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1. Introduction

Let £ be a smooth bounded region in RY, A the Laplacian operator, and f € C!
(R,R) such that £(0)=0. We will take f to satisfy the assumptions below and consider
the nonlinearity f(u) — ¢, where |¢| will be taken to be sufficiently small. We assume
that there exist constants 4>0 and p € (1, ¥+2) such that | f/(u)| < A(ju|P~! +1) for
all u€R. Hence f is subcritical, i.e. there exists B>0 such that |f(x)| <B(lu|? + 1).
Also, we assume that there exists m € (0, 1) such that

S@u —2F (u) 2 muf (u), (1)

where F(u)= fou f(s)ds, for all u€R. Finally, we make the assumptions that f sat-
isfies

S for u#0 and lim I(—ono, 2)

u luj—o00 U

fiuy>
i.e. that f is superlinear. In this paper we study the boundary value problem

Au+ f(u)y—e=0 in Q
{u (u)—e in 3)

u=0 in 0.
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Let H be the Sobolev space HOI‘Z(Q) with inner product {u,v) = fn Vu-Vovdx (see [1]
or [2]). We define J: H — R by

J)= [ (41908 = P+ oup dx =)+ [ w,

where Jy is the functional for the case ¢=0 (see [3]). By regularity theory for el-
liptic boundary value problems (see [2]), u# is a solution to (3) if and only if u is
a critical point of the action functional J. Let 0 < 1) <4, <43 < --- be the eigenvalues
of —A with zero Dirichlet boundary condition in 2. We prove the following Main
Theorem:

Theorem 1.1. Let ¢ be a sufficiently small positive real number (semipositone
case). Then (3) has at least four nontrivial solutions: wo<0 in €2, oy <0 in , wa,
and . The function wf has a nontrivial positive part and the function
changes sign, ie. has nontrivial positive and negative parts. If nondegenerate,
the solutions have Morse index corresponding to the their subscripts. Further-

more,

J() 2 (D) +J(o])>J (o) + (o] ) +J(wo).

Remark 1.2. If we assume that condition (1) holds only for |#|>p, some p>0, we
can extend all of this paper’s proofs (and those of [3]) to hold for a wider class
of nonlinearities. We need the assumption that f’(0)<A4, for our proofs. Since (1)
implies that f7/(0) <0 and we already have 1, >0, we need only add this assumption
if we assume this weaker form of (1). The expanded class includes, for example,
nonlinearities of the form f(u)=Au+u°, where f/(0)=/A</,.

While the proof of Theorem 1.1 does follow the method of proof given in [3], each
new step requires modification since f(0)# 0 implies that there is no longer a trivial
solution; the local minimum of the action functional now corresponds to the nontriv-
ial solution wy. As this new result demonstrates, the general technique is useful for
obtaining sign-changing existence theorems and paves the way for obtaining further
generalizations to an even wider class of nonlinear elliptic PDEs, including asymp-
totically linear, sublinear, and p-Laplacian type problems. In fact, we have recently
determined that the sign-changing existence proof for the p-Laplacian case requires no
modification from our original proof in [3]; only the assumptions of f need change.
In [4] we are taking the different approach of applying the original ¢ =0 result as a tool
rather than following its method.

Additionally, this paper notes a possible loosening of the coercivity condition (1)
(see Remark 1.2), contains a more detailed analysis of the behavior of the action
functional along certain key paths (see for example (11)), and reports current progress
in numerical investigations of solutions. We refer the reader to [5] for a detailed
explanation of the numerical algorithm used and [6] for a general development of
constructive variational methods.
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Remark 1.3. If we assume ¢ is negative (Positone case) and that |¢| is sufficiently
small, we can obtain a similar existence result where the roles of positive and negative
parts are reversed. That is to say, (3) has at least four nontrivial solutions: wy>0 in
Q, of>0in Q, @y, and w,. The function w; has a nontrivial negative part and
the function w, changes sign, i.e. has nontrivial positive and negative parts. Since the
argument is nearly identical to that of Theorem 1.1, we omit the proof and consider
only the semipositone case ¢>0 in the sequel.

