REGIONAL SETTLEMENT IN THE VALLEY OF MEXICO

by

Linda Stephen Neff

Department of Anthropology Northern Arizona University

Exercise 3 "Sampling Strategies," Professor: Dr. Susan Gregg, Flagstaff, Arizona. November 17, 1994.

Introduction

Quantitative settlement pattern analysis aids in our interpretation of a region.

Rather than focusing exclusively on site cores it is necessary to examine the surrounding settlement. In doing so, we obtain a more comprehensive picture of prehistoric lifeways.

Does the settlement ebb and flow with changes taking place in the political centers through time? Are sites specializing in tribute commodities for the maintenance of a regional government? Is there a regional administrative center? If not how do groups or communities organize themselves across geographic space? What rules govern placement of sites? Is it politics, the environment, or both? Quantitative settlement pattern analysis can address all these questions. Through descriptive statistics and exploratory data analysis, I will identify patterns in the data and attempt to interpret the new found relationships. Simple statistics, in conjunction with frequency tables, stem-&-leaf diagrams, histograms and box plots will be the primary tools I use to analyze the Formative Period settlement data from the Valley of Mexico (Figure 1).

Purpose of Project

The purpose of this project is threefold. First, I will use the above mentioned techniques of exploratory data analysis as "both analytical and as presentation devices" (Gregg 1994) to understand Formative Period settlement in the Valley of Mexico. Second, I will draw a 20% probabilistic sample from a *universe*, analyze it and then compare it to the results obtained from a 100% settlement analysis. In doing so, I will learn the advantages and disadvantages of sampling. In the conclusion, I will summarize the results and identify issues needing further resolution for future research.

Probability sampling is a useful tool when attempting to cover a large area in a short amount of time. In this study, I use a combination of two systematic transect samples, crossing the survey area north to south, as well as east to west (Figure 2). In doing so, I obtain a 20% (19.6% rounded up) sample of the area. Areas that cross count twice in the sample. Initially, I labeled each possible transect from left to right in both directions. I selected the first 1 km. transect from a random number table and then roughly spaced the remaining transects by 10. I chose transect versus quadrants for two reasons. First, I believe I will have a better chance of picking up more variability. Second, they will be easier to find on the ground. A stratified random transect sample may have been the better choice as far as being more representative of the population. Yet, due to time constraints, the systematic sample will suffice. The combination of the north-south and east-west transects represents a majority of the environmental and soil depth zones.

Total Survey Area: $837.82 \text{ km}^2 \approx 838 \text{ km}^2$ 20% Probabilistic Sample: 167.56 km^2

Total of 8 transects:

Three running west to east - total area covered: 80 km² Five running north to south - total area covered: 84 km²

Total actual sample area: 164 km²

Total probabilistic sample: $164/838 = .1957 \approx .20$ or 20%

	Transect #1	Transect #2	Transect #3	Transect #4
SW:	2126.4N 480E	2120.2N 490E	2116.03N 502E	2106.65N 512E
SE:	2126.4N 481E	2120.1N 491E	2116.03N 503E	2106.67N 513E
NW:	2128N 480E	2135N 490E	2132.53N 502E	2131.45N 512E
NE:	2129.1N 481E	2135N 491E	2133.28N 503E	2134.74N 513E
	Transect #5	Transect #6	Transect #7	Transect #8
SW:	Transect #5 2106.8N 522E	Transect #6 2133N 488E	Transect #7 2123N 485.22E	Transect #8 2113N 509.24E
SW: SE:				
	2106.8N 522E	2133N 488E	2123N 485.22E	2113N 509.24E
SE:	2106.8N 522E 2106.8N 523E	2133N 488E 2133N 521.37E2123N	2123N 485.22E 525E 2113N	2113N 509.24E 530.78E

Data Analysis

SYSTAT and MS Excel are the primary statistical packages in use for this analysis. I will first stratify the data by time period: Early, Middle, Late and Terminal Formative and pull out the various site types based on the criteria laid out in Table 1. In addition, I plan on stratifying the two categorical variables: environmental zones and soil depths. Exploration of the interval/ratio data and site types through these stratifications will provide valuable information to further inspect the relationships of each period's settlement over time and elaborate on the settlement within a specific time period.

