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ABSTRACT. We consider the semilinear elliptic PDE Au + f(\, u) = 0 with
the zero-Dirichlet boundary condition on a family of regions, namely stadions.
Linear problems on such regions have been widely studied in the past. We
seek to observe the corresponding phenomena in our nonlinear setting. Using
the Gradient Newton Galerkin Algorithm (GNGA) of Neuberger and Swift, we
document bifurcation, nodal structure, and symmetry of solutions. This paper
provides the first published instance where the GNGA is applied to general
regions. Our investigation involves both the dimension of the stadions and
the value A as parameters. We find that the so-called crossings and avoided
crossings of eigenvalues as the dimension of the stadions vary influences the
symmetry and variational structure of nonlinear solutions in a natural way.

1. INTRODUCTION

We are interested in the connections between the linear problem

Au+Adu = 0in
(1) u = 0ondQ
and superlinear elliptic zero-Dirichlet boundary value problems of the form
Au+ f(Au) = 0inQ
(2) u = 0on 0,

where A is the Laplacian operator,  C RY is in general a piece-wise smooth
bounded region, and f satisfies certain hypotheses detailed in Section 2. In par-
ticular, we take f : R x R — R to be defined by f(\,u) = Au + u?, where X is a
real parameter, and 2 = Q, C [0, 1] x [0, 1] to be a stadion as per [8]. Precisely, we
investigate (1) and (2) on a discrete collection I" of such regions €, (also referred
to in the literature as stadia) defined by

Q. = Be((r,r)U((r,1—7)x(0,2r))UB((1 —r,1))

3)
I = {Q:7r€{0.10,0.11,...,0.30}}.

(see Figure 1). One may consider such regions as examples, whereby our results
demonstrate the applicability of the Gradient Newton Galerkin Algorithm (GNGA)
to so-called general regions.

The linear problem on the family of regions €2, has been widely investigated,
beginning with the seminal papers [7] and [8]. Subsequently, interesting phenom-
ena relating to the region and/or the eigenvalues of the linear problem (1) on these
regions has been documented. The most noteworthy physical phenomena is the
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FIGURE 1. A region 2 in the family I' of stadions. The parameter
r € (0, %] determines the radius of the endcap semicircles, and
thus the dimensions of the connecting rectangle. For our numerical
experiments, 7 takes on finitely many equally spaced values (3).

relationship between stochastic behavior of the quantum mechanical system and
the chaotic and quasi-periodic behavior of the classical system (for a concise sum-
mary of these issues see [6]). In this article we are interested in the persistence of
linear properties in the nonlinear case. In particular, we observe and report the
influence of the crossings and avoided crossings of eigenvalues on the bifurcation
diagram for PDE (2). Correspondingly, for our nonlinear problem we demonstrate
that symmetry swapping and non-swapping can occur at multiple eigenvalues and,
respectively, at near-multiple eigenvalues.

In [13], the GNGA was developed to investigate existence, multiplicity, nodal
structure, bifurcation, and symmetry of problems of the form (2). In that work, the
region ) was taken to be the unit square; here we perform analogous experiments
on stadions. Since our implementation of the GNGA requires an orthonormal basis
of eigenfunctions of the Laplacian as input, experiments on the square are easily
performed using Fourier series with a basis of sine functions. In this article, we
face the considerable challenge of first obtaining eigenfunctions (solutions to the
linear problem (1)) numerically. In [6], this was done using essentially the inverse
power method with deflation. Using ARPACK, we recreate and perhaps improve
upon the results in [6] and are successful in obtaining a sufficiently large basis of
such functions. This algorithmic variant of the Arnoldi process called the Implicitly
Restarted Arnoldi Method (see [16]) works well on large sparse matrices such as
those associated with the discretization of the Laplacian, requiring only a user-
provided subroutine giving the action of the linear map.

