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In this paper we primarily consider the family of elliptic PDEs ∆u+ f(u) = 0 on the square
region Ω = (0, 1)× (0, 1) with zero Dirichlet boundary condition. Following our previous anal-
ysis and numerical approximations which relied on the variational characterization of solutions
as critical points of an “action” functional, we consider Newton’s method on the gradient of that
functional. We use a Galerkin expansion, in eigenfunctions of the Laplacian, to find solutions of
arbitrary Morse index. Taking f ′(0) to be a bifurcation parameter, we analyze the bifurcations
from the trivial solution, u ≡ 0, using symmetry arguments and our numerical algorithm. The
Morse index of the approximated solutions is provided and support is found concerning several
existence and nodal structure conjectures. We discuss the applicability of this method to find
critical points of functionals in general.

1. The Semilinear Problem

The primary equation we consider is a superlinear
elliptic zero Dirichlet boundary value problem on a
piecewise smooth bounded region Ω ⊂ RN . In this
paper’s numerical investigations we let N = 2 and
Ω = (0, 1) × (0, 1), but the method can be applied
to other regions. Let ∆ be the Laplacian operator.
We seek solutions to the boundary value problem{

∆u+ f(u) = 0 in Ω

u = 0 on ∂Ω.
(1)

Recall that the eigenvalues of −∆ with zero
Dirichlet boundary condition in Ω satisfy

0 < λ1 < λ2 ≤ λ3 ≤ · · · → ∞ .

We designate the corresponding eigenfunctions by
{ψi}i∈N, taken to be normal in L2 = L2(Ω) and

of course orthogonal in both the Sobolev space
H = H1,2

0 (Ω) and in L2, with inner products

〈u, v〉H =

∫
Ω
∇u · ∇v dx and 〈u, v〉2 =

∫
Ω
u v dx

respectively (see [Adams, 1975; Gilbarg &
Trudinger, 1983], or [Neuberger, 1997a, 1997b]).

For the PDE (1) on a square region, Ω =
(0, 1) × (0, 1), it is well known that the (doubly
indexed) eigenvalues and eigenfunctions of −∆ are

λm,n = (m2 + n2)π2 and

ψm,n = 2 sin(mπx) sin(nπy) , (2)

where m and n range over all positive integers. One
of the main goals in this paper is to demonstrate the
importance of these eigenfunctions to the theory of
our type of PDE in general and to our numerical
method in particular.
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Although our numerical method works in gen-
eral on a much wider class of variational problems,
we consider specific assumptions which have led to
existence theorems of sign-changing solutions (see
[Castro et al., 1997a; Neuberger, 1998; Castro et al.,
1997b; Castro et al., 1998]). In this paper we focus
on the case where f is superlinear and subcritical,
as per the hypothesis of Theorem 2.2 below. We
wish to emphasize that although infinitely many so-
lutions have been proven to exist for various special
cases, e.g. when N = 1, f is odd, or Ω is a ball in
RN , in the general case of Theorem 2.2 only three
nontrivial solutions are currently proven to exist.

Let F (u) =
∫ u
0 f(s) ds for all u ∈ R define the

primitive of f . We then define the action functional
J : H → R by

J(u) =

∫
Ω

{
1

2
|∇u|2 − F (u)

}
dx . (3)

We will make assumptions on f so that J is well de-
fined and of class C2 on H. The directional deriva-
tive of J at u in the v direction is defined to be

J ′(u)(v) = lim
t→0

J(u+ tv)− J(u)

t
,

and the second derivative J ′′(u)(v, w) is similarly
defined. A calculation shows

J ′(u)(v) =

∫
Ω
{∇u · ∇v − f(u)v} dx (4)

and

J ′′(u)(v, w) =

∫
Ω
{∇v · ∇w − f ′(u)v w} dx . (5)

If u is C2, then we can do integration by parts
on (4) to get

J ′(u)(v) = −
∫

Ω
{∆u+ f(u)}v dx . (6)

Therefore, a classical solution to the PDE (1) is a
critical point of J . (A critical point of J is a func-
tion u such that J ′(u)(v) = 0 for all v.) By defini-
tion, critical points of J are weak solutions to (1)
(see [Rabinowitz, 1986]). By regularity theory for
elliptic boundary value problems (see [Gilbarg &
Trudinger, 1983]), u is a classical solution to our
superlinear problem (under the exact hypothesis
below) if and only if u is a weak solution to (1).
In other words, critical points of the action func-
tional J are precisely the classical solutions of the
PDE we consider in this paper.

For a solution of the PDE, it is natural to ask if
the critical point is a local minimum, a local max-
imum, or a saddle point of J . For a broad class
of functions f , every solution to the PDE (1) has
an infinite number of orthogonal directions in func-
tion space where J “curves up” (i.e. J ′′(u)(v, v) >
0), and a finite number where J “curves down.”
Roughly speaking, the Morse index is the number
of linearly independent directions in function space
in which J “curves down.” (See Sec. 2.3 for a defi-
nition of the Morse index, or see [Milnor, 1963] for
a detailed discussion.) Thus, a solution that is a
local minimum of J has Morse index 0. All other
solutions to the PDE (1) are saddle points, since no
solutions are local maxima of J .

It is often instructive to keep in mind the
reaction–diffusion equation

ut = ∆u+ f(u) . (7)

In this paper, we are searching for the station-
ary (time-independent) solutions to this reaction–
diffusion equation. In this context, the Morse index
is the number of unstable directions of the station-
ary solution.

2. Low-Morse Index Solutions

2.1. Variational existence proofs

A starting point for analytical investigation can
be found in the following theorem, proven in
[Castro et al., 1997]. Although our numerical
scheme can certainly be used to attack different
problems where existence results may or may not
yet found be, let us give the precise hypothesis un-
der which Theorem 2.2 is known to hold.

In particular, we take f ∈ C1(R, R) such
that f(0) = 0. We assume that there exist con-
stants A > 0 and p ∈ (1, N + 2/N − 2) such that
|f ′(u)| ≤ A(|u|p−1 + 1) for all u ∈ R. It follows
that f is subcritical, i.e. there exists B > 0 such
that |f(u)| ≤ B(|u|p + 1). For N = 1 this con-
dition is omitted, while for N = 2 it suffices to
have p ∈ (1, ∞) (see [Rabinowitz, 1986]). Also, we
assume that there exists m ∈ (0, 1) such that

m

2
f(u)u ≥ F (u) , (8)

(in fact this need only hold for |u| > ρ for some
ρ > 0), and that f is superlinear, i.e.

lim
|u|→∞

f(u)

u
=∞ . (9)
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Finally, we make the assumption that f satisfies

f ′(u) >
f(u)

u
for u 6= 0 . (10)

For convenience, we will call (1) with all of the
above conditions on f “the superlinear problem”.
Recall that subcritical growth and the Sobolev
Embedding Theorem (see [Adams, 1975]) imply
that H is compactly embedded into Lp+1, which in
turn shows that J is well defined on all of H. Under
our full hypothesis, J is in fact twice differentiable
on H (see [Rabinowitz, 1986]).

Theorem 2.2. (The CCN Theorem [Castro et al.,
1997]). If f ′(0) < λ1, then the superlinear problem
(1) has at least three nontrivial solutions: ω1 > 0 in
Ω, ω2 < 0 in Ω, and ω3. The function ω3 changes
sign exactly once in Ω, i.e. (ω3)

−1(R−{0}) has ex-
actly two connected components. If nondegenerate,
the one-sign solutions are Morse index (MI ) 1 crit-
ical points of J, and the sign-changing solution has
MI 2. Furthermore,

J(ω3) ≥ J(ω1) + J(ω2) .

For convenience, we call ω3 the CCN solution. In
this f ′(0) < λ1 superlinear case, the trivial solution
u = 0 has MI 0 and is the only local minimum of J .
All other critical points (solutions to (1)) are saddle
points.