To the best of our knowledge, [3] was the first to establish the existence of a sign-
changing solution to (3) for a general region in the superlinear case where ¢ =0, and
this result in turn is the first to establish it where £¢#£0. We wish to acknowledge the
complementary works of [7] (which preceded [3]) and [8] (which is currently in sub-
mission), where completely different topological techniques are leading towards closely
related results. Their and our methods are revealing different information and should
both prove useful in future investigations. In the semipositone and radial symmetry
cases, much is known about the existence of positive solutions and, respectively, in-
finitely many radial solutions (see for example [9-15]). In this paper, our focus is on
the existence of the sign-changing solution w,; we emphasize that neither f nor Q
need any special symmetry.

For completeness, and due to the fact that these proofs occur naturally in our anal-
ysis, we also establish the existence of the negative solutions wq and w;, as well as
the mostly-positive solution w;. We are unable to establish the existence of a purely
positive or a sign-changing solution which changes sign exactly once. As observed in
our numerical experiments and work such as [11] and [10], there are problems in our
class where such solutions do not exist. By treating f’(0) as a bifurcation parameter
or by choosing ¢ sufficiently small, one can sometimes obtain the existence of these
“nodally pure” solutions.

In the final section we include a brief outline of a numerical algorithm based on
our variational proofs (see [5]). Application of the algorithm requires an understanding
of the variational structure, and conversely, provides insight in to it. This algorithm
is useful not only for calculating approximations to solutions, but also as a tool for
investigating the topological and geometrical structure of the submanifolds and subsets
containing the critical points and verifying the nature of bifurcation. It is our belief
that such investigations will aid us in understanding the variational structure of related
problems, hopefully to the end of obtaining more solutions of higher Morse index and
a more complex nodal structure to this and related problems.

2. Preliminary lemmas

Our assumptions on f imply that Jy, J € C*(H,R) (see [16]) and that

J’(u)(v)z(VJ(u),v)=/Q{Vu-Vv—f(u)v+£v} dx, forall veH. )
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Define y:H — R by y(u) = (VJ(u),u) = |Jul* + [, {eu —uf(u)} dx = yo(u) + & [ udx
and compute

y’(u)(v):(Vy(u),v)=2/Q Vu-Vvdx—/s;f(u)vdx—-/S;f'(u)uvdx. (5)

Definition 2.1. For u € L'(Q), we define u,(x)=max{u(x),0} € L'(Q) and u_(x)=
min{u(x),0} € L'(?). If u€ H then u,,u_€H (see [17]). We say that uecL!(Q)
changes sign if u, #0 and u_ #0. For u#0 we say that u is positive (and write
u>0) if u_ =0, and similarly, u is negative (u<0) if u, =0.

In Lemma 2 of [3] we showed that the map »: H — H defined by ¥ — u, is continu-
ous. We observe that this is also true as a map from L?"'(f) into itself. An important
consequence of Lemmas A.3 and A4 of [17] is the fact J(u)=J(us+)+J(u_) and
() =y )+ y(u_) for all u€ H.

We define S C H and various subsets of S:

S={uc H-{0}: y(u)=0, y'(u)(u)<0} ={uec H—{0}: J(u) > J(Au), A>0},
Se={ueH: y(u)=0, 7' (u)u)>0},

Sy={ucH:u, €S, u_eS}, S;={ucH:u, €8, u_€S.},
G'={ueS:u_=0}, G ={ueS:u; =0}

(6)

We define W+ and W™ to be the connected components of S —S; containing G*
and, respectively, G~. We will see that the disjoint union W+ U S UW ~ =S. We note
that nontrivial solutions to (3) are in SUS,, one-sign solutions are in G, UG, US,,
sign-changing solutions are in S; US,, and S, C W*. We will see that S, is “inside”
S, i.e. S separates S, from infinity, and thus define w to be mostly positive if u; € G*
while u_ € S,. Note that 0 € S,, so that positive functions are also mostly positive. We
restate Theorem 1.1 in terms of the sets defined in (6):

Theorem 2.2. There exists solutions wg € S, cofr €8, w €G™, and v €8 to (3)
with the variational characterizations J(wy)= ming, J, J(»])= ming, J = miny+ J,
J(wy )= ming- J = miny - J, and J{w,;)= ming, J.