In Section 2 we briefly state the hypothesis of the nonlinear problem, provide
some background, and describe the GNGA. In Section 3 we describe the ARPACK
implementation used to generate the necessary basis of eigenfunctions needed to
execute GNGA. We provide some results concerning the symmetry of eigenfunc-
tions and projections. Also, we summarize our linear numerical results for (1),
which essentially duplicate those found in [6]. In Section 4 we provide results about
the symmetry of solutions to the nonlinear PDE. Section 5 details our nonlinear
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experiments for (2), in which the phenomena revealed in the linear experiments
are reflected. In particular, we provide portions of 8 bifurcation diagrams, corre-
sponding to before and after a crossing and an avoided crossing. The associated
contour plots demonstrate that the symmetry swapping and the nodal shape chang-
ing well observed in the linear case in fact persists in the nonlinear case. We include
some numerical evidence for the analysis of symmetry done in Section 4. Section 6
provides some short concluding remarks.

2. VARIATIONAL FORMULATION AND GNGA

2.1. New Challenges. Our variational algorithm requires that we have an or-
thonormal collection of eigenfunctions which spans some subspace of £2(£2). Recall
that the eigenvalues of —A with zero-Dirichlet boundary condition on any piecewise
smooth boundary satisfy

0< A <A< A3< - — 0.

We designate the corresponding eigenfunctions by {#;}ien, taken to be normalized
in £2 = £2(2) and of course orthogonal in both the Sobolev space H = Hy?(€2)
and in £2, with inner products

(u,U>H=/Vu-Vvdx and (u,v>2:/uvdx,
Q Q

respectively. For relevant theorems, definitions, and an explanation of this notation,
see [2]. The references [9] and [15] are also good resources for information on
Sobolev spaces. For our stadions 2 = (2,., we can no longer use the well-known
doubly indexed basis of sine functions. In the next section we describe how we
obtain reasonable numerical approximations to basis elements on our decidedly
non-square region where there is no known closed-form solution.

2.2. Hypotheses on f. We consider specific assumptions which have lead to exis-
tence theorems of sign-changing solutions (see [3], [4], [5]). As in [13], in this paper
we focus on the case where f is superlinear and subcritical, and in particular, de-
fined by f(u) = M + u®. We wish to emphasize that although infinitely many
solutions have been proven to exist for various special cases, e.g., when N = 1,
f is odd, or Q is a ball in RY, in the general case only 3 nontrivial solutions are
currently proven to exist (see for example [14]).

2.3. The Gradient Newton Galerkin Algorithm—GNGA. We provide a
brief outline of the underlying variational machinery. We define the action (en-
ergy) functional J : H — R by

0 a0 = [ {51vuP - Fw)},

where F(u) = fou f(s) for all w € H defines the primitive of f. The appropriate
hypotheses imply that J is well-defined on all of H (by the Sobolev Embedding
Theorem, see [2]) and twice differentiable (see [1]). Moreover, u is a solution of (2)
if and only if J'(u)(v) = 0 for all v € H. We refer the reader to [1] and [9] for the
regularity theory proving this assertion. Since we are searching for critical points
of J we need the following identities for J with u,v,w € H:

(5) T (u)(v) = /Q (V- Vo — fu)v)
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(6) J" (u) (v, w) :/Q{Vvowaf’(u)vw}.

For more precise details about GNGA see [13] and [12].
To summarize the GNGA, one performs the following steps:

(1) Define region €, nonlinearity f, and step size .
(2) Obtain orthonormal basis {1y}, for a sufficiently large subspace G C H.
(3) Choose initial coefficients a = a® = {ax}2L,, set u = u® = 3" apty, and set
n=0.
(4) Loop over n until \/g-g = ||VJ(u)|| is sufficiently small.
(a) Calculate g = g™t = (J'(u) ()M, € RM (gradient vector).
(b) Calculate A = A" = (J” (u)(4;, wk))%zl (Hessian matrix).
(c) Compute x = x"T! = A~!g by implementing least squares.
(d) Set a =a™*! =a" -y and update u = w1 =" apy.
(e) Calculate sig(A(a)) and J(a) if desired.