To see how these three low MI solutions can
be found, we first define u+ = maxΩ{u, 0} and
u− = minΩ{u, 0}. See [Castro et al., 1997] (or
more fundamentally [Kinderlehrer & Stampacchia,
1979]) for important properties of the continuous
map u → u+ from H (and Lp+1(Ω)) into itself.
Then we construct two important subsets of H:

S = {u ∈ H − {0} : J ′(u)(u) = 0}

and

S1 = {u ∈ S : u+ ∈ S, u− ∈ S} .

In fact, S is a submanifold diffeomorphic to the
unit sphere in H. To find MI 1 one-sign solu-
tions, one need only find minimizers of J |S , and to
find sign-changing exactly-once MI 2 solutions, one
seeks minimizers of J |S1 . In [Castro et al., 1997]
we provide existence proofs for both of these types
of solutions while in [Neuberger, 1997a, 1997b] we
construct a numerical algorithm for approximating
them.

If we relax the assumption that f ′(0) < λ1,
the set S is not a manifold. Proving that the
sign-changing solution found in [Castro et al., 1997]
persists when f ′(0) ∈ [λ1, λ2) is an effort currently
in progress. Problems of this sort suggest that one
let λ = f ′(0) vary as a bifurcation parameter. A key
idea in this paper is that the eigenfunctions of −∆
form a basis for H and L2 and that finite dimen-
sional representations of u, ∇J(u), and D2J(u) in
H or L2 can be written as vectors and matrices with
this coordinate choice. This suggests our Galerkin-
type approach in Sec. 3.

Our success at constructing a substantial por-
tion of the bifurcation diagram for the superlinear
problem is a major achievement of this paper, al-
though we hope that the utility of our numerical
method for other problems is also of general in-
terest. Ultimately, we seek to prove the existence
and describe the nodal structure of all solutions to
the superlinear problem (and indeed the PDE (1)
with other types of nonlinearities). As a first at-
tempt to do so, we need tools for obtaining higher
MI solutions. We hope that our numerical method,
which can in principle find all solutions, will sug-
gest methods of proof for the existence and nodal
structure of said solutions. Certainly, the numeri-
cal experiments can support or refute new and old
conjectures.

2.2. Function spaces, inner
products and gradients

Making the correct choice of space and inner prod-
uct is always important when using the variational
method. Although theory tells us that the so-called
weak solutions in H are in fact in C2, it is neces-
sary to use the Hilbert space H as the domain of
the functional J in order to find existence proofs.
When considering steepest descent methods, it is
essential that one not use the poorly performing L2

gradient.
One defines the Sobolev gradient as the unique

function z = ∇HJ(u) satisfying J ′(u)(v) = 〈z, v〉H .
From Eq. (4) we get

∇HJ(u) = u+ ∆−1f(u) . (11)

If in addition u ∈ C2, the “usual” L2 gradient
w = ∇2J(u) exists and uniquely satisfies J ′(u)(v) =
〈w, v〉2. From Eq. (6) we get

∇2J(u) = −∆u− f(u) .
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Hence, if ∇2J(u) exists for some u ∈ L2,
then the two gradients are related by ∇2J(u) =
−∆(∇HJ(u)).

It is generally felt among numerical analysts
that steepest descent is an inferior method due to
sluggish performance. This is in fact true if one uses
the L2 gradient, which is only densely defined. The
finite dimensional approximation of this “usual”
gradient often attempts to approximate something
which does not exist! Steepest descent is quite effec-
tive, however, when one uses the Sobolev gradient
which is defined on all of H. We highly recommend
[Neuberger, 1997a, 1997b] for all matters concern-
ing Sobolev gradients and differential equations.

We will be restricting our approximations to a
finite dimensional subspace G of L2 consisting of
twice continuously differentiable functions. That
is to say, the L2 gradient ∇2J(u) will exist for
all u ∈ G. More importantly, the two gradi-
ents ∇2J(u) and ∇HJ(u) perform identically when
Newton’s method is used to find a critical point.
To see this fact, first note that the Hessians (self-
adjoint bilinear operators) satisfy

J ′′(u)(v, w) = 〈D2
HJ(u)v, w〉H = 〈D2

2J(u)v, w〉2 ,
for all u, v and w in G. Then since −∆D2

HJ(u) =
D2

2J(u) for all u ∈ G, we have the identical
Newton search directions (D2

HJ(u))−1∇HJ(u) =
(D2

2J(u))−1∇2J(u). In our new Galerkin approach
we use the L2 inner product, norm, gradient, and
Hessian; henceforth we drop the subscript “2”
when referring to any L2 expression. The Newton
iteration can then be written as

uk+1 = uk − (D2J(uk))
−1∇J(uk) . (12)

We will see that this scheme can be used to find
many high MI solutions.

The Morse index of a solution u is defined when
D2J(u) has no zero eigenvalues, in which case the
MI is the (finite) number of negative eigenvalues.
For convenience, we generally say in this paper
that a solution u has MI k if D2J(u) has k neg-
ative eigenvalues. It is understood that this is only
strictly true if one knows that the solution is non-
degenerate, i.e. the Hessian is invertible. For com-
pleteness, we now briefly describe a previous low MI
scheme.

2.3. Numerical scheme for
MI 1 and MI 2 solutions

A numerical method (see [Neuberger, 1997a,

1997b]) for finding the solutions suggested by
Theorem 2.2 is to find Morse Index (MI) 1 and 2
solutions by minimax, that is finding minimizers of
J |S and J |S1 by a combination of maximizing in one
or two directions to stay on S or S1 and doing steep-
est descent in all other directions. Since under the
hypothesis of Theorem 2.2 the set S is a manifold,
we can use the facts that

given u 6= 0 there exists a unique α̂ > 0

such that α̂u ∈ S

and that

J(α̂u) = max
α>0

J(αu)

to project nonzero elements of H on to S and sign-
changing elements of H on to S1. From (11) we see
that the Sobolev gradient∇HJ(u) can be computed
by solving a system via standard algorithms. With
this gradient in hand, descent steps can be taken to
obtain minimizers of J |S and J |S1 .

The above one-sign algorithm, although inde-
pendently discovered and published in [Neuberger,
1997a, 1997b], is in fact an application of the cel-
ebrated Mountain Pass Algorithm (MPA) due to
Choi and McKenna [1993]. The sign-changing algo-
rithm (see also [Neuberger, 1997a, 1997b]), which
uses the splitting into positive and negative parts
in order to gain membership to S1, has recently
been called the Modified Mountain Pass Algorithm
(MMPA) (see [Costa et al., 1999]). Of course the
MMPA fails to converge to any critical point of MI
greater than 2, just as the MPA fails to find critical
points of MI greater than 1.

So what does one do to find higher Morse index
solutions? At this time we do not know of higher
codimension sets analogous to S and S1 onto which
we may project iterates. Indeed, if we had such sets
if would be likely that we have the theory to prove
the existence of many more solutions! One scheme
we have tried successfully (see [Neuberger, 1997]),
if not efficiently, is to find global minimizers of the
functional φ defined by

φ(u) =
1

2
||∇HJ(u)||22 .

Obviously all critical points of J are now zeroes of
the non-negative functional φ. We omit the tech-
nical details and suggest [Neuberger, 1997a, 1997b]
as a reference for this and other steepest descent



Newton’s Method and MI for Semilinear Elliptic PDEs 805

techniques. The potential exists for doing analy-
sis on the behavior of φ (similar to that done on J
in [Castro et al., 1997] and elsewhere) which might
well lead to existence proofs.

Our new algorithm as outlined in the follow-
ing section is in a sense weighted steepest descent
coupled with “appropriate” projections similar to
PS and PS1 . That Newton’s method automatically
picks out these projections to find minimax solu-
tions of arbitrary MI is a wonderful phenomenon.

3. Newton’s Method and
Morse Index

3.1. Solver for general
nonlinearities

For convenience, we call our method the “Gradi-
ent Newton Galerkin Algorithm” (GNGA). It is
a Galerkin method in the sense that a finite sub-
basis of orthonormal functions is used to work with
Fourier type approximations. Newton’s method is
used to find zeroes of finite dimensional approxi-
mations to ∇J . Certainly Newton–Galerkin meth-
ods have been developed and used by others (see
e.g. [Argyros, 1997] and references therein.)