Table 1. Definitions of Site Types

Site Type	Description
Primary Regional Center	Several thousands inhabitants, architecturally complex
Secondary Regional Center	Hundreds to perhaps thousands of inhabitants,
	nucleated, large-scale ceremonial civic architecture
Segregated Elite District	Isolated residential area in a prominent topographical
Nucleated Village	situation Compact village that lacks large-scale architecture: 100-1500 inhabitants
Large Village	Village with 500 or more inhabitants, used to describe nucleated and compact villages
Dispersed Village	Same as nucleated village, but spread over a large area: 100-1500 inhabitants
Hamlet	Community of under 100 people
Isolated Residences	A homestead or farmstead consisting of 5-10 people. Perhaps a single or extended family
Camp	Small, scattered, seasonal/temporary site with no permanent architecture. (Quarries, salt-making sites, maguey-roasting camps, etc.)
Ceremonial Centers	Architecture, but no extensive debris. Sites can be quite small.

To achieve this I will use a variety of techniques. Simple statistics on the following variables, elevation, rainfall, size in hectares and sherd density, provide the base information for further exploratory analysis. Histograms and stem-n-leaf plots of each variable will help identify modalities, outliers and the overall shape of the distribution. And finally, box plots easily convey the comparisons of these variables over time.

Early Formative

No sites in the sample represent an Early Formative occupation.

Middle Formative

Four sites characterize the Middle Formative Period in the 20% sample of the Valley of Mexico (Table 2).

ENVIRON SITE **ELEV RAIN SOILDEP** HA **SHERD POP SITETYPE** LP-Smooth 2280 690 Deep 4.3 9.3 40 Hamlet Lake-plain .2 10 2260 690 Deep 50 Camp LP-Rugged 2280 25 700 Med-Deep 38 1600 Secondary 41 LP-Rugged 2275 3.7 Hamlet 740 Med 21.62 80

Table 2. Middle Formative Sites

Three of the sites concentrate on the rich soil of the piedmont with the fourth site located within the lake plain. The elevation in meters does not vary widely, measuring between 2260 meters and 2280 meters. Rainfall generally increases with the elevation, averaging 705 mm. A site hierarchy presents itself based on site sizes, sherd densities and estimated populations. Unfortunately, the structure of the hierarchy is unclear do to the small sample size.

A cursory analysis of the tabular data reveals one site (Site 25) exceeds 1500. This suggests it is a secondary regional center (Table 2). Site 14 and Site 41 both represent hamlets averaging a population estimate of 60. Site 25, located in the lake plain, has 25% more sherds than the secondary regional center, but is only .5% its size. Thus, this site stands out as a specialized lake activity area. The high sherd densities are a result of repeated use whereas the low site size insinuates a restricted resource area.

In summary, the Middle Formative settlement pattern reflects a focus on the rich soils of the Piedmont with one lake plain resource procurement site. A settlement hierarchy is in place with at least one secondary regional center and two hamlets. One hundred hamlets with five secondary centers is a reasonable estimate for the settlement structure of the entire valley. Yet, because the secondary center is an outlier it is

probably over represented. Due to the large gap in estimated populations, it is also reasonable to assume we are lacking quite a bit of variability between these two site types.

Late Formative

Sixteen sites portray a sample of the Late Formative Period in the Valley of Mexico (Table 3).

SITE **ENVIRON** ELEV **RAIN** SOILDEP HA **SHERD** POP SITETYPE 20 Lake_plain 2255 690 Deep 0.2 50.00 10 Camp 106 LP-Smooth 2530 950 Very Shallow 1.3 7.69 10 Isolated 134 Sub-valley 2470 1020 Med 10 20.00 200 Large 0.5 145 LP-Rugged 2400 1080 Deep 20.00 10 Isolated 2275 2100 Secondary 13 LP-Smooth 690 Deep 60 35.18 800 Fully Eroded 68 LP-Smooth 2400 0.3 33.33 10 Isolated 35 LP-Rugged 2275 725 Med 18 44.94 800 Large 51 LP-Smooth 2340 780 Med-Deep 43 39.35 1700 Secondary 7.2 80 LP-Smooth 2360 875 Med 9.72 70 Hamlet 85 LP-Smooth 890 Med 10 Isolated 2380 1 10.00 1030 Deep 1.9 10 Isolated 137 LP-Smooth 2440 5.26 900 Med 94 LP-Rugged 2450 0.6 16.67 10 Isolated 102 UP-Rugged 2510 930 Shallow 1.9 10.53 20 Hamlet 106 LP-Smooth 2530 950 Very Shallow 1.3 7.69 10 Isolated 122 LP-Rugged 990 Fully Eroded 2440 4.5 11.11 50 Hamlet 2490 1010 Shallow 10 Isolated 131 LP-Rugged 0.9 11.11