The signature sig(A(a)) of a solution is taken to be the number of negative
eigenvalues of the Hessian of that solution. The signature provides us with the
Morse index of a solution whenever the solution is nondegenerate (has an invertible
Hessian), provided that M is sufficiently large. The parameter ¢ € (0, 1] is the step
size for damped Newton’s method; generally undamped Newton’s method (with
§ = 1) suffices.

3. THE LINEAR PROBLEM, ARPACK, AND BASIS GENERATION

3.1. The Linear Problem. The linear problem (1) is solved using ARPACK, since
the standard discretization of the negative Laplacian map results in a large, sparse
matrix (L). To make our system visually intuitive and to provide ARPACK with
knowledge of the region, we first generate a region file with (n+1)? values. A value
of 1 represents a point of our grid that is interior to the stadion boundary, whereas
a value of 0 represents a point which is exterior. To find the eigenvalues of the
matrix L, ARPACK requires a user-provided subroutine for repeatedly calculating
the action of multiplying L times a vector v whenever requested. The region file
read in by our ARPACK driver is processed in the following way.

In this explanation, we take i € {1,...,n,}, where n, is the number of interior
grid points, and j € {1,..., (n+1)?}, where there are a total of (n+1)? grid points
in our n x n discretization of the unit square. We define the maps s : {1,...,n,} —
{1,...,(n+1)%and t: {1,...,(n+1)?} - {0,1,...,n,} by

s; = j where the " interior grid point is the j** overall grid point,

and

t; = 0if the 4t grid point is exterior, otherwise

t; = ¢ wheres; =j.
Thus t and s are inverses for interior grid points, i.e.,

ts, =4, i=1,...,n,, and s¢;, = j if the 4" grid point is interior.

Via the second difference formula, we see that the action of the discretized negative
Laplacian L on a given v € R can be computed componentwise by

(Lv); = n? [4vi — (Ves;—1 + Vts;1 + Vts,—(nt1) + Vtsit (1)) ] »
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where the additonal value vy = 0 is used to enforce boundary conditions.

We note that our methodology here allows us to use the GNGA on any two-
dimensional bounded region. We could go so far as to create our region file based
upon a figure drawn with black pixels corresponding to 1s and white pixels corre-
sponding to 0s. This methodology would in theory allow for solving many linear
and semilinear problems on different (possibly related) regions in quick succession.

The family " (3) we have chosen to study was selected so that the corresponding
interiors (represented by 1’s in the region file) are symmetric about the horizontal
and vertical medians (our primary choice was n = 100). If these regions are not
symmetric it will introduce errors into our numerics and our theoretical results will
not hold. The choice of n is arbitrary; experiments have been performed with larger
choices of n. Since our discretization is symmetric, the output of our ARPACK
driver is a basis of eigenfunctions of four symmetries, namely, (+1,41), (+1,—1),
(=1,4+1), and (—1,—1), corresponding to oddness and eveness about the medians
z =1 and y = r (see Section 3.2).

3.2. Symmetry of Eigenfunctions. A Mathematica notebook was written to
sort the first few eigenfunctions on stadions in I' by their symmetry. This way we
can clearly see the two linear phenomena that we are interested in, those being
crossings and avoided crossings. Loosely, crossings (double eigenvalues) can occur
when the symmetry of the corresponding eigenfunctions is different—conversely,
avoided crossings (nearly double eigenvalues) can only occur when the symmetry
type is the same. If we naively plot the first 18 (say) eigenvalues for the family
I' and connect the k¥ ones we produce an inaccurate picture as far as symmetry
goes. For a more precise definition of these phenomena and and description of the
implementation, see Section 3.3.

The sorting of eigenfunctions and eigenvalues relies on projections; the deeper
underlying structure involves representation theory (see [11]).