To the best of our knowledge this is the first
time such a method has used eigenfunctions of the
Laplacian as the Galerkin-basis and sought zeroes of
the gradient of a nonlinear functional as a means for
finding solutions to elliptic Dirichlet problems. For
regions other than those where the eigenfunctions
are known in closed form there will be a substantial
effort required to generate the basis. This effort
will only have to be done once for each given re-
gion and eliminates the need for numerical differen-
tiation when computing Newton search directions.
Our initial efforts were in Mathematica, where short
simple codes found fairly accurate low-energy low-
Morse index solutions to the superlinear problem
on the square. Subsequent efforts used either
FORTRAN and many more Fourier modes or Math-
ematica and specialized polynomial code to find
high-energy high-Morse index solutions and accu-
rate symmetry-bifurcation data. Without question,
the technique can be applied to a much wider range
of problems.

We denote the number of negative eigenvalues
of a (finite or infinite dimensional) bilinear operator
A by sig(A) (signature). Note that if u is a nonde-
generate solution to (1), i.e. D2J(u) is invertible,
then sig(D2J(u)) is the MI of u. In [Neuberger,

1997a, 1997b] as outlined in the previous section,
one can find MI 1 and 2 solutions to (1) by doing
steepest descent steps coupled with steepest ascent
steps in the u direction (to minimize J |S) or in the
u+ and u− directions (to minimize J |S1). To see
why this works, first note that

J ′′(u)(v, v) = ||v||2H −
∫

Ω
f ′(u)v2 dx ,

and so by (10) and for v ∈ S we have

J ′′(v)(v, v) = ||v||2H −
∫

Ω
f ′(v)v2 dx < ||v||2H

−
∫

Ω
f(v)v dx = J ′(v)(v) = 0 .

That is to say, J is “concave down” in the v direc-
tion for any v ∈ S. If, in addition, v ∈ S1, then
J is concave down in two orthogonal directions v±,
since

J ′′(v)(v±, v±) = J ′′(v±)(v±, v±) < 0 .

(The equality holds for all v, by the definition of v±
and Eq. (5), and the inequality holds since v± ∈ S.)

To generalize this idea for finding saddle points
by maximizing infinitely many concave down di-
rections and minimizing in the remaining cofinite
directions, we consider the eigenfunctions of the
Hessian h = D2J(u) corresponding to negative
eigenvalues. That is to say, we can in theory know
the directions in which J is concave down.

Suppose that

0 < λ1 < · · · ≤ λk < λ = f ′(0) < λk+1 ≤ · · · → ∞ .

By integrating by parts, it is easy to see that the
Hessian of J at the trivial solution h = D2J(0) can
be represented by the diagonal matrix with entries

hii = λi − λ .

Therefore sig(D2J(0)) = k and it follows that the
trivial solution has MI k, where k is the number of
eigenvalues of −∆ less than λ = f ′(0).

Our original idea was to form a new search di-
rection (or projected gradient) by simply changing
the sign of the components of ∇J(u) lying in the
negative space of D2J . A similar and better idea is
to use Newton’s method acting on the gradient [see
Eq. (12)]. The Newton search direction is

(D2J(u))−1∇J(u) =
∞∑
i=1

1

βi
〈∇J(u), ei〉ei ,
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where (βi, ei) are the orthonormal eigenpairs
of D2J(u), that have been used to construct
(D2J(u))−1. Note that when sign(βi) < 0, the com-
ponent of ∇J(u) along the “concave down” ei di-
rection is reflected as well as scaled, so that in effect
Newton’s method automatically performs weighted
ascent in this direction. In “concave up” directions
ei where sign(βi) > 0, the sign remains the same
and the search direction is weighted descent. In this
way, Newton’s method on the gradient seeks min-
imax critical points of arbitrary MI depending on
the signature of u. We see this as a generalization
of the method for finding MI 1 and MI 2 minimax
solutions described in [Neuberger, 1997a, 1997b].

As a practical matter, since D2J(u) may be
noninvertible or ill conditioned, one should con-
sider using singular value decomposition and pseu-
doinverses, least squares, or a system solver which
handles our possible types of singularities when
computing this search direction. For nondegener-
ate solutions, the Hessian is nonsingular in a neigh-
borhood of the solution and the pseudoinverse is
not needed. However, we are sometimes inter-
ested in degenerate solutions, for example at bi-
furcation points or nonradial solutions to the PDE
on a disk where there is a continuum of solutions.
We have found the algorithm to be surprisingly ro-
bust even when an actual inverse is computed and
used very near a singularity, an interesting phe-
nomena worthwhile for future study. In several
examples the corresponding zero-eigenfunction di-
rections were nearly orthogonal to nearby gradients,
and hence had little effect on the projected gradient
search direction.

It is well known that Newton’s method con-
verges very well given a good initial guess and is
unpredictable given a poor initial guess. Our ex-
periments confirm this. We were able to obtain a
methodology for generally providing an initial guess
that would lead to convergence to a predicted and
desired solution, i.e. start and remain in the correct
basin of attraction. Our rule of thumb is to use an
appropriate multiple of an eigenfunction having a
prescribed nodal structure and signature. When f
is odd, this works well provided the multiple is in
the right ball park; we can use the observation that
limα→∞ sig(αψi) = ∞ for all i ∈ N to obtain the
appropriate multiplier. When f is not so nice, solu-
tions may have nodal structures that do not closely
match that of eigenfunctions, whereby multiples of
eigenfunctions may not be good starting points. In
this case it can be necessary to look for solutions by

first starting near primary bifurcation points which
do closely resemble eigenfunctions. One then in-
crements or decrements the bifurcation parameter
to follow the branch towards the desired solution,
at each step using the previous solution as the next
initial guess. The matter is somewhat more delicate
at secondary bifurcation points. In this case we add
a small linear combination of zero-eigenfunctions of
D2J(u) to a nearby element of the primary branch,
where u is the singular bifurcation point. The same
philosophy applies for finding tertiary branches off
of secondary branches.

To apply Newton’s method to our problem,
we truncate the infinite dimensional function space
H to the finite dimensional Galerkin space G =
span{ψi}Mi=1. We restrict all of our computations to
the M -dimensional subspace G ⊂ H. Recall that
we have normalized our eigenfunctions in L2 so that∫
Ω ψiψjdx = δij and

∫
Ω∇ψi∇ψjdx = δijλi, where

δij is the Kronecker delta function.

Thus, we identify G with RM and define Ĵ :
RM → R by Ĵ(a) = J(u), where u =

∑M
i=1 aiψi

∈ G. The function Ĵ is identified with J |G. Our
approximate solutions to the PDE are then critical
points of the function Ĵ , rather than the functional
J . It seems reasonable, although we have no proof,
that the approximate solutions converge to the true
solution as M → ∞. In Sec. 5 we will consider
this question of convergence, and discuss how this
algorithm might inspire existence proofs.

The L2 gradient of Ĵ is the vector function

g(a) =

(
∂Ĵ(a)

∂a1
, . . . ,

∂Ĵ(a)

∂aM

)

=
(
J ′(u)(ψ1), . . . , J

′(u)(ψM )
)
∈ RM

and the Hessian matrix is

A(a) =

(
∂2Ĵ(a)

∂ai∂aj

)M
i,j=1

= (J ′′(u)(ψi, ψj))
M
i,j=1 .

Using integration by parts, we see that we can
compute the entries

gk(a) =
∂Ĵ(a)

∂ak
= −

∫
Ω
(∆u+ f(u))ψk dx

= akλk −
∫

Ω
f(u)ψk dx (13)

and

Ajk(a) = δjkλj −
∫

Ω
f ′(u)ψjψk dx , (14)
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where u =
∑M
i=1 aiψi. For informational purposes,

one might also want to compute Ĵ(a) = J(u) in a
similar fashion. Note that we only need to do nu-
merical integration on the nonlinear terms. This
greatly increases the accuracy of our approxima-
tions. With a gradient and Hessian in hand, the
Newton iteration in (12) then becomes

an+1 = an − (A(an))−1g(an) .