We summarize important properties of J, S, and S, which we prove in a series of
lemmas:

(a) Jlsus. is coercive, ie. J(u)— oo as |ull| — oo in SUS,. Also, there exists §>0
with [[u]| > for all u€S. o )

(b) If u H — {0}, then there exists a unique 4= A(u) € (0,00) such that iu € S. More-
over, J(Zu) = max;»pJ(Au) >0 and there exists ¢>0 such that for u €S we have
c<J(u). _

(c) If ue H with fﬂudx<0, then there exists a unique A.=A.(x)€ (0,A(x)) such
that A.u € S.. Moreover, J(Au) has a local minimum at A=/, and there exists
K >0 such that for u€ S, we have —K <J(u) <0.
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Fig. 1. Graphs of J(Au) and y(Aiu).

(d) The set S is a closed C'-submanifold of H. The set S, is closed and locally
(at least) a C! submanifold away from 0 € H.
(e) u€H is a solution to (3) < u is a critical point of J|s or J|s,-
Let u € H so that [, udx <0. Let us see that Fig. 1 represents the graph of ¢ :R —R
given by ¢(1)=J(Au); the graph of ¢ for ue€ H with fﬂudx=0 is the the same
except that the local minimum is at A, =0. For convenience, we overlay the graph of

y(Au) = A¢'(A). Note that
y)
D==ul* = | {F(lu)— ieu}d
$)=F1ul? = [ (PO~ dou} ax
so that
()= Alul? - / (ufGa)—aupdx and "=l ~ [ 4/ Gaax
93 Q

Clearly ¢(0)=0. Since f is superlinear, we also see that lim;_,,, ¢(41)= —oc. From
¢'(0)=¢f, udx, it follows that ¢ is decreasing at A=0. Also, ¢”(0)= ||u|*>0 and
¢"(4)| —oc as |—oo. Thus, there exists a unique local minimum of ¢ at >0
and ¢(4;)<0. Similarly, there exists a unique global maximum ;<0 of ¢|1<o and
¢7(A.3)>O There can be only one other possible critical point, a global maximum of
¢1,>0. To see that this critical point A3 exists and that J(J3)>0, we first need to prove

several lemmas.
Lemma 2.3. There exists §=06,>0 such that ||u|| > 6 for all u€Ss.

Proof. We first obtain an estimate for the term |s® f/(s)|. Since f/(0)<A4,, there exists
>0 and o>0 such that f’(s)<a<4; for all |s|<p. For |s| > p, since f is subecritical

we see that there exists f>0 such that | f/(s)| SA((lipl)f”1 +|s|?~1)=B|s|?~!. Then
for all s€R we have |f/(s)| <o+ B|s|?~! so that |s?f/(s)| <als|®> + B|s|?*!. Now
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consider u € S. We know that y(#) =0 and that y'(x)(x) <0, hence

22 - /Q (2 1) + uf (o) — e} dx = 9(a) + ]’ — /Q 2 f(u) dx

— 2__ 2 ot d 0‘
IulP — [ w7y ex <
Thus,

Il < 35700 e <l + w51 < 5l B

where we have used Poincare’s inequality and the Sobolev Imbedding Theorem (S.I.T.)
to obtain the imbedding constants A, and ¢. The above inequality implies that

1/(p—1)
nunz(‘“c;‘;“‘) oo

We take 0 to be the largest such lower bound. [I

The next lemma shows that Jsyus, is coercive and that J is bounded away from 0
on §.

Lemma 2.4. Let w, € SUS,={ucH:y(u)=0} with ||ug| — oc. Then J(u;)— oc.
Furthermore, given ¢ sufficiently small there exists ¢>0 such that infsJ > c>0.

Proof. Let &, = (1 —m/2 —m)d, /& o where || denotes the measure of the region (2

and m €(0, 1) is taken from equation (1). We assume that ¢ < £/2 so that the following
inequality holds:

l—mé_BZ—m (€2 N ]

1 5>0.
2 7\ =7 20 )

Note that given u € H, we have [, |u| dx < (|Q] f, «* dx)? <4/ j;ﬁ—'l]u”, For u € S, recall

that y(u) =0 so that ||u||* = [, {uf(«)— eu} dx. Thus, by making use of equation (1)
we see that for u € S US. we have

J(u):%||u||2~AF(u)dx+eLudx=[z{%uf(u)—p(u)+§u} dx

Zl—rzﬁ./()uf(u)dx-l—%/ﬂudx——-l—%ﬂ [Hu”z-f-a/(;udx] +§/(;udx
Q
"+ 2@ -m [ uaxz S0 -5 Bl @