Definition 3.2.1. Define operators P, , : V — V by

P#,,,[u(:c,y)] _ u(:c,y) + ILI/U,(l B $,y) + VU(Z, 1- y) + [LI/U(]. -, 1- y)7
where u: Q@ — R and p,v € {—1,+1}. It is apparent that P, , with u,v € {—1,+1}
is a linear operator. Here we take V to be either the vector space £L* or H, but
with a suitable adjustment corresponding to discrete indexing instead of function
evaluation, the space could also be taken to be R™". If P, ,u = u, we say that u has
(1, v) symmetry.

We are examining the symmetry of functions in two dimensions; we do this
through examining the function as a function of one variable and do what is usual
there, i.e., consider eveness and oddness. We denote being even in one dimension
by a ‘+1” and being odd by a ‘-1’.

The symmetry of £2 functions plays an important role in the expected symmetry
of a bifurcation. The set of symmetries of eigenfunctions forms a subset of the set
of all symmetries of solutions to the nonlinear equation (2). In particular, the
primary branches of nontrivial solutions bifurcating from the trivial branch contain
solutions with symmetries in this restricted subset (see Section 5). Some relevant
and useful facts about the symmetry of eigenfunctions of (1) and general properties
of the operators P,, are summarized in the following theorem statement:
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Theorem 3.2.1. (1) Given u € L?, the function P, [u] has (u,v) symmetry.
(2) Given any function u € L* we have

S Pululey)] = ulz.y).

prve{—1,+1}

(3) P, is a projection.

(4) For all (1;, \;) which satisfy —A; = \jab; on the stadion region with zero-
Dirichlet boundary condition, so does P[] with p,v € {—1,+1}.

(5) The function u € L2 has symmetry type (p,v) if and only if for all m,n €
{=1,41} the relation Py, n[u(z,y)] = dmudnsu(z,y) holds.

The groups that represent both rigid motions of the region and rigid motions
of solutions to (2) and (1) are nice enough in our case to keep our discussion of
symmetry simple. In Chapter 4, we will discuss the underlying group that gives
rise to the projection operators developed above.

3.3. Numerical Computations of Crossings and Avoided crossings. We
need precise definitions of the two linear phenomena that we’re searching for before
we can proceed.

Definition 3.3.1. The n'* eigenvalue branch of (u,v) symmetry is the set of
ordered pairs (v, \,) where v € (0,1/2] and \, is the nt" eigenvalue satisfying (1)
corresponding to an eigenfunction of (u,v) symmetry.

Definition 3.3.2. We define a crossing as an ordered pair (r, \) where an eigen-
value branch of symmetry (1, v) and another eigenvalue branch of symmetry (m,n)
(where (p,v) # (m,n)) intersect.

That is to say, there exist eigenfunctions of distinct symmetry that correspond
to the same eigenvalue for some radius r.
Definition 3.3.3. An avoided crossing is a value 7* where the n** and (n + 1)%
eigenvalue branches of common symmetry (u,v) contain ordered pairs (r,\,) and
(ry Ant1) such that Ap41 — A, achieves a local minimum at r = r*.

For each of the first few eigenfunctions for a given stadion we compute the projec-
tions Pyq 41, Pr1,—1, P—1,41 and P_y _; at four points (zo, yo), (1 — 0, ¥0), (x0, 2r —
yo) and (1 — xg, 2r — yo), where the origin is identified with the point (1/2,r). By
Theorem 3.2.1 (5), we can say that an eigenfunction is of a specific (u, ¥) symmetry
if the projection P, , performed at the four points yields the value at the point
(w0,10). After this is done, we connect the k*" eigenvalue for each stadion in T
with a line style (thick, thin, dash, dot) according to its symmetry. The result of
this procedure is displayed in Figure 2.

We observe that the property that we are interested in is that to the left or right
of a crossing we have two branches with different symmetries which change at a
crossing. Conversely, in the case of an avoided crossing we have two branches of the
same symmetry which fail to cross and consequently do not change symmetry. The
crossing and avoided crossing in Figure 2 serve as a starting point for our nonlinear
experiments.
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(a) Enlargement of the particular crossing (b) Enlargement of the particular avoided
that we numerically investigate. crossing that we investigate.