In practice, one can introduce stability and re-
main in a desired basin of attraction by imitating a
continuous Newton’s flow by taking smaller steps,
i.e. choose δ small and iterate

an+1 = an − δ(A(an))−1g(an) .

When the sequence of coefficients {an} converges
to a vector a, our approximate solution is given by
u =

∑M
i=1 aiψi. As previously noted, if this solu-

tion u is a nondegenerate critical point then com-
puting sig(A(u)) yields the Morse index. We find
this method to be very effective and simple to im-
plement, given that we have such ready access to
the desired basis when Ω is a square. For other re-
gions, knowing or approximating an orthonormal
basis of eigenfunctions might not be so straight-
forward. Once such an effort was made, however,
subsequent runs of the GNGA would run fast and
efficiently. Sophisticated grid techniques would only
be necessary in so far as they might be required by
the numerical integration routines. All differencing
has been eliminated by the use of the eigenfunction
basis.

To summarize the GNGA for our semilinear
elliptic Dirichlet problem, one performs the follow-
ing steps:

1. Define region Ω, nonlinearity f , and step size δ.
2. Obtain orthonormal basis {ψk}Mk=1 for a suffi-

ciently large subspace G ⊂ H.
3. Choose initial coefficients a = a0 = {ak}Mk=1, set
u = u0 =

∑
akψk, and set n = 0.

4. Loop

(a) Calculate g = gn+1 = (J ′(u)(ψk))Mk=1 ∈ RM

(gradient vector).
(b) Calculate A = An+1 = (J ′′(u)(ψj , ψk))Mj,k=1

(Hessian matrix).
(c) Compute χ = χn+1 = A−1g by computing

inverse or pseudoinverse, solving system, or
implementing least squares.

(d) Set a = an+1 = an − δχ and update u =
un+1 =

∑
akψk.

(e) Increment loop counter n.

(f) Calculate sig(A(a)) and Ĵ(a) if desired.
(g) Calculate approximation

√
g · g of ||∇J(u)||;

STOP if sufficiently small.

In the following section we present an efficient
method for implementing the GNGA scheme when
f is polynomial. In that case, Ĵ , g, and A are
themselves polynomials in a, and once various in-
tegrals are calculated, no further integration need
be performed. Our implementation of this poly-
nomial GNGA was in Mathematica and can pro-
vide superior handling of bifurcation curves via
several features not found in the nonpolynomial
FORTRAN code.

3.2. The algorithm for polynomial f

When the reaction term f is a polynomial, the func-
tions Ĵ , gk and Aj,k needed for the GNGA are poly-
nomials. The coefficients of these polynomials can
be computed once and for all. Thereafter, we only
need to solve Newton’s method on polynomial equa-
tions, which is so fast we can do it using Mathe-
matica. In contrast, for general f , many numerical
integrations are performed at each step in Newton’s
method, and a compiled language like FORTRAN
is needed.

To understand the difference between polyno-
mial and nonpolynomial f , consider the nonlinear
terms in Eqs. (13) and (14) for gk(a) and Aj,k(a),
respectively. If f is a polynomial, these nonlinear
terms are polynomials in ai, and the coefficients of
the polynomial can be computed, by numerical inte-
gration if necessary, before doing Newton’s method.
On the other hand, for more complicated f this
nonlinear term must be computed numerically after
the ai are known numbers, at each step in Newton’s
method.

The conditions on f described before
Theorem 2.2 are called the CCN assumptions. They
are quite restrictive when f is a polynomial. In fact,
if the dimension of Ω is N ≥ 4, then no polyno-
mial satisfies the CCN assumptions. To see this,
consider the first CCN assumption, and note that a
polynomial f must have degree p < N + 2/N − 2.
Hence the polynomial f must have degree strictly
less than 3 for N ≥ 4. Other assumptions rule out
linear and quadratic polynomials, as described in
the next paragraph.

For N = 3, a polynomial f satisfies the CCN
assumptions if, and only if, f(u) = λu + βu3 with
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β > 0. For N = 2, which is our focus here, it
is rather cumbersome to find necessary and suffi-
cient conditions that the polynomial f satisfy the
CCN assumptions. One necessary condition is that
f ′′(0) = 0, which follows from f ′(u) ≥ f(u)/u for
all u 6= 0. Hence there is no quadratic term in the
polynomial f . Another necessary condition is that
f must have odd degree at least 3, with positive
leading coefficient, since f(u)/u → ∞ as |u| → ∞.
Heuristically, the CCN assumptions say that “f is
very much like an odd function.”

Therefore, if f is a nonodd polynomial that sat-
isfies the CCN assumptions for dimension N = 2 it
must have degree at least 5. Our algorithm is too
slow to run on Mathematica when f is a polyno-
mial of degree 5, so we assume that f is cubic, with
a positive leading coefficient that has been scaled to
unity:

f(u) = λu+ αu2 + u3 . (15)

The polynomial (15) satisfies the CCN assumptions
if, and only if, α = 0. However, we will consider the
effects of nonzero α. This makes f nonodd in a more
radical way than allowed by the CCN assumptions.
One interesting result we find is that, when α 6= 0,
certain solutions bifurcate transcritically from the
trivial solution. In other words, there are small am-
plitude solutions near λ = λi for both λ > λi and
λ < λi. In contrast, the CCN assumptions force the
small amplitude solutions to bifurcate to λ < λi.

Assume that the reaction term is (15), with the
parameters λ and α fixed. The action functional on
the domain H,

J(u) =

∫
Ω

(
|∇u|2

2
− λu2

2
− αu3

3
− u4

4

)
dx ,

is then approximated by a polynomial in the ampli-
tudes of the Galerkin expansion:

Ĵ(a) =
1

2

M∑
p=1

(λp − λ)a2
p −

α

3

M∑
p,q,r=1

apaqarIpqr

− 1

4

M∑
p,q,r,s=1

apaqarasIpqrs . (16)

We have defined the integral of the product of two
or three eigenfunctions as

Ipqr =

∫
Ω
ψpψqψrdx, and Ipqrs =

∫
Ω
ψpψqψrψsdx .

The critical points of Ĵ are our approximate so-
lutions to the PDE. They are solutions to the M

equations

gi(a) =
∂Ĵ(a)

∂ai
= (λi − λ)ai − α

M∑
p,q=1

apaqIipq

−
M∑

p,q,r=1

apaqarIipqr = 0 .

Finally, the Hessian operator is approximated by
the Hessian matrix

Aij(a) =
∂2Ĵ(a)

∂aj∂ai
= (λi − λ)δij − 2α

M∑
p=1

apIijp

− 3
M∑

p,q=1

apaqIijpq .

To speed up the calculations, we supply the
Hessian to Mathematica’s built-in FindRoot com-
mand as the Jacobian of the system of equations:
Aij = ∂gi/∂aj . The Hessian matrix is also needed
to compute the MI of the solutions.

The multiple sums have quite a few terms. In
practice, we can take advantage of the permutation
symmetry of the terms in the sum. Consider the
last sum in (16). Define Apqrs = apaqarasIpqrs, and
note that this expression is invariant under all 24
permutations of the subscripts. We can speed up
the sum by an asymptotic factor of 24 (for large M)
by summing only over terms with p ≥ q ≥ r ≥ s,
including multinomial coefficients:∑
p,q,r,s

Apqrs =
∑
p

Apppp +
∑
p>q

(4Apppq + 4Apqqq

+6Appqq) + 12
∑

p>q>r

(Appqr +Apqqr

+Apqrr) + 24
∑

p>q>r>s

Apqrs .

The factor of 12 = 4!/(2! · 1! · 1!) comes from the
partition 4 = 2 + 1 + 1. The other multinomial
coefficients can be computed just as easily.

The other sums can also be written more effi-
ciently: Assume that Bpqr is unchanged under all
six permutations of the indices, and that Cpq = Cqp.
Then∑

p,q,r

Bpqr =
∑
p

Bppp + 3
∑
p>q

(Bppq +Bpqq)

+ 6
∑

p>q>r

Bpqr ,
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and ∑
p,q

Cpq =
∑
p

Cpp + 2
∑
p>q

Cpq .