J.M. Neuberger | Nonlinear Analysis 33 (1998) 427441 433

From the quadratic lower bound in (8), we see that given u = u; € SUS, with |lu|| —o0,
we have J(uy)— oo. Furthermore, since given u €S we have ||u|| >4, it follows by
(7) that

1-m |Q| l—m l—m,
> S Y T e i Slull—2 s> -~ M52
s 2l | 252l =25 ) 2 5> 5 e =es0. O

In fact, we now see that given u € H, there exists a unique A>0 so that Auc S
and that J(Au) > c¢>0. That is to say, we now have the third critical point X of &,
which completes the proof of parts (a) and (b) in our list of important properties of
J and S. The proof of part (c¢) is completed in the next lemma, where we provide
a lower bound for J “inside” S, or more relevantly, for J|s,.

Lemma 2.5. There exists K >0 such that J(u)> —K for all ueS..

Proof. For u € S, we have y(u) >0, whence we see that
Jul? = [ s -eupdx > [ urax
Q Q

Since f is superlinear, we see that there exists 4; and A4, so that | f(u)| >4, |u| —
It then follows that

1—m
J(u)> —E——/Quf(u)dx—a/s;htldx

>lom [ / {A1|u12—Az|u|}dx]—s J e

=f£(i2—_-ﬁ2/9]u]2dx—(A2+£)‘/ﬂluldx

> ‘(glm’")( [ |dx) ~ G+ [ s

> —K =—K(A41,42,m,|8, ). 9)
We take K >0 so that inf (ucp: you) > 0y J(#) = Infg, J =—K. U

Note that since y is continuous, SUS, is closed. Since the open set J ‘1(—oo,§)
separates S and S., we see that S and S, are closed as well. Since y(u)=0 and
7'(u)(1) <0 for all u€ S, we appeal to the Implicit Function Theorem to conclude that
S is a codimension 1 C'-submanifold of H. Since Vy(u) is nonvanishing on S, — {0},
we see that S, — {0} is locally a submanifold. This concludes the proof of part (d)
of our list of properties. The proof of the final part (¢) is made by the following
lemma.
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Lemma 2.6. Functions u € H are solutions to (3) if and only if they are critical points
of J|s or Jls,.

Proof. We first recall that, by regularity theory for elliptic PDEs, u is a weak solution

if and only if it is a classical one and that by definition critical points of J are weak

solutions (see [2]).

(a) If u€ S is a critical point of Jls, then by the method of LaGrange multipliers,
there exists A €R so that VJ(u)=AVy(u), since Vy(u) is a normal vector to §
at u. Observe that

0="y(u)=(VJ(u),u) = H{Vy(u),u). (10)

Since for u €S the last inner product is negative, we see that A=0 and hence
VJ(u)=0.

(b) Ifu €S, is a critical point of J|s, , first observe that u # 0 since J'(0)(w) =&, wdx
#0 for some we H. For u#0, u€S,, we have (Vy(u),u) >0, whence again
equation (10) implies that VJ(u)=0. O

3. Existence of the small negative solution wy

Let K be as in Lemma 2.5 so that infg, J = —K and take v, € S, with J(v,) | —K.
It follows that y(v,) =0 and y'(v,)(v,)>0. Since J is coercive on S, (see Lemma 2.4),
we can invoke the S.I.T. and without loss of generality find v € H so that