FIGURE 2. A plot of the first 18 eigenvalues for (1). The eigenval-
ues i are plotted as a function of the radius r, with the four line
styles corresponding to the symmetry of the associated eigenfunc-
tions. In the crossing graphic Figure 2(a), the small contour plots
demonstrate that with our choice of ordering for the eigenvalues,
the symmetry types of corresponding eigenfunctions remain con-
stant along each branch. In the avoided crossing graphic Figure
2(b), the contour plots demonstrate that a change in the nature
of the eigenfunctions ocurrs on the featured branches, despite the
fact that the symmetry remains constant at type (+1,+1).

4. SYMMETRY OF FUNCTIONS ON (),

We proceed in developing the expected symmetries for primary, secondary, and
teritary bifurcations. We begin by considering the rigid motion of an arbitrary
stadion in the plane back to itself. These motions form a group known as Vy: the
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Klein 4-group. We choose to describe this group as the set
{]" 7_3 0—3 p}’

with the operation of composition of motions. We let 1 serve as the identity, or the
rigid motion of leaving the figure fixed, whereas 7 represents a reflection across the
horizontal median of a stadion, o represents a reflection across the vertical median
of a stadion, and p = 7o is a 180° rotation about the center of a stadion. The rigid
motions of this group are the same as that of a rectangle.

We are interested in identifying the symmetric £2 functions from €, into R which
satifisy the boundary conditions of the odd PDE (1) and (2). We can represent
rigid motions of these functions with the same group V4 combined with the group
{—1,1} (under multiplication) in the sense of take a direct product. That is, we
define the group G as the set

{17 _1} X {L 7,0, p}a

for which we have multiplication of ordered pairs defined by (a,b)(c,d) = (ac, bd).
One may notice that Vy is isomorphic to Zs & Zo and {—1, 1} is isomorphic to Zo;
both are additive groups. So, G is isomorphic to Zo @ Zo & Zo, which is clearly
Abelian by construction.

All of our eigenfunctions are of one of four possible symmetries. We list explicitly
those four fixed-point subspaces denoted as follows:

s1 = {u:Pppful=u} = im(Pyy )
so = {u:P_ypful=u} = im(P_q41)
S3 = {U : P+17,1[’U,] = u} = 1m(P+17,1)
sa = {u:Pq_qul=u} = im(P_y_1),

where the notation ‘im’ denotes ‘image’. One may note that s1®s2®s3®ss = L2(Q).

When a bifurcation occurs we lose symmetry—this can be described in terms
of moving down the lattice of isotropy (stabilizer) subgroups of the group G or as
taking another projection (see Figure 4 and Table 3). Our special case greatly sim-
plifies the discussion since in general we must consider conjugacy classes of isotropy
subgroups. Since V, is Abelian, conjugacy classes contain only one element. We
provide in Figure 4 a lattice that includes both subgroups and fixed point sub-
spaces. We emphasize that our results for the symmetry of solutions to (2) are
mainly observational; for examples, see Section 5.

In each of the cells in the lattice in Figure 4 we provide the generators of each
isotropy subgroup and the corresponding fixed point subspace s; which are sub-
spaces of £2(€,). The group itself is of order eight, the first row of isotropy sub-
groups all have order four, the third row of isotropy subgroups all have order two,
and the final row containing the identity subgroup is of order one. In a cascade
of bifurcations we have primary branches bifurcating from an eigenvalue (on the
trivial branch), secondary branches bifrucating from primary branches, and ter-
tiary branches bifurcating from secondary branches. The fixed point subspaces s
can be organized in terms of which type of bifurcation branches (trivial, primary,
secondary, or tertiary) they contain. The analogous organization can be done in
terms of the isotropy subgroups. We order the fixed point subspaces in Figure 3.