For any region Ω, the eigenfunctions and eigen-
values could be computed (perhaps numerically),
and then all the integrals Ipqr and Ipqrs could be
computed and stored in a table, rather than com-
puting several integrals at each step in Newton’s
method.

We now specialize to the problem of a square
region, where we can use formulas for the inte-
grals Ipqr and Ipqrs. Let Ω = (0, 1) × (0, 1). The
normalized eigenfunctions of −∆ that we used in
our Galerkin expansion are ψi = ψmi,ni , given in
Eq. (2), where (mi, ni) take on all ordered pairs

in {1, 2, . . . , Nmax}2 as i goes from 1 to M = N2
max.

Therefore, we have two ways of expressing the
Galerkin expansion:

u(x, y) =
M∑
i=1

aiψi(x, y) =
Nmax∑
m=1

Nmax∑
n=1

am,nψm,n(x, y).

In the Mathematica implementation we used
Nmax = 3, 5, and 7, whereas with the FORTRAN
program we could go up to Nmax = 15 with a rea-
sonable run time.

In anticipation of computing the integrals
of eigenfunctions, let us define s3(p, q, r) and
s4(p, q, r, s) for integers p, q, r and s as the one-
dimensional integrals of products of sine functions:

s3(p, q, r) =

∫ 1

0
sin(pπx) sin(qπx) sin(rπx)dx

s4(p, q, r, s) =

∫ 1

0
sin(pπx) sin(qπx) sin(rπx) · sin(sπx)dx .

These integrals can be computed easily using Euler’s formula to write the sines in terms of complex
exponentials. The results are

s3(p, q, r) =


0 if p+ q + r is even

1

2π

( −1

p+ q + r
+

1

−p+ q + r
+

1

p− q + r
+

1

p+ q − r

)
if p+ q + r is odd

and

s4(p, q, r, s) =
1

8

(
δp+q,r+s + δp+r,q+s + δp+s,q+r − δp,q+r+s
−δq,p+r+s − δr,p+q+s − δs,p+q+r

)
.

Then the integrals of eigenfunctions are

Ipqr = 8s3(mp, mq, mr)s3(np, nq, nr)

and

Ipqrs = 16s4(mp, mq, mr, ms)s4(np, nq, nr, ns) .

Now all the ingredients are in place to find
approximate solutions to our PDE. We used the
“FindRoot” command in Mathematica, which uses
Newton’s method, to solve the system of M polyno-
mial equations gi(a; λ, α) = 0. Usually we fixed the
parameters λ and α in (15), and let the amplitudes
a be the M unknowns. Sometimes we fixed α and a
single amplitude, and used λ and the rest of the am-
plitudes as the M unknowns. Yet another method

was to fix α and the ratio of two amplitudes. Then
one amplitude can be eliminated, and the unknowns
are λ and the other M − 1 amplitudes.

4. Numerical Results on the Square

In this section we display results of our Newton–
Galerkin method for the BVP (1) on the square
Ω = (0, 1)× (0, 1). We usually use f(u) = λu+u3,
and consider λ to be a bifurcation parameter. We
also consider more general f , and give a classifi-
cation of the types of bifurcation from the trivial
solution that are to be expected for different classes
of the function f , depending on the symmetry of
the critical eigenfunction(s) at the bifurcation.
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Since the square has symmetry, we use the
methods of bifurcation theory with symmetry
[Golubitsky et al., 1988]. Care is needed to an-
alyze the bifurcation correctly. In particular, our
problem exhibits a “hidden” translational symme-
try when f is odd [Crawford et al., 1991; Gomes
et al., 1999]. This hidden symmetry can force pat-
terns whose symmetries are different subgroups of
the symmetry of the square to have identical solu-
tion curves when the norm of the solution is plotted
against λ.

4.1. The symmetry of the PDE
on the square

Let D4 be the symmetry of the square Ω = (0, 1)×
(0, 1). Note that D4 is generated by two involutions
µ and δ, which act on the square as follows:

µ · (x, y) = (1− x, y) and δ · (x, y) = (y, x) .

We define ρ = µδ, which acts as a 90◦ rotation.
Furthermore, we define µ̃ = ρ−1µρ and δ̃ = ρ−1δρ.
Thus, µ and µ̃ act as mirror reflections across
x = 1/2 and y = 1/2, respectively, whereas δ and δ̃
act as reflections across the diagonals.

The group D4 acts on functions in H as well:
µ · u(x, y) = u(1 − x, y) and δ · u(x, y) = u(y, x).
If u(x, y) is a solution to the PDE, then so is
γ · u(x, y), for any γ ∈ D4. Sometimes γ takes
one solution to a different solution, but if γ · u = u
we say that γ is a symmetry of the solution u. We
define the symmetry group of a function u ∈ H
to be

Σ(u) = {γ ∈D4 : γ · u = u} .

For functions in the Galerkin space G, the symme-
try group acts as

µ · u(x, y) = u(1− x, y)

=
Nmax∑
m=1

Nmax∑
n=1

(−1)m+1am,nψm,n(x, y)

and

δ · u(x, y) = u(y, x) =
Nmax∑
m=1

Nmax∑
n=1

an,mψm,n(x, y) .

Thus, the D4 action on the space of amplitudes is
generated by

µ · am,n = (−1)m+1am,n and δ · am,n = an,m

When f is odd, i.e. f(−u) = −f(u), the sym-
metry group of the PDE is D4 × Z2, where the Z2

action on functions in H is

σ · u(x, y) = −u(x, y) .

This induces the Z2 action on the amplitudes:
σ · am,n = −am,n.

4.2. The consequences of odd f

Clearly, if f is odd and u(x, y) is a solution to
∆u + f(u) = 0, then −u(x, y) is also a solution.
It is known that there are an infinite number of
solutions to the superlinear problem on any region
when f is odd [Ljusternik & Schnirelmann, 1934].
However, only three solutions have been proven to
exist for general f in a general region of dimension
N ≥ 2, see [Castro & Kurepa, 1987; Castro et al.,
1997; Tehrani, 1996; Wang, 1991].

To explore the effects of f being odd, we will
temporarily consider solutions of (1) on the rectan-
gle. We will then tile the plane with copies of the so-
lution reflected to make a “checkerboard” pattern.
This will be used for two purposes: First, to show
that an infinite number of solutions on the square
exist when f is odd. Second, to show that there
can be a “hidden” translational symmetry between
patterns on the square that look quite different.

Suppose ua,b(x, y) is a solution to (1) on the
rectangle Ω̄ = [0, a] × [0, b] with zero Dirichlet
boundary conditions, and f is odd. Then we define
the tiled solution uta,b(x, y) obtained by reflection
across the boundaries:

uta,b(2a− x, y) = −uta,b(x, y)
(17)

and uta,b(x, 2b− y) = −uta,b(x, y)

It can be shown that ut is a solution to the PDE
(1) on Ω = R2 if f is odd. In place of the boundary
conditions in (1), uta,b(x, y) satisfies periodic bound-

ary conditions: ut is 2a-periodic in the x direction
and 2b-periodic in the y direction.

Now there is a simple constructive proof that
there are an infinite number of solutions to the su-
perlinear problem on the square when f is odd.
(The LS theory [Ljusternik & Schnirelmann, 1934]
for general regions is quite complicated.) For any
pair of positive integers m and n, it is well known
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(a) (b)

Fig. 1. Two solutions of the BVP (1), with f odd, related
by a “hidden” translational symmetry. The white indicates
u > 0, and the black indicates u < 0, in this and the fol-
lowing figures. When the two patterns are tiled (periodically
extended by reflection across the boundaries) they are the
same except for a vertical translation of half a unit.

that there is a positive solution to (1) on the rect-
angle [0, 1/m]× [0, 1/n]. Let u1/m,1/n(x, y) be this
positive solution, then the corresponding tiled solu-
tion ut1/m,1/n(x, y) is a solution to (1) on the unit

square. Note that these tiled solutions are very
much like the eigenfunctions ψm,n.

