3-hump code from expecting 2 positive humps to 2 neg-
ative ones. Satisfactory runs were also made which in the obvious way
lead to solutions with still more internal zeroes. As one would expect,
however, due to increasing values of ||VJ(u)|| accuracy and efficiency
were increasingly hard to maintain. Finally, all experiments were re-
peated with asymmetric nonlinearities which still satisfied the hypoth-
esis in Section 1. In all cases, the well known bifurcation diagram was
reproduced. As expected, increasing the number of divisions of the
unit interval lead to behavior which more accurately approximated the
continuous case. Stability was confirmed by allowing the program to
execute for many hours past apparent convergence.

5 Numerical results: the PDE

Let A = 9, f(u) = v® 4 du, and Q = [0,1] x [0,1]. Using initial
functions ug = +v = +sin(wz)sin(7ry), we numerically computed a
positive and a negative solution. Using initial functions of the form ug =



+y! = +sin(27z)sin(ny), uo = +y* = +sin(nz)sin(27ry), and linear
combinations ug = ay' + By?, our sign-changing algorithm converged
numerically to one of four exactly-once sign-changing solutions.

In Tables IIT - V we present a subset of the grid values for the
positive (j = 0) and one of the four sign-changing solutions (j = 1), to-
gether with some convergence data. The initial functions used for these
two experiments were uo = sin(7z)sin(7y) and ug = sin(27z) sin(7wy) +
sin(mz) sin(27y), respectively.

As in the ODE case, the exact choice of initial estimate up was
not crucial as long as the nodal structure was roughly close to that of
the desired sign-changing solution. There was a surprise in the nodal
structure of our sign-changing solutions.

Namely, regardless of which of the above initial estimates (sign-changing)
were used, our solutions were diagonally antisymmetric, i.e., of the same
nodal structure as +(y* &+ y?).

Table I11: Convergence data for the PDE.

grid | its | |[VJ(w)||z2 | ||Aw + f(w)||zz | J(u) | seconds
0| n=50 |7 | 5.01-1073 1.09-1071 12.00 119
n=100| 7 | 7.18-107* 3.21 -1072 11.97 1173
1| n=>50 13| 1.49-1072 8.72 - 1071 149.49 743
n=100 |13 | 1.51-1073 9.59 - 1072 148.78 | 3653

—.

Table IV: Approximation of the positive solution to the PDE,
n = 100.

Nl 3 D T 9
0.3229 | 0.8958 | 1.1490 | 0.8959 | 0.3229
0.8958 | 2.5915 | 3.4243 | 2.5917 | 0.8960
1.1490 | 3.4243 | 4.6284 | 3.4246 | 1.1491
0.8959 | 2.5917 | 3.4246 | 2.5919 | 0.8961
0.3229 | 0.8960 | 1.1491 | 0.8961 | 0.3230

o] | | Lo

Initial guesses of the form 4y' and +y? appeared to lead to con-
vergence to similar horizontally and vertically antisymmetric functions,



only to “fall oft” to the diagonally antisymmetric solutions. The four
solutions with diagonal antisymmetry are of Morse index 2 and true
minimizers of J over S;. We conjecture that the four unstable “almost
convergent” horizontally and vertically antisymmetric functions are in
fact Morse index 3 solutions (See Section 6). It is important to note
that oddness plays no essential role in these experiments. Similar re-
sults followed for a variety of asymmetric nonlinearities, although in
those cases the interior zero set was slightly curved so that the sign-
changing solution was no longer diagonally antisymmetric. As in the
ODE experiments, stability was confirmed by allowing the program to
execute for many hours past apparent convergence, particularly in light
of the appearance of the four almost convergent functions mentioned
above.

6 Conclusions

A number of conjectures concerning improvements or special cases of
Theorem 1.1 can be investigated with code operating on the principals
of Section 3. In this section we describe various experiments in which
we seek to better understand the variational characterization of the
solutions to (1).

As long as the initial guess function u, is “nodally correct”, i.e.
has roughly the same zero set structure as the desired sign changing
solution, the process converges to said expected solution even when the
initial estimate is quite far off under the H norm. For example, when
2 = [0,1], the initial estimate functions sin(27z) + sin(207z)/100 and
z(z—.2)(z—1) both result in satisfactory convergence. Experimentally,
one observes the “small support equals large sup-norm” phenomenon
in the latter example. In fact, in this case it is initially necessary to
dampen the process by reducing the step size, since for the first few
iterations the gradient is large for z € (0, .2).