vy —0v in H, vy —v in LP*L

If we suppose that the convergence in H is not strong, then as in [3] we may assume
without loss of generality that [|v|| < liminf |jv,|, whereby y(v)< liminf y(v,)=0.
Note that there are only two possible regions of H where y(v) <0 may hold.
1. If v is “outside” S, then there exists <1 so that xv €S. Since v, € Sx and a <1,
it follows that J(av,) <0 so that J(av) < lim inf J(av,) < 0. This contradicts J|s > 0.
2. If v is “inside” S, then in fact v is “inside” S.. Thus there exists a>1 such that
av € Sy, whence J(av)<J(v)< liminf J(v,) = —K. This contradicts the definition
of K.
The above two contradictions imply that we have v, —» v in H and J(v)= — K. We
can easily show that v is a solution to (3). One of several proofs is that the “inside”
of S is an open subset of H, so that v minimizes .J on an open set.
We now show that v is a negative solution. Suppose to the contrary that v, # 0. Since
v is a solution it follows that y(v,.) =0 and v, € S, whereby J(v+)>0. This leads to the
inequality J(v_)=J(v)—J(v4)<J(v) = —K, which contradicts J(v) = —K = ming, J
since J(v_)<0 and y(v_)=0 imply that v_ €S,. We set wo=v, which completes
the proof of the existence of our small negative solution of (3). Note that since wp
is a local minimum of J, if it is a nondegenerate critical point then it is of Morse
index 0.
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J(r(t))
SR SGERAEREEEELEEED - J(auy +bu_)
Haup)
Tr(55)) - > i
‘ ' J(bu_)
r(0) € Gt r(%)‘e 5, r(1) € G-

T(ﬁ;) €5,

Fig. 2. Graph of J(r(¢)).

4. Construction of paths on S

In this section we construct explicit paths on S and provide properties of the func-
tional J restricted to these paths. From this analysis we will obtain the remaining three
solutions, w}, w;, and w;.

Let u€S be such that u,,u_3#0, i.e. u changes sign. Then there exist positive
constants a and b such that au,,bu_ € S. We define the convex linear combination

zZ(t)=(1 — t)auy + thu_

and as in [3], we consider a € C!([0,1],(0,00)) so that we can construct the smooth
path »:[0,1]— 8 by r(¢)=a(r)z(¢)€S. In Fig. 2 we have displayed the graph of
J(r(t)) with several important features labeled. Let us see that Fig. 2 is correct. Eas-
ily we see that r(0)=au. € G*, r(af(a +b))=u, r(})=au, + bu_€S,, and r(1)=
bu_ € G_. Since r is continuous, for ¢ near 0 we see that r(#)_ is near 0 and hence
Wrt)-) <0, y(r(t);)=v(r()) — y(r(t)-)= — p(r(¢)-)>0. Similarly, for ¢ near 1 we
have p(#(¢);+)>0 and y(r(¢)_)<0. Also, for some ¢ € (0, %) we have r(¢)_ € S, which
implies that y(r(¢)_)=0, y(r(¢)+)=0, r(¢); € G, and hence r(¢) € S,. Since J|s >0,
we see that

J(rO0) =J(au ) <J (r(%)) =J(auy + bu_),

J(r(l)):J(bu_)<J(r(é—>) =J(auy + bu_).

For 1 # 3,
Jr)) =J(r()y) + J(r(1)-) <J(aus ) + J(bu_) =J(3).

Thus, we see that the minimum J(r(f)) = min,¢o, ) occurs when r(f) € S,. Since there
also exists ¢>0 (with c<b) so that cu_ €S,, we can explicitly determine the above
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f as ¢/(b + ¢). From the definition of J and » we obtain

0
EJ(r(t))=J’(r(t))(r'(t))=/Q{V(r(t))'V(r'(t))-r'(t)f(r(l))}dx

!

x'(1)

20 yr(#)) + —V(r(f) ) — —v(r(t)+)“ = )V(r(t) ) (D)
for all £ €(0,1). Since y((r(c/(b+ ¢)))_)=7y(cu_)=0 and y(r(% )= )=y(bu_)=0, this
confirms that indeed J o » has a unique minimum at ¢=c/(b + c) and maximum at
t= % As a new piece of information not specifically used in our proof but of intrinsic
interest in understanding the behavior of the functional J on S, we note that

7(r(1)-)

201022 |12 — bhu. b_d]
t(l 1) [“(t) tlu-|| /Qa tu_ f(abtu_)dx

1
t{l—1p

[Zmbz - 2

1—t

f

/ u_f(abtu_)dx] (12)
Q
—»eocb/u_dx as t —0.

o

Similarly, the limit as ¢t — 1 is given by —eoa fﬂu+ dx. Thus in this case (J/0t)J(r(t))
<0 for +€{0,1}, as opposed to (8/0t)J(r(¢))=0 for t€{0,1} in the original ¢=0
case found in [3].