The hidden translational symmetry of a solu-
tion occurs if a solution, when tiled, can be trans-
lated to fit on the square in a different way. For
example, Fig. 1(a) shows a solution u1,1(x, y) with
hidden translational symmetry. Figure 1(b) shows
the tiled and translated solution ut1,1(x, y−1/2), re-
stricted to the unit square. The two solutions have
exactly the same action J(u), the same L2 norm
‖u‖2, and the same supremum norm ‖u‖∞.

There is a different way to understand the hid-
den translational symmetry: Note that the solu-
tions shown in Fig. 1 can be obtained by tiling two
different solutions on [0, 1/2] × [0, 1/2] (the lower
left corner). These sign-changing exactly once solu-
tions (CCN solutions) are proved to exist on the
smaller square by Theorem 2.2. On the smaller
square, the two solutions are related by a rotation.
However, when they are tiled to the unit square, the
resulting solutions are not related by any symmetry
of the square.

4.3. Bifurcations from the
trivial solution

With our assumption that f(0) = 0, u = 0 is always
a solution, which we call the trivial solution, or the
origin. The MI of the trivial solution is the number
of eigenvalues of −∆ smaller than f ′(0). (The MI is
undefined if f ′(0) is equal to any of the eigenvalues.)

We take f ′(0) = λ to be the bifurcation parameter.
Whenever λ passes through one of the eigenvalues
of the negative Laplacian there is a bifurcation of
solutions from the origin.

The type of bifurcation that occurs depends on
many factors: the multiplicity of the eigenvalue, the
parity of the eigenfunctions, and the details of the
function f . We will concentrate on bifurcations at
eigenvalues with multiplicity 1 or 2. We will give
the form of the Liapunov–Schmidt bifurcation equa-
tions for the single amplitude

a = am,m

in the multiplicity 1 case, or the pair of amplitudes

a = am,n and b = an,m

in the case with multiplicity 2. We are assuming
that there are no degeneracies that lead to higher
multiplicity. The first two such degeneracies are
λ1,7 = λ5,5 = 50π2 which lead to an eigenvalue of
−∆ with multiplicity 3, and λ1,8 = λ4,7 = 65π2

which leads to an eigenvalue of multiplicity 4.
It is convenient to express the results of the

Liapunov–Schmidt reduction in terms of a reduced
action functional: J̃ = p(a, λ) or J̃ = p(a, b, λ). In
the multiplicity 2 case, the function p is symmetric
under interchange of the first two arguments; that
is p(a, b, λ) = p(b, a, λ). The Liapunov–Schmidt
reduced equations for the elliptic PDE (1) take the
form

∂J̃

∂a
= 0,

∂J̃

∂b
= 0

whereas the center manifold reduction of the hyper-
bolic PDE (7) takes the form

ȧ =
∂J̃

∂a
, ḃ =

∂J̃

∂b
.

In the multiplicity 1 case, of course, only the first
equation (with the derivative with respect to a) is
needed.

In the case when f is odd, we are indebted to
the work of Gomes and Stewart [1994]. They stud-
ied bifurcations with Neumann boundary condition.
Their results can be applied to our problem, with
Dirichlet boundary conditions, if and only if f is odd
in our problem. The first step is to factor out the
greatest common divisor ofm and n, r = gcd(m, n).
Thus

(m, n) = r(k, `) . (18)
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The physical meaning of this reduction is that the
pattern on the little square [1, 1/r] × [1, 1/r] is
extended in a checkerboard pattern so that r2 tiles
fill the unit square.

Note that if m = n, then k = ` = 1. Gomes
and Stewart [1994] prove that the normal form de-
pends on whether k and ` have the same or opposite
parity. They cannot both be even, since k and ` are
relatively prime.

The table entries for the case where f is not odd
follow simply from considering the action of the two

reflections µ and δ on the amplitudes a and b. Ifm is
odd and n is even then µ(a, b) = (a, −b). If m and
n are both even then µ(a, b) = (−a, −b). If m and
n are both odd then µ(a, b) = (a, b). On the other
hand, the action of the diagonal reflection does not
depend on the parity of m or n: δ(a, b) = (b, a).

The following table summarizes the effects of
symmetry on the reduced action function J̃ for
λ in the neighborhood of λm,n: See Eq. (18)
for the meaning of k and ` in the case where f
is odd.

f odd

m = n J̃ = p(a2, λ)

k 6= `, even/odd J̃ = p(a2, b2, λ)

k 6= `, odd/odd J̃ = p(a2, b2, (ab)max(k, `), λ)

f not odd

m = n, even J̃ = p(a2, λ)

m = n, odd J̃ = p(a, λ)

m 6= n, odd/even J̃ = p(a2, b2, λ)

m 6= n, even/even J̃ = p(a2, b2, ab, λ)

m 6= n, odd/odd J̃ = p(a, b, λ)

(19)

Figure 2 shows the small-amplitude solutions
created at bifurcations that are representative of
all bifurcations from the origin with multiplicity 1
or 2. Only one representative of each group orbit
of solutions is shown. The group is D4 × Z2 or
D4, depending on if f is odd or not. The size of
the group orbit is indicated by the small number.
When f is odd, the symmetry group is D4 × Z2,
and the positive and negative solutions are related
by the symmetry σ ∈ Z2, since σ · u = −u. On the
other hand, when f is not odd and the symmetry
group is D4, the positive and negative solutions are
either distinct (if m and n are both odd) or related
by a symmetry of the square (if m or n is even).

The upper row of solutions in each case of Fig. 2
has f(u) = λu + u3, and the solutions are some
multiples of the eigenfunctions shown, plus harmon-
ics. The solutions below these are obtained with
f(u) = λu+2u2 +u3. (We set λ to be π2 below the
bifurcation value.)

Figure 2 is divided based on the cases when f
is not odd in Table 19. When f is odd, one must
first do the reduction (m, n) = r(k, `) and then
find the appropriate entry in Table 19. For exam-
ple, (m, n) = (2, 4) = 2(1, 2) is shown in Fig. 2.

When f is odd, the normal form for the (2, 4) case is
the same as the (1, 2) case. Note how the lower-left
corner of the (2, 4) solutions are the same as the
whole square in the (1, 2) case, when f is odd. The
two mixed-mode solutions in the (2, 4) case are re-
lated by a hidden translational symmetry, as shown
in Fig. 1, but they are in different D4 × Z2 group
orbits.

The case where m = n and both are odd
deserves special attention because it is the most
“generic” case. For general regions the eigenvalues
of the Laplacian typically have multiplicity 1, and
there are no reflections of the region that take an
eigenfunction into its negative. For this reason, we
have explored the bifurcation at (m, n) = (1, 1) in
greater depth, focusing on the effects caused by dif-
ferent types of functions f . The results are shown
in Fig. 3.

When f is odd, there is a pitchfork bifurca-
tion as shown in the first row of Fig. 3, where
f(u) = λu+ u3.

When f is not odd, the plus and minus branches
are no longer related by the symmetry u → −u.
However, if f is C2 and f ′′(0) 6= 0, then f does
not satisfy condition (10). In the middle row of
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Fig. 2. The solution types which bifurcate at λ = λm,n = (m2 + n2)π2. The five cases shown are based on the classification
in Table 19 when f is not odd. Solutions for f odd are shown above solutions obtained with f not odd. The eigenfunctions
listed correspond to the small-amplitude solutions when f is odd. Only one solution in each group orbit is shown; the number
indicates the size of the group orbit. The CCN solution for the square is the one whose eigenfunction structure is ψ1,2 +ψ2,1.

Fig. 3, we consider the bifurcation diagram with
f(u) = λu + u3 if u ≥ 0 and f(u) = λu + u5

if u < 0, which does satisfy all the conditions of
Theorem 2.2 (the CCN conditions).

If f ′′(0) 6= 0, then the bifurcation at the ori-
gin is transcritical, as shown in the bottom row of
Fig. 3, where f(u) = λu+ u2 + u3. This is typical
of the case where f is not odd.