It is important to note that we do not know whether S; is a true
submanifold of S. Were vy o h to be continuously differentiable, this
would be so. In fact, in that case 7,57 could be defined as {v € T,S :
v L Vy(us)}. Using Mathematica to render 3 dimensional graphics, we
are gaining insight into the structure of S and S; by using Algorithm
3.1 to intersect linear subspaces spanned by trios of eigenfunctions or
solutions with S. These images lend credibility to the conjecture that



there should be a second exactly-once sign changing solution, roughly
corresponding to —ws, whether or not f is odd. As far as the general
shape of such “peanut” shaped objects, oddness does not appear to be
a special property. Properties such as asymmetry of the nonlinearity or
multiplicity of eigenvalues correspond to distinctive features when thus
visualized.

This author believes that the idea from Remark 3.2 should gener-
alize to higher dimensions. We attempted to apply this notion to find
a 3-Hump solution resembling sin(37z)sin(7y) on the unit square, but
the process did not converge to a solution. This seems to be due to
the multiplicity 2 second eigenvalue in that case, whereupon the al-
gorithm does not have enough constraints and falls away from a local
minimum of a higher codimension subset of S;. Solving these numer-
ical difficulties may be synonymous with finding an existence proof of
more solutions of higher Morse index and a greater number of inter-
nal zero sets: one seeks higher codimension analog to S and S; and a
precise definition of such “hump” functions (corresponding to the part
functions of Definition 2.1), together with continuity theorems similar
to Lemma 2.2.

The multiplicity 2 issue mentioned above was also investigated in the
course of finding the four sign-changing solutions in Section 5. When
horizontally or vertically antisymmetric initial guess functions such as
+sin(27z) sin(7y) or +sin(7z) sin(27y) were used, the process almost
stalled on nodally similar points before falling off into a basin contain-
ing one of the four diagonally antisymmetric solutions. The gradient
remained extremely small throughout the iterations, but it seems likely
to this author that the four stall points represented additional exactly-
once sign-changing solutions of Morse index 3. At this time this au-
thor is trying to prove analytically the existence of the aforementioned
eight exactly-once sign-changing solutions on the square. Note that
if one restricts to the case where f is odd, eight Morse index 2 solu-
tions can easily be constructed by piecing together w; and w, solutions
on upper/lower triangles/rectangles. Our numerical experiments with
non-odd nonlinearities lead us to believe in the existence of these eight
solutions in the general case. Lastly, in [3] we are in the process of
proving that when € is a disk in R?2, the sign-changing solution w3 is
nonradial. One would then see that in fact there are infinitely many
such solutions, obtained by rotation by any angle. This author visual-



izes the eight “solutions” in the case = [0,1] x [0,1] as “optimally
rotated”, i.e., there is a path in S; of sign-changing elements, roughly
corresponding to projections of linear combinations of the first two
sign-changing eigenfunctions, containing four local minima and four lo-
cal maxima. This is one of the approaches being considered our efforts
to construct such proofs.

The work [3] mentioned above contains several proofs building on
the variational results of [2]. One important technique used in [3] is to
show that in a given situation an element of S; with a certain symmetry
or antisymmetry cannot be a minimizer of the action functional J. We
hope that the numerical results of this paper together with the analyt-
ical results from [2] and [3] will lead to a more complete understanding
of the variational characterization of all solutions to (1). In particular,
we plan to investigate the bifurcation diagram numerically as we seek
to prove sign-changing multiplicity results.

It has been worthwhile to run code modified for more general re-
gions. Experiments on disks and annuli in R? are providing information
which complements our current research (see for example [3]). Addi-
tionally, since symmetry of the region is in no more relevant than sym-
metry of the nonlinearity to our scheme, nodal properties of solutions
in regions such as the dumbbell can also be investigated. In partic-
ular, it will be interesting to see how the structure changes when the
symmetry of the region €2 is perturbed slightly, turning a multiplicity of
eigenvalues into a close pair. We are currently trying to prove existence
theorems along these lines.
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Table V: Approximation of a Sign-Changing Solution to the PDE,
n = 100.

1 3 D T 9
1.4804 | 3.5414 | 2.1449 | 0.4804 | 0.0000
3.5414 | 9.3817 | 4.1729 | 0.0003 | -0.4802
2.1449 | 4.1729 | 0.0006 | -4.1722 | -2.1448
0.4804 | 0.0003 | -4.1722 | -9.3823 | -3.5418
0.0000 | -0.4802 | -2.1448 | -3.5418 | -1.4806

o] | | Lo