We conclude this section by further analyzing the topological properties of important
subsets of H given in (6), as well as defining three additional subsets of S. As in [3],
we can easily show that G* and G~ are connected. Indeed, given any two one-sign
elements of the same sign, we can project the convex linear combination joining the
two in a line segment onto S. This path lies entirely in the appropriate set Gt or G™.
We define subsets of sign-changing elements of S by first recalling that if ¥ € H with
u,,u_ #0 then there exist a,b>0 such that au, € G* and bu_ € G—. With a and b
so chosen for each sign-changing v € H,

.§'={u€S:u+,u_7é0},
at 5. a 1 a— 5 a 1
S —{uES.a+b<2} and S —{uES.a——+b>2}.

- . A at A .
We observe that we have the disjoint union =5 US;US and that we can obtain

equivalent definitions (see the paragraph following (6)) W+ =G+ US" and W- =G~
US . It is clear that W+ and W~ are the (only) two connected components of S — .5,
and that S; separates Gt from G~ (see also [3].) From the continuity of y and the map
u— u,, we see that §1, S», G, and G~ are closed, as well as that §+, S ,8=8" U.§+,
W+, and W~ are open. Direct proofs that the above subsets are connected are easy,
with the exception of S; and Ss; since we do not need these two sets to be connected,
we will not pursue the matter further.
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S. Existence of the remaining three solutions

We have seen that wg € S, is a negative solution to (3). We claim that there exist
solutions wy €S, C W™, w; €G- C W™, and w, €S, so that

J(of)= np}ipJ: ngnJ, J(w)= rgiflJ: rgi_nJ, and J(wy)= rrgnJ.

Existence of the large negative solution: ;. Let {u,} C G~ be such that limJ (un) |
infg- J. By the coercivity of J and by again appealing to the S.LT., as in Section 3
it follows that without loss of generality there exists « € H such that u, — u in H and
u, —u in LP*!, Since the map u—u, is continuous in LP*!, it follows that u, = 0.
Since

/{uf(u) —eutdx= lim/{u,,f(u,,) — gup } dx = lim ||u,* > 6>0,
Q Q

we see that u=u_ #0. Suppose that u, 4 u in H. Then without loss of generality
[[ull < liminf [u,||, so that as before, y(u)< liminf y(u,)=0. Then there exists a |
so that ou € G~. This leads to a contradiction, since

J(au)< liminf J (o, ) < liminf J(u,) = inf J.
G-

Thus u, —u in H and J(u) = ming- J. Since forall u€ § =W~ —G~ the path r=r,
as constructed in the previous section provides #(1)€ G~ and J(r(1))<J (rG;HN=
J(u), we see that ming- J = miny - J. Since W™~ is an open subset of the C!-subma-
nifold S, we conclude that w;” =u is a critical point of J and hence a negative solution
of (3). Since | is a local minimizer of J|g, if it is a nondegenerate critical point it
has Morse index 1.

Existence of the sign-changing solution: w,. We take {u,} C S| so that J(u,) | infs, J.
Again appealing to the coercivity of J and the S.IT., there exists u€ H so that
uy —u in H and u, —u in LP*'. We can find additional elements as weak limits
in H and strong limits in L”*' of (u,); and (u,)_, but easily we see these in fact
correspond to u, and u_. Similarly to the above argument and that of [3], we see
that u;,u_ #0. We proceed by supposing that (u,); /> u in H, whereby (as before
without loss of generality) y(u#;)<0 and there exists «# 1 such that au, € G*. Also,
there exists $>0 so that fu_ € G~, whence we can construct z=oau, + fu_ €8S.
Then

J(z) < liminf{J(@un)s ) + J(Bun)_ )}
< Tim inf {7 ((un)+) +J((t)-)} = lim J(u,) = inf J.

This contradiction implies that (#,); —u,. in H. A similar argument shows that (u,)_
—u_ in H, whence we see that u, —u in H, J(u)= ming, J, and u €5). Exactly as
in [3], we use the separation property of S; and a form of the deformation lemma
to conclude that w;=u€S) is a sign-changing solution to (3). If nondegenerate,
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this critical point is of Morse index 2. This final step of the sign-changing exis-
tence proof can be found in full detail in [3], but for convenience, we outline it
below.

1. Assume that , is not a solution.

2. Construct the path r,, connecting the positive and negative parts (w; )+ and (w;)—.
3. Deform this path along the negative gradient flow.