Table 3. Late Formative Sites

During this period the Valley of Mexico experiences extensive changes in settlement and demography. First, considerable population growth measures as the highest prehistoric populations for the valley. Estimated population for the survey area triples (Middle Formative sample = 1730 and Late Formative Population = 5030). Second, the Middle Formative hierarchy further differentiates as another secondary center emerges as well as two large villages. Both of these centers are outliers according to their site sizes and estimated populations (Figure 3 and 4). Roughly 56% of the population live in the secondary centers, 20% lives in the large villages, and the

remainder live in scattered hamlets and isolated residences. With this increase in population, settlement occurs in all environmental zones and soil depths (Figure 5 and 6). Yet, more of the sites congregate in the piedmont. One site (Site 20) is probably another lake plain resource procurement area. Similar to the Middle Formative lake plain site, it has the highest sherd density (50.00), but an extremely small site area (.2 hectares).

To conclude, the Late Formative experiences a population boom. If we extrapolate the 20% sample to the region, the population was pushing 25,150. The sample clearly picked up a wider range of variability and a more developed settlement hierarchy. The inhabitants occupied all the environmental zones and soil depth zones available concentrating on the piedmont.

Terminal Formative

The Terminal Formative (Table 4) continues its dominant settlement pattern in the Lower Piedmont (Figure 7) witnessing a 5% decrease in population estimates.

SITE ENVIRON SHERD POP SITETYPE **ELEV RAIN SOILDEP** HA 87 LP-Rugged 2270 890 Shallow 0.9 0.00 0 Ceremonial 58 LP-Rugged 2330 780 Shallow-Med 8.33 10 Isolated 1.2 730 Deep 36 Lake_plain 50 Hamlet 2245 13.16 3.8 20.9 19.14 9 Lake_plain 2245 680 Deep 400 Dispersed 11 LP-Rugged 2280 700 Med 14 20.00 280 Nucleated 28 Lake_plain 2260 700 Deep 25.00 10 Camp 0.4 16 LP-Smooth 2280 690 Deep 2.5 12.00 30 Hamlet 2280 725 Med 34 LP-Rugged 43.4 41.47 1800 Secondary 45 LP-Rugged 2305 760 Shallow-Med 33.8 39.94 1350 Secondary 50 LP-Smooth 2360 775 Med-Deep 8.7 11.49 100 Nucleated 98 LP-Smooth 2365 925 Med-Deep 23.6 10.17 240 Dispersed 92 LP-Rugged 2470 900 Med 0.9 11.11 10 Isolated 100 UP-Rugged 2520 925 Med 1.8 16.67 30 Hamlet 124 LP-Rugged 2450 1000 Shallow-Med 7.5 20.00 150 Nucleated 126 LP-Rugged 2460 1000 Med 2.7 7.41 20 Hamlet 127 LP-Rugged 2500 1000 Shallow 0.9 22.22 20 Hamlet 129 UP-Rugged 2550 1000 Shallow 0.3 33.33 10 Elite 1020 Med 200 Nucleated 133 Sub-valley 2470 11.2 17.86

Table 4. Terminal Formative Sites

Two extremely large secondary centers (Site 34 and Site 45) house over 66% of the valley's population (Figure 8). Occupation continues to exist in a variety of settings continuing exploitation of the deep to medium - deep soils (Figure 9). While maintaining its original structure, the settlement populations concentrate into numerous large (dispersed and nucleated) villages. A site size stem-&-leaf diagram targeting populations greater than a 100 and less than 1000 (Figure 10) demonstrates how the dispersed villages (Site 98 and Site 9) all fall within the 75th percentile of their distribution. In opposition, the more nucleated villages are lower than the 75th percentile. For the first time a possible elite district and ceremonial center emerge during the Terminal Formative. The elite district (Site 129) presents itself at the tail end of the 75th percentile sherd density distribution (Figure 11) and is the highest elevation value (2550 m). The small size (.9 hectares), peripheral location and lack of artifactual remains suggest Site 87 is a ceremonial center. Similar to the earlier periods, one specialized camp with relatively high artifact densities occupies a lake plain locality.