It is helpful to plot some D4 × Z2-invariant
quantity, such as J(u), ‖u‖ (the L2 norm) or ‖u‖∞
(the supremum norm), in the bifurcation diagrams.
We prefer to plot

√
J(u), ‖u‖2 or ‖u‖2∞, because

the curves are asymptotic to straight lines near
the bifurcation if f(u) = λu + u3, or more gen-
erally if f is odd, f ∈ C3, and f ′′′(0) 6= 0. This
asymptotic linearity can be proved for the bifur-
cation from a simple eigenvalue [Rabinowitz, 1986]
using a Liapunov–Schmidt reduction of the bifurca-
tion equations. Our numerical results in Fig. 3 in-
dicate a very slight deviation from a straight line in
the bifurcation diagram of the positive branch when

f(u) = λu+u3 (upper row) and ‖u‖2∞ is plotted as
against λ (right column).

Now we focus on the bifurcation diagram for
f(u) = λu+ u3, and consider the branches that bi-
furcate from the origin at λ ≤ λ2,3 = 13π2. This
does not include any of the eigenvalues with mul-
tiplicity 3 or more, so Table 19 is sufficient. These
branches are shown in Fig. 4.

Observe in the figure that one, two, or three
curves bifurcate from the origin when λ is an eigen-
value of −∆. The next few paragraphs will explain
this.

At a bifurcation from a simple eigenvalue (m =
n), there is a pitchfork bifurcation that creates
two solutions with the same action J . Hence one
branch is observed bifurcating from 2π2 and 8π2 in
Fig. 4. For the superlinear problem it is well known
[Rabinowitz, 1986] that the nontrivial branch exists
for λ < λm,m, as indicated in the figure.

According to Table 19, the double eigenval-
ues lead to two types of bifurcation. If k or ` is
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Fig. 3. Bifurcation from the origin at λ = λ1,1 = 2π2. In each row the same f is used, but two different functions of u are
plotted, as indicated. The first row is obtained with an odd f . In the second row, f is not odd, but f ′′(0) = 0. The third row
has a nonodd f with f ′′(0) 6= 0. The Morse Index of each solution is either 0 or 1, as indicated in the figure on the left.

even (where (m, n) = r(k, `), and gcd(k, `) = 1)
then there are two types of solutions that bifurcate:
pure modes and mixed modes. Near the bifurca-
tion, the pure modes are asymptotically a multi-
ple of an eigenfunction ±ψm,n or ±ψn,m, defined
in Eq. (2). The mixed modes are asymptotic to a
multiple of one of the four combinations of eigen-
functions ±ψm,n ± ψn,m. (Note that these linear
combinations are themselves eigenfunctions of −∆.)
When ‖u‖ or J(u) is plotted against λ, all four
pure modes make one branch, and all four mixed
modes make another branch. This is what we ob-
serve for (m, n) = (1, 2) and (2, 3) in Fig. 4. The

bifurcation in this case is a standard stationary
bifurcation with D4 symmetry. See [Golubitsky
et al., 1988].

On the other hand if k and ` are both odd, as
in (m, n) = (k, `) = (1, 3), then the bifurcation
is more exotic. The mixed-mode solutions separate
into two types: The plus solutions are asymptoti-
cally a multiple of ψm,n+ψn,m, and the minus solu-
tions are asymptotically a multiple of ψm,n − ψn,m.
The plus and minus solutions are separated due
to the terms involving (ab)max(k, `) in Table 19.
Hence there are three branches bifurcating from λ1,3

in Fig. 4.
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Fig. 4. Bifurcation diagram showing
√
J as a function of λ, for f(u) = λu+ u3. Only the primary branches (the ones which

bifurcate from the origin) are shown. The MI is indicated by the small numbers. The dots indicate where the MI changes
at secondary bifurcations which create solutions that are not shown in this figure. More details of the three branches that
bifurcate from λ1,3 are given in the following two figures.
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Fig. 5. Details of Fig. 4 for the branches that bifurcate from λ1,3. The supremum norm, ‖u‖∞, is plotted against λ because
it gives a good separation between the branches. The solutions with MI 5 are solid lines, and the solutions with MI 6 are
dotted lines. This figure was computed with Nmax = 9 (81 modes).
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Fig. 6. Further details of Fig. 4. The plus solution undergoes a bifurcation with D4 symmetry at λ ≈ 40, creating the vertex
and edge solutions. These secondary solutions in turn bifurcate, creating a branch of tertiary solutions that exist for λ in
the approximate interval [35.1, 37.5]. These tertiary solutions have no symmetry. The Morse indices are indicated by the line
type: MI 6 are dotted, MI 7 are solid and MI 8 are dashed lines. Along with the black region, showing where u < 0, the
contours at u = 1/3‖u‖∞ and u = 2/3‖u‖∞ are shown to better see the symmetry of the patterns. This figure was computed
with Nmax = 7 (49 modes).

(a) (b)

Fig. 7. Convergence as the number of modes, M = N2
max, increases. (a) shows the λ value of the secondary bifurcation of

the plus solution seen in Fig. 5, as a function of Nmax. (b) shows the L2 norm of the PDE, ‖∆u+u3‖2, as a function of Nmax,
for the CCN solution. (The CCN solution on the square is asymptotically proportional to ψ1,2 + ψ2,1 at small amplitude.)

The solutions which bifurcate from λ1,3 are the
most interesting, and we have studied them further.
Near the primary bifurcation, the pure mode has
MI 6 and a larger J (or ‖u‖) than the plus and mi-
nus solutions, which have MI 5 and approximately
the same J . These primary solutions undergo
secondary bifurcations at λ approximately 59, 53,
and 40, as described in the next two figures.

Figure 5 shows the two secondary bifurcations
for larger λ values. In addition to the three pri-
mary branches (plus, minus, and pure mode), Fig. 5
shows a secondary solution branch with solutions
of the form aψ1,3 + bψ3,1 with a and b nonzero and
a2 6= b2. We call these solutions rectangles because
they have the symmetry of a rectangle. The rect-
angle branch starts at a pitchfork bifurcation of the



Newton’s Method and MI for Semilinear Elliptic PDEs 817

plus solution at λ ≈ 53 that creates rectangles with
ab > 0. The rectangle branch has a saddle-node bi-
furcation at λ ≈ 61, then takes part in a transcriti-
cal bifurcation of the pure mode solution at λ ≈ 59.
After this transcritical bifurcation, the rectangles
have ab < 0. This transcritical bifurcation is to be
expected, because the pure mode (a, 0) is forced to
be a solution for λ < λ1,3 by the hidden transla-
tional symmetry, even though the system does not
have the symmetry (a, b)→ (a, −b).

The plus solution undergoes another secondary
bifurcation shown at λ ≈ 40, in Fig. 6. This sec-
ondary bifurcation is a standard stationary bifur-
cation with D4 symmetry [Golubitsky et al., 1988].
Eight solutions bifurcate off each plus solution: four
edge solutions where the zero contour moves toward
an edge of the square, and four vertex solutions,
where the zero contour moves toward a vertex of
the square.

It is interesting that the edge and vertex solu-
tions themselves undergo a tertiary bifurcation that
creates what we call tertiary solutions. These solu-
tions have no symmetry; the eight elements of D4

each take the zero contour to a different set. There
are eight tertiary solutions with u > 0 inside the
zero contour and eight tertiary solutions with u < 0
inside the zero contour. Note the resemblance of
Fig. 6 to the lower-left panel of Fig. 7.2 on p. 351
of [Golubitsky et al., 1988].

Finally, we did some tests on the convergence
of our results as Nmax increases. Figure 7 shows the
results. We see that the λ value of a certain bifurca-
tion stabilizes quite nicely in Fig. 7(a). Figure 7(b)
shows the L2 norm of ∆u + u3, which should con-
verge to 0 as Nmax → ∞. The rather slow conver-
gence might be due to roundoff error, or it might be
due to the amplification of high-frequency modes by
the Laplacian. These high-frequency modes domi-
nate the error in an ideal implementation of our
algorithm, since the algorithm attempts to find a
function for which the projection of ∆u + u3 onto
the Galerkin space G is zero.