4. Observe that the resulting deformed path still connects the positive and negative

parts of w;, and hence intersects §| at some element w’.

5. By construction, this new element w’ € S| satisfies J(w') <J(w), contradicting the
fact that w, minimizes J|s,.

Unlike the sign-changing solution in [3], we cannot conclude that w, changes sign
exactly once. An identical argument as in that document shows that (w,)~'(0,00) is
connected, there is only one positive “hump”. Since J(v)<0 for all v€S,, it may
be that (wz)_ can be decomposed in to a single negative “hump” on S (in G~ ) and
possibly multiple elements of S.. The key to the above analysis is the observation that
as a solution to (3), the zero extension of u=(w;)|4 to all of Q for any connected
component 4 C (w2) (R — {0}) satisfies p(u)=0. Thus, u€SUS,. If the one-sign
function u is positive, then u €S and J(u)>0 so that there may be only one such
positive portion of w,. As observed above, however, J|s, <0, so that we may not
conclude the same for negative portions u.

Existence of the mostly-positive solution: w7 . Let {u,} CS> be such that J(u,)] infs, J.
As a final application of the coercivity of J and the S.I.T., we see that there exists
u € H such that without loss of generality u, —u in H and u, —u in LP*!. Easily we
see that u, # 0. We proceed in two cases, reflective of our eventual uncertainty as to
whether @] is positive on § or has a small negative component as well.

Case I. Suppose that u_ =0. Then by the continuity of the map u — u_, we see that
(un)~ — 0 in H. Suppose that (u,)+ =u, />uy =u in H. Then without loss of gener-
ality as before we have y(u) <0, whence there exists o # 1 such that au e G* C s2cs.
It then follows that

J(au) < liminf J(au,) < imJ(u,) = ing.

This contradiction implies that u, —u=u, € G*, whereby w] =u satisfies J(w;)
= ming+J = ming, J = miny+J. Since W* is an open subset of S, we conclude that
w{ is a critical point of J|s and hence a positive solution of (3). If nondegenerate,
this solution is of Morse index 1.

Case II. Suppose that u_ # 0. Again if we suppose that (u, ) /> u, in H, we can find
a<1 so that a(u,): € G*.

(a) Suppose that (#,)— —u_ in H. Then since S, is closed, we see that u_ €S,
whence

J(oats + u_) < iminf{J(a(un)s) +J((u)-)}
< Hm{J((un)+) +J((un)- )} = limJ(un) = irSlfJ-

This is a contradiction since au; +u_ € 5.
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(b) Suppose instead that (u,)_ A u_ in H. Then without loss of generality y(u_)<0,
where as in Section 3 there are only two subregions of # to which u_ may
belong.

L. If u_ is “outside” S, then there exists f<1 so that fu_ € G~ C S. From this we
would have J(Bu_)< liminf J(f(u,)-) < 0, where the last inequality holds since
(u,)- €8, and f<1. This contradicts J|s>0.

2. If u_ is “inside” S, then in fact v is “inside” S.. Thus there exists > 1 such that
Pu_ € 8., whereby we obtain the contradiction

J(ouy + Pu_) < J(awy) 4+ J(u_) < iminf {J(a(un)+ ) + J((un)- )}
< liminf(J((un) 1) +J(un)-)} = lim J ) = inf .

The above contradictions imply that (u,); —u. in H. Assuming that (u,)_ /% u_
in H leads to identical inequalities and contradictions. We conclude that u, —u in
H, ue€s,, and J(u)= ming,J. Define cu]LEu. Refer to Section 4 and recall that
GTCSCW*. For we Wt —S,, we see that r(c/(b+¢)) €S, and J(r(c/(b+c))) <
J(w). Thus miny+.J = ming, J =J(w] ), hence ®; minimizes J over the open set
W+ CS. It follows that w{ is a critical point of J|s and hence a solution to (3). If
nondegenerate, this critical point is of Morse index 1. We see that (w])7!(0,00) is
connected, but we cannot determine if #_ =0 or if (w] )~!(—o0,0) consists of possibly
multiple supports of elements of S,.

6. Numerical algorithm and related semipositone results

In this section we outline a numerical algorithm for computing the four solutions
detailed in our Main Theorem and leave fuller detail of implementation to [5] (see also
[6] for more on gradient descent in general). We also report on a numerical experiment
on the disk in R? and compare with a theorem from the paper [11].