In summary, the Terminal Formative sees a slight decrease in population. Population increases in the secondary regional centers (56% in the Late versus 66% in the Terminal) and also increases in the large villages (20% in the Late versus 29% in the Terminal). Much less of the population lives in isolated residences or hamlets (4%). Clearly, the political power affects where the frontier settlement chooses to live. Finally, ceremonial centers and elite districts serve both their sacred and restrictive functions.

A Comparison of the 20% Sample to the Original 100% Survey

Reasons for drawing a sample are many. Yet, one goal focuses on obtaining a representative number of sites for the region. In comparing the sampling strategy to the original 100% survey, I chose to analyze the total number of sites per square kilometer as

well as look at site representation for each period. In the original 100% survey, I found 153 sites within roughly 838 square kilometers. For the 20% systematic transect sample, I discovered 39 sites out of 167.6 square kilometers, roughly 22% more sites than the original survey (Table 5).

Table 5. Comparison of Total Number of Sites

	Number of Sites Discovered	Total Kilometers Squared
20% Sample Survey	39	167.6 km²
Sample Prediction	195	838 km²
100% Survey	153	838 km²

Sample Prediction discovered 22% more sites than original 100% survey.

Clearly if we took more than one systematic random transect sample the number of recorded sites would vary. Yet, 22% will add a lot of cushion to a possible budget. If we take a brief look at the number of sites discovered during the 20% sample survey by environmental zone, and compare the results to the number of sites found for the 100% survey we find some interesting results. Apparently, the systematic transect sample over represented the LP-Rugged by 63%, Lake-Plain by 36% and the Sub-Valley by 27% (Table 6). This overestimation represents 67% of the transect sample. Thus, if I stratified the original 100% sample by environmental type, the results would more accurately portray the total site numbers.

Table 6. A Comparison of Sites Discovered by Environmental Zone

Environmental	# of sites	# of predicted	# of sites	Total percent
Zone	discovered on 20%	sites	discovered on	difference between
	Sample		100% survey	the two strategies
	Survey			

LP-Hill	0	0	3	-100%
LP-Rugged	18	90	33	+63%
Lake-Plain	5	25	16	+36%
LP-Smooth	12	60	63	-5%
UP-Rugged	1	5	16	-69%
Sub-Valley	3	15	11	+27%
Island	0	0	2	-100%
Lake-bed	0	0	8	-100%

A comparison of sites represented by period illustrates a similar phenomenon.

Predicted site numbers always over represented the original 100% survey (Table 7). Table 7. A Comparison of Sites Discovered by Time Period

Time Period	20% Sample	Prediction	100% Survey	Percent Difference
Early	0	0	4	-100%
Middle	4	20	17	15%
Late	16	64	60	6%
Terminal	19	95	71	25%

Again, if I stratified my sample by environment my results would be more accurate. To conclude, this sampling strategy over represented the number of sites in the survey area by 22%. A stratified systematic random sample based on environmental zone would prove more accurate. Future analyses could examine the remaining categorical variables, such as soil depths and rainfall to determine if we could better control our sample. Unfortunately, time is the limiting factor in this analysis and I will not address these questions here.

Conclusion

The above comparison illustrated some of the downfalls of sampling but a review of the general settlement patterns through time demonstrates otherwise. The total number of sites for the Early Formative was only four therefore it is not unusual that none of these sites appeared in the sample. The Middle Formative had 17 sites in the 100% sample and four in the sample. These four sites concurred with the original 100% study in that settlement focused on the rich soils of the piedmont with specialized resource procurement sites located on the lake plain. A settlement hierarchy also presented itself. Yet, its structure was unclear due to the small sample size. The sample missed the few

lakebed occupations, isolated residences, and elite districts. What is more important, the sample bypassed five large villages. In any case, the transects did identify substantial diversity for such a small sample size suggesting more variability was present than met the eye.

The transect sample did a fine job in portraying the Late and Terminal Periods' diversity and general patterns. The Late Period saw a tremendous increase in population, concentrating its settlement, further differentiating it hierarchy and occupying all environmental zones. The Terminal Period demonstrates a slight decrease in population, settlement increases in secondary centers and large villages, and less frontier occupation. Where the population appeared to quadruple for the 100% sample, it only tripled for the sample. Unfortunately, the transects missed the primary center first appearing in the Late Formative. Moreover, rarities such as ceremonial centers and elite districts were lacking in the Late Formative sample. Yet, both appear in the Terminal Formative. Clearly, a 100% survey sample was the optimal strategy. Yet, the 20% systematic transect sample portrayed the general settlement trends through time, revealing the immense diversity in site types.