In Section 5 we observe both primary and secondary bifurcations which have so-
lutions that fall in the appropriate fixed-point spaces. We have yet to find a tertiary
bifurcation or follow a tertiary branch. Based upon experiments performed in [13],
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(1) Trivial Fixed Point Space
So = {0}

(2) Primary Fixed Point Spaces

s = {u:Pppfu] =u} =im(Piy 4a[u])
s = {u: Py pfu] =u} =im(P_q 41[u])
s = {u:Puafu] =u} =im(Py1,1[u])
s = {u:P_y_qul =u} =im(P_q _1[u]).
(3) Secondary Fixed Point Spaces
ss = {u:Pupaful + Praafu] = u} =im(Py g1 fu] + Pey -1 u])
= im(Pyy41fu]) ©im(Pry,—1[u])
se = {u:Pppafu]+ Py afu] = u} =im(Ppy g[u] + Poq 1 u])

= im(Piq 41[u]) & im(P_1,41[u])

s = A{u: Prypfu] + Py afu] = u} = im(Pyy g [u] + Py 1 [u])
= im(Pyy4afu]) ©im(Poq, -1 [u])

ss = {u:Poypafu]+ Priafu] = u} =im(Poy g1 [u] + Py, [u])
= im(Poy 1 fu]) & im(Pyy 1 [u])

so = {u:Ppyafu] + Py au] = u} =im(Pry fu] + Poq —1[u])
= im(Pyy,-1fu]) ©im(Poy,—1u])

st = {u:Poypfu]+ Py afu] = v} = im(Poq g fu] + Py —a[u])

= im(Poy 41 fu]) ®im(Poy, 1 ful).
(4) Tertiary Fixed Point Spaces
st = {u: Pyafu] + Pry—afu] + Pogafu] + Py 1 [u] = u}
m(Pyy afu] + Pra—afu] + Poy g fu] + Py —q[u])
= im(Piy41[u]) & im(Pry,—1[u]) & im(P-1 41 [u]) @ im(P-1 1 [u])
= LXQ)

FiGURE 3. Fixed point spaces for: 1. the trivial branch; 2. pri-
mary branches; 3. secondary branches; 4. tertiary branches.

[12], however, we expect that tertiary solutions will also fall into the appropiate
fixed point subspace indicated in Table 3. One can justify the fixed point subpaces
in Figure 3 by using basic properties of the projection operators P, ,,. For example,
if p,v,m,n € {—1,1} then P, , and P, commute. Furthermore, if u # m and
v # n, then the operator P, , + P, . is itself a projection.

5. THE NONLINEAR PROBLEM: A CROSSING AND AN AVOIDED CROSSING

For a given radius r, and hence a given region 2 = €),., we are interested in how
solutions to (2) vary as the parameter A\ varies; this is the subject of bifurcation
theory. Briefly, due to the continuous dependence of the problem on A, one ex-
pects to find continuous branches of solutions. We define our branches to be of a
single symmetry type, as listed in Figure 4. On occasion, branches intersect one



10 JAY L. HINEMAN AND JOHN M. NEUBERGER

(1,0) (r,—0) (=70) (=7.—0)

S11

FIGURE 4. The lattice of isotropy subgroups of the group G and
fixed point spaces defined in Figure 3. We have simplified our
ordered pair notation so that our lattice of 12 symmetry types is
visible on a single page (we use generator notation for the same
reason). Here we write, for example, (—1,v) as —v and (1,v) as v.

another; such points of interesection are called bifurcation points. There are many
reasonable ways to represent portions of bifurcation diagrams. We have chosen to
first fix a “generic” point in the domain. This is a point not lying on any line of
symmetry, where also none of the solutions of particular interest have a zero am-
plitude. Plotting the value of solutions evaluated at this generic point versus the
bifurcation parameter A\ results in graphics where branches are clearly separated.
There other reasonable choices of y-coordinate for these plots, such as the value
of the functional J evaluated at the solution, or a suitable norm of the solution.
Further information is given by choosing the line style of the plotted branches to
correspond to the symmetry type of the solutions lying on those branches.

For brevity, we restrict the report of our investigations to regions €2, with r €
{.19, .20, .21, .22}, where we have the crossing of the 4** and 5! eigenvalues with
(=1,+1) and (41, —1) symmetry, and r € {.26,.27,.28,.29}, where we have an
avoided crossing of the 8" and 9" eigenvalues with (+1,+1) symmetry. Thus, we
will present a total of 8 bifurcation diagrams.