5. Thoughts on Proving Existence
and Convergence Theorems

In this section we discuss ideas which, if proven,
may lead to existence and convergence results.
Since the existence theorems we desire to prove will
be of a constructive nature, we find it likely that
these two types of results will share lemmas. It

is thus natural to consider them both at the same
time.

Our ultimate goal is to completely describe all
solutions to (1), i.e. to prove the existence of all so-
lutions and understand the nodal structure of said
solutions. This is a very hard problem which has
been worked on by many outstanding mathemati-
cians. What we outline below is meant to be a
suggested research direction for accomplishing that
goal. We feel this approach has a fair chance of be-
ing fruitful, partly because it makes more precise
the intuitively felt relationship between the eigen-
functions of −∆ and solutions of arbitrary MI and
nodal complexity to (1). Of course convergence
results pertaining to our numerical algorithm are
related and also desirable.

We have observed that the low MI solutions
are of simple nodal structure, and thus should have
eigenfunction (Fourier) expansions with the first
few coefficients dominating. It thus seems reason-
able that for sufficiently large M ∈ N, the M ×M
matrix A = A(u) = (J ′′(u)(ψi, ψj))Mi,j=1 should ap-

proximate D2J(u) well. One can view the approx-
imation as good in the following sense. Firstly,
one should have sig(D2J(u)) = sig(A) and that
the first few eigenvalues of D2J(u) and A closely
agree. Secondly, the first few eigenvectors of A in
RM , thought of as coordinates in the Galerkin space
G = span{ψi}Mi=1, appear to closely represent the
first few eigenfunctions of D2J(u) in H. If D2J(u)
is invertible this seems provable. It is not clear how
to handle the case where the Hessian has one or
more zero-eigenvalues. Given a nondegenerate solu-
tion v ∈ H, we propose that given ε > 0 there exist
M ∈ N, v∗ =

∑M
i=1 aiψi ∈ G = GM , and δ > 0 such

that∇Ĵ(a) = 0, ||v∗−v|| < ε, and Newton’s method
(continuous or discrete) converges to v∗ in G given
any initial approximation v0 with ||v∗ − v0|| < δ.
Experimentally, one uses a small step size to ap-
proximate the continuous Newton’s flow

u′(s) = −(D2J(u(s)))−1∇J(u), u(0) = u0 .

One might use this connection analytically to either
prove an existence result from a discrete conver-
gence result or the other way around. Multiplying
by D2J(u(s)) and undoing the chain rule results in
the initial value problem

(∇J(u(s)))′ = −∇J(u(s)), ∇J(u(0)) = ∇J(u0) .

Then ∇J(u(s)) = ∇J(u0)e
−s, so that the gra-

dient goes to zero and u′(s) = −(D2J(u(s)))−1
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∇J(u0)e
−s. If the inverse (pseudoinverse) of

D2J(u(s)) could be controlled, then convergence of
the flow to a critical point might be proven. The
fact that J satisfies the Palais–Smale condition (see
[Rabinowitz, 1986] or [Castro et al., 1998]) or a
similar argument might be useful in showing that
lims→∞ u(s) exists. The coercivity of J (see [Castro
et al., 1997]) might also be appealed to. It seems
reasonable that the signature should be constant
along these flows, at least when the limit (solu-
tion) is nondegenerate. Perhaps the most tractable
of our conjectures is that there exist initial values
of arbitrarily large signature, whereby convergence
along signature-invariant flows would provide the
existence of infinitely many solutions.

It is well known that the basins of attraction
for continuous Newton’s method are more straight-
forward than those of discrete Newton’s method,
typically lacking the fractal boundaries and ac-
companying dynamical complexities. As in simple
cases (where it can be easily proven), continuous
Newton’s method when applied to the variational
formulation of (1) appears to have connected basins
with measure zero boundary. Obviously if one could
describe the basins analytically and if there were
infinitely many of them, then one would have the
highly desirable infinitely many solutions existence
result.

Together with our Summer 1999 REU student
Joel Fish, we have made some progress towards
understanding these basins and their boundaries.
There are simple examples where continuous New-
ton flows terminate in finite time to points that
are not roots, e.g. where a zero derivative is en-
countered. The inflection sets (where D2J(u(s)) is
not invertible) almost certainly contain such points.
The experimental and novel work of our REU stu-
dent suggests that the collection of initial points
that converge to such “bad points” themselves
belong to the set

Γ = {u ∈ H : J ′(u)(ei) = 0 for some eigenfunction

ei of D2J(u(s))} ,

which may itself be composed of infinitely many
orthogonally intersecting manifolds. It appears to
be the case that the inflection sets form part of the
boundaries of the basins of attraction for our New-
ton flows, and that part of Γ forms the rest of the
boundaries. Certainly it is clear that all solutions
must lie in Γ, possibly at the points where infinitely
many (all but one) manifolds intersect orthogonally.

Degenerate solutions which belong to both an in-
flection set and Γ exist and add to the difficulty of
finding a proof. Finally, we have experimentally ob-
served a subset of Γ that very closely resembles the
manifold S used in CCN in that it appears to be
a codimension 1 submanifold diffeomorphic to the
unit sphere which contains all nontrivial solutions
to 1.

If everything in this section could be proven,
one could infer the existence of infinitely many solu-
tions! The authors feel this research direction shows
a lot of promise but realize that parts of the argu-
ment might be very hard.

6. Conclusions and Future Efforts

We are in the process of duplicating this experiment
for the case where Ω is a disk in R2, where much
is known about radial solutions but not so much
about the nonradial solutions. For that experiment,
we can use the well-known basis built from Bessel
functions.

All of our numerical experiments support our
“zero-set conjecture”, which states that the CCN
solution has an internal zero set which intersects the
boundary ∂Ω. In particular, if proven this would
imply that the MI 2 CCN solution on the disk is
nonradial. When Ω = (0, 1) × (0, 1), the solution
possessing “radial symmetry” is the one correspond-
ing to ψ1,3 + ψ3,1 (see also [Costa et al., 1999]).
Our numerical experiment provides a MI greater
than 2, confirming that this is not the CCN solu-
tion. Using generic eigenfunction generating code
for arbitrary regions in the plane, it should be pos-
sible to repeat this experiment for annuli, triangles,
dumb-bells and other interesting shapes where un-
like the square (sine functions) and the disk (Bessel
functions), the eigenfunctions may not be known in
closed form. Some doubt has been expressed that
these experiments will be entirely successful, as ac-
curate eigenfunction generation is often difficult. It
is our belief that all important qualitative features
will be revealed by our method even in those cases,
though of course accuracy of approximation will be
limited by the accuracy of the basis representation.
It should be pointed out that the eigenfunctions of
−∆ make an excellent choice as a basis for our ellip-
tic problems since they are intrinsically related to
solutions, but they are not the only choice. In the-
ory, any orthonormal basis could be used, as long as
one had reason to be confident that, once ordered,
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the solutions depended heavily on the first finitely
few and not so much on the remaining infinitely
many. For our problem one does indeed observe
that the coefficients of the higher modes become
quite small, giving such confidence.

An interesting problem to try with the GNGA
method that makes clear the potential to solve
problems other than elliptic superlinear ones is the
simple ODE y′ = y on Ω = (−1, 1). Using a
basis of normalized Legendre polynomials and the
functional

J(w) =

∫
Ω
(w′ − w + c)2 dx, w(0) = 0

one gets immediate convergence to y − c = w since
J is quadratic and hence the function ∇J(w) one
is applying Newton’s method to is linear. It seems
worth pursuing the applicability of GNGA to a very
wide class of variational problems, e.g. any problem
where

1. One has a functional whose critical points are the
desired solutions.

2. One has an orthonormal basis for the function
space the solutions lie in.

3. One knows that the solutions depend most heav-
ily on the lower modes.

Certainly we can apply this method to many el-
liptic problems with varying boundary conditions.
We believe that we can also apply the method
to hyperbolic and even parabolic problems. Since
our interest is primarily in proving existence theo-
rems in elliptic PDE, we are hopeful that GNGA
will be useful in providing insight (such as the MI
of solutions) and may be of direct use in proving
such theorems by analyzing the continuous Newton
Flow.
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