Numerical Algorithm
1. Initialize uo with appropriate nodal structure projected on to S to find wi and wy,

or on to S; to find w,. Finding the local minimum wy requires no projection.
2. Begin Loop with £ =0.

(a) Solve linear system to obtain VJ(uy).

(b) Take gradient descent step and reproject (as needed) on to S or Si.

(c) Increment & and repeat steps (a) and (b) until convergence criteria are met:

VI3 =0, |Au+ f(u) — &3 =0, etc.

The projections can be implemented by iteratively following gradient ascent in the ray
direction of u on to S or u.,u_ on to S and hence u on to S;. These projections are
the new features of the algorithm making it differ from pre-existing steepest descent
algorithms. The grid of approximation is composed of intervals, squares, or (potentially)
cubes, on which standard differencing and integration schemes can compute the values
of u, J, y, ||u||?, etc. . . The linear system can be solved by Gaussian elimination as in
our ODE runs or, more efficiently, by iterative methods such as Gauss—Sidel or SOR
in the PDE case.
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As a final note, we observe that in [11] radially symmetric solutions to problems
such as ours are treated on the ball in RY and the bifurcation diagram almost com-
pletely understood. That work considers the equation Au+Af(#)=0 and (among other
conclusions) shows that there exists a value of A so that for A< there exists a posi-
tive solution, whereas for 4> 4 only sign-changing solutions exist. Unlike the f(0)=0
case, the positive branch does not bifurcate from the trivial solution, instead makes a
continuous unbounded loop passing to sign-changing solutions at A, where the solution
satisfies the zero Neumann boundary condition as well as the zero Dirichlet condition.
We have observed this phenomenon while running our numerical experiments. Specif-
ically, when we choose f(u)=u® —¢ and varied A from a=4,/f"(B) to b=1A,/f'(B)
where f=¢!” is the zero of f, we observed the behavior specified in [11]. For ex-
ample, this verified that the value of 4 did indeed fall between a and b and that the
positive solution at 4=/ was also a solution to the zero Neumann problem with min-
imal sup-norm. That is to say, wi (4) is the bottom most point of the bifurcation loop
as shown in [11].

An important question is: where do the sign-changing solutions w»(4) fit in to the
bifurcation diagram? A conjecture supported by our numerical experiments is that w;
is nonradial when Q is a ball or annulus, and hence does not appear in the literature
studying radial solutions via the corresponding singular ODE. Our full conjecture is
somewhat more general, applying to general regions and for wider classes of nonlin-
earites. Specifically, we believe that the internal zero set of our minimal action value
sign-changing solution intersects the boundary of €. This would imply, for instance,
that one gets infinitely many solutions w, on the disk and four on the square. We are
currently trying to prove this conjecture, at least in special cases for specific regions
or narrower classes of nonlinearites. As we make progress on this matter we should
be able to add nonradial branches to the existing diagram.

The method is also proving useful in investigating qualitative properties of solutions
on the annulus and for a wide variety of nonlinearites. We are able to generate good
approximations to not only superlinear problems, but also asymptotically linear and
sublinear problems. The general concept is applicable (as is our method of proof) to
many other related problems, including the p-Laplacian.

Of great interest to the author are the many graphics (not included) of actual data
detailing finite dimensional slices of the surface of S and the behavior of J when
restricted to them. It is particularly thought provoking to intersect a two- or three-
dimensional eigenspace with S or S; in order to visualize the mountain pass hierarchy
of projected eigenfunctions increasing in norm and action value, or the role of symmetry
(of both f and Q) in the geometrical relationship between solutions viewed as points on
our manifold. It is the author’s hope and belief that these numerical investigations will
be an aid in the further analytic development of existence, multiplicity, and bifurcation
theories of semilinear elliptic boundary value problems. To that end, experiments have
already been performed which have yielded solutions to superlinear, asymptotically
linear, and sublinear equations with symmetry and asymmetry on the interval, square,
disk, annuli, and dumbell. There is nothing to stop the interested programmer from
easily adapting the code (FORTRAN code available upon request) to investigate more
unusual regions or different boundary conditions on a wide range of nonlinearites.
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