Figure 5 contains 4 bifurcation diagrams corresponding to the crossing eigen-
value in Figure 2(a), for r € {.19,.20,.21,.22}. The first two diagrams occur before
the crossing, while the second two occur afterwards. In each of the diagrams, the
y-axis is the value of solutions to (2) evaluated at the fixed generic point in the
domain €2, while the z-axis is the bifurcation parameter A\. We use the same line
styles for the primary branches as were used in Figure 2. Here, we display primary
branches bifurcating from the trivial solution (which has amplitude zero) at A = A4
and A = \j, respectively, for each of the four consecutive radii in our discrete
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collection. Contour plots corresponding to the solutions of (2) lying on these two
primary branches, for each of the four different regions and two different values of
the parameter A can be found in Figure 6. In that figure and elsewhere, we use
the notation ‘4o’ to denote a solution to the nonlinear equation (2) which lies on
a primary branch bifurcating at A\;. Such solutions ‘resemble’ the corresponding
eigenfunction 1 ; they are of the same symmetry type and have similar nodal struc-
ture. The level curves in these contourplots were chosen for clarity; positive levels
correspond to white curves on top of a black background, while negative levels are
depicted by black curves on top of a white background. Figure 6 shows that the
primary bifurcation branches do in fact swap symmetry. Figure 8 contains plots of
solutions along secondary branches, whereby one sees that there is a loss of sym-
metry that occurs when bifurcating to a secondary bifurcation branch. The main
effect that we are interested in is that higher and lower amplitude branches actually
swap both in terms of symmetry and in terms of Morse index. A comparison of
Figures 8 and 9 shows that secondary branches also swap symmetry. In Figure 7,
we provide a 3-dimensional plot of a solution to (2). This solution lies on the 4
primary branch of (+1, —1) symmetry type, for r = .19 and A = 100.

The avoided crossing is somewhat less interesting, however the fact that these
branches do not swap symmetry in the way that those in the crossing case do is
noteworthy. There seems to be some sort of underlying mechanism changing the
solutions in the avoided crossing (see Figure 11 and the 4 bifurcation diagrams
in Figure 10). We see that the solutions change nature, that is, the arrangement
of their positive and negative components changes, although the symmetry re-
mains constant. We have not yet investigated the secondary bifurcations within
the avoided crossing.

In applying the GNGA we are required to carefully provide initial guesses for
Newton’s method, particularly since the solutions we seek lie on branches that can
be very close to each other. ARPACK’s ability to generate many eigenfunctions
efficiently is key; GNGA would be nearly impossible to implement on our family
of regions without such a package. Another element which plays a critical role
in providing initial guesses which converge to solutions on secondary branches is
having a good understanding of the symmetry of a given branch. The symmetry
of solutions can be understood by inspecting the nonzero terms of the solutions’
eigenfunction expansion.

6. CONCLUSIONS

The tools from ARPACK and our GNGA code are a potent combination for
solving semilinear elliptic PDE on general bounded two-dimensional regions. The
exposition of the symmetry properties of the region was crucial in choosing an
appropriate initial guess, since the bifurcation branches of crossing and avoided
crossing are by their very nature close together. The article [11] and the forthcoming
article [12] use more advanced techniques similar to ours to study the linear and the
nonlinear problem on the Koch Snowflake region, a region with a fractal boundary.

We indicated in Chapter 4 that we observed the following symmetry phenomena:
a) each primary bifurcation branch contains solutions in one of the s; — s4 fixed
point spaces; and b) each secondary bifurcation branch contains solutions in one of
the s5 — s1¢ fixed point spaces.
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Each step of our iterative solver could include a projection, ensuring that iterates
remain in the proper fixed point subspace. Generally, this is not required, as the
invariance of the Newton search direction is fairly stable. From a computational
point of view, restricting the set of nonzero eigenfunction expansion coefficients not
only stabilizes this invariance, but reduces the number of floating point operations
required to compute the search direction. Regardless, once solutions are found we
can verify their symmetry automatically by numerically applying the projection
before saving the output for plotting; (see Figures 6, 8, and 9).