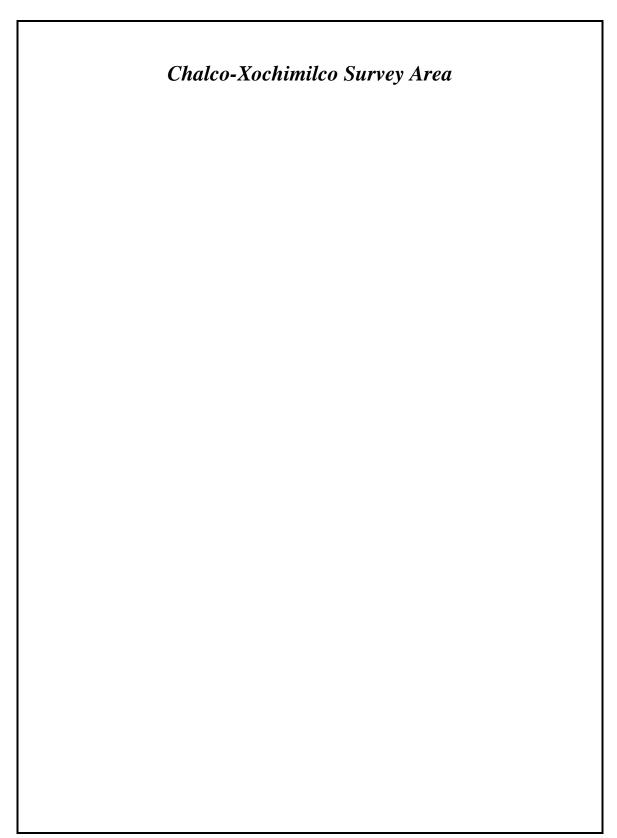


Figure 1. Location of Study Area

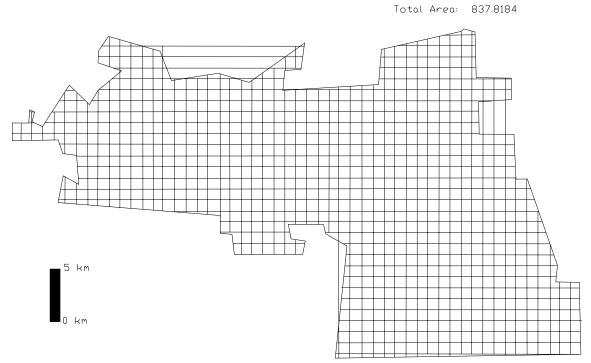


Figure 2. Location of systematic transects within the survey area

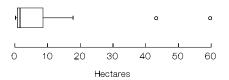


Figure 3. Late Formative Site Size

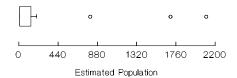


Figure 4. Late Formative Estimated Population

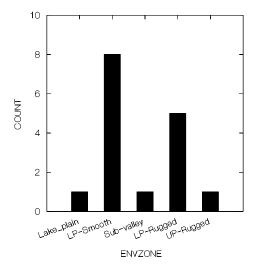


Figure 5. Late Formative Environmental Zones

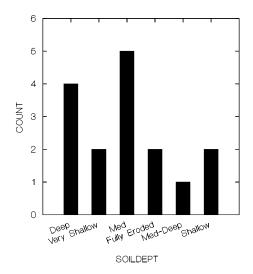


Figure 6. Late Formative Soil Depths

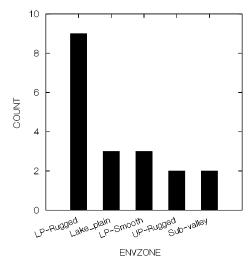


Figure 7. Terminal Formative Environmental Zones

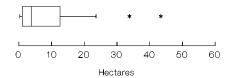


Figure 8. Terminal Formative Site Size

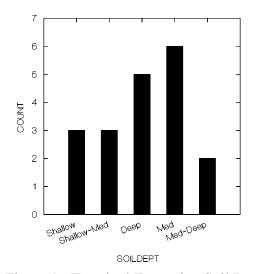


Figure 9. Terminal Formative Soil Depths

Figure 10. Terminal Formative Site Size (Population > 100 < 1001)

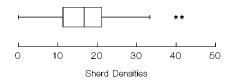


Figure 11. Terminal Formative Sherd Densities