From what we can ascertain, crossing and avoided crossings have not been previ-
ously so studied in nonlinear equations. A problem to consider would be to see how
far our numerical techniques can effectively go, e.g., could we investigate nonlinear
solutions corresponding to very high energy eigenvalues (8000 and higher). Physi-
cists are interested in observing effects such as “scarring”; scars are narrow line-like
regions visible on the contour plots of eigenfunctions with enhanced intensity that
seem to be coming from classical periodic orbits (see [10] for more information).

The authors’ wish to thank Nathan Borggren, B.S. Mathematics and Physics,
Northern Arizona University, 2002, for his contributions. In particular, Borggren
was the first to suggest investigating the effects of the crossing and avoided crossing
of eigenvalues on related nonlinear problems using GNGA.
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FIGURE 5. Four bifurcation diagrams depicting the primary
branches bifurcating from the trivial solution (which has ampli-
tude zero) at A = Ay and A = X5, for r = .19,.20,.21,.22. The
y-axis is the value of solutions to (2) evaluated at the particular
fixed point in the domain €2, while the z-axis is the bifurcation
parameter A. Figure 6 contains contour plots corresponding to the
solutions of (2) lying on these two primary branches, whereby one
can see the swapping of symmetry at the avoided crossing. For
convenience, we term such solutions “i”, where here k € {4,5},
since these solutions to the nonlinear equation (2) resemble the
eigenfunctions 14 and ¥5 of the linear equation (1). Figures 8 and
9 contain plots of solutions along secondary branches, whereby one
observes the loss of symmetry explained in part by Figure 4. A
comparison shows that secondary branches also swap symmetry.
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We use the convention that {Ek is a nonlinear solution lying on a
ordered as in Figure 2.

FIGURE 6. Solutions to the nonlinear PDE (2) near a crossing.
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FIGURE 7. A 3-dimensional surface plot of the solution to (2)
found in the upper left hand corner of Figure 6. Here, the non-
linear solution resembles closely a multiple of 14, since that’s the
dominant mode in its eigenfunction expansion. The radius of the
endcap defining the region 2 = €, is r = .19. The branch that this
solution belongs to is of symmetry type (+1,—1), and bifurcates
from the trivial solution branch at A = A4. Arbitrarily, we have
selected the point on this branch at A = 100. Here, we plot the
function as zero-extended to fit the larger super-domain of the unit
square, as our ARPACK takes as input.
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FIGURE 8. Contour plots of solutions to (2) of Morse index 4 and
5, lying on secondary branches, for r = .19 before the crossing
featured in Figure 2(a), for a fixed value of the bifurcation pa-
rameter A\. We note that these solutions have less symmetry then
those in Figure 6. We have the invariance under the projection
P_i +1+P41,-1, indicating that the solutions are in the fixed point
subspace sg.

)

FIGURE 9. These contour plots are of solutions of Morse index 4
and 5 lying on secondary branches at the radius r = .21, after
the crossing featured in Figure 2(a), for the same fixed value of
the bifurcation parameter A\. Again, we notice that the solutions
have less symmetry then those in Figure 6. This time, we have
invariance under the two distinct projections Pyq 11+ P_1 41 and
P_q,_1 + Py1,—1, hence the branches contain solutions in s5 and
S10, respectively.
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FIGURE 10. The four diagrams above demonstrate the effects of
an avoided crossing on the primary branches bifurcating from the
trivial solution at A = Ag and A = Mg, for four consecutive radii
of stadions, namely, r = .26,.27,.28,.29 corresponding to Figure
2(b). The contour plots displayed in Figure 11 demonstrate that
although the symmetry of the solutions is constant along each
branch, the nature of the solution does change at the near point of
the avoided crossing.
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