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ABSTRACT

SCALABLE SEARCHES IN HIGH-DIMENSIONAL SPACES: LEVERAGING MULTI-

AND MANY-CORE ARCHITECTURES

BRIAN DONNELLY

High-dimensional search problems are fundamental to many domains, including data

analysis, cryptography and computer security. As data complexity and volume increase,

traditional search methods become inefficient, necessitating novel approaches to optimize

performance. This dissertation presents three primary search strategies across two distinct

high-dimensional spaces: Euclidean space and Hamming space.

For Euclidean spaces, we introduce Coordinate Oblivious Similarity Search (COSS) and

Multi-Space Tree with Incremental Construction (MiSTIC), two indexing techniques de-

signed to mitigate the curse of dimensionality. COSS employs metric-based indexing to

accelerate range queries, while MiSTIC integrates coordinate- and metric-based strategies

to improve performance across various dataset characteristics. Experimental results demon-

strate that these approaches outperform existing state-of-the-art methods in efficiency and

scalability.

In the domain of cryptographic key retrieval, we explore Noisy Probabilistic Response-

Based Cryptography (npRBC), a method for authenticating devices in high-noise environ-

ments using Physical Unclonable Functions (PUFs). We further develop npRBC-GPU, a

GPU-accelerated variant that significantly enhances search throughput compared to its CPU

counterpart. Additionally, we investigate optimization techniques for rapid seed generation

in cryptographic searches, addressing computational bottlenecks in permutation-based key

matching.

By leveraging parallel processing on both CPUs and GPUs, this dissertation provides

novel methodologies for efficiently navigating high-dimensional search spaces. These contri-

butions have broad implications for fields such as high-performance computing, cybersecurity,

and data science, offering scalable approaches to computationally intensive search problems.
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Chapter 1

Introduction

Searching is a canonical problem in computer science with searches varying in complexity

from a scan through a dataset, to matching a user name with a password, to fuzzy match-

ing DNA sequences that represent genes shared across species. Most researchers use well

established methods for searching but as data grows in both volume and complexity those

methods are becoming intractable [14]. One of the major hurdles for these pioneering meth-

ods to overcome is the increase in the number of dimensions of modern data [14]. In this

work we discuss methods for addressing this increase in dimensionality and the subsequent

increase in the search space. As the search space increases we observe an exponential increase

in the amount of work needed to search the spaces using näıve approaches. To address this

we examine strategies which partition the spaces and search in a logical manner to reduce

unnecessary work.

In this dissertation, we introduce three main search strategies across two distinct types of

search spaces. The first space, Euclidean distance space, is commonly used in the context of

data analysis. For example, particle physics data gathered from the Large Hadron Collider

which can be used to detect specific collision events [6]. The second space, permutation space,

examines searches that can have near infinite work (we will show an example with a search

space larger than 2256 items) which occurs often in cryptography and communications [22,

24, 74].

The first search strategy that we introduce in this dissertation is the Coordinate Obliv-
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ious Similarity Search (COSS) which is an index designed for searching for data points in

high-dimensional Euclidean spaces. The second method we introduce is Multi-Space Tree

with Incremental Construction (MiSTIC) which addresses the same scenarios as COSS but

utilizes a hybrid metric- and coordinate-based indexing strategy. The third search strat-

egy that we introduce is Noisy Probabilistic Response based Cryptography (npRBC-CPU)

which searches a Hamming space to match keys for authentication in the field of computer

security. All of these strategies partition the search space to allow for an index (a type of

data structure used to organize data for searching) to be constructed and then searched.

1.1 Motivation

As data continues to grow in both volume and complexity, existing search methods are be-

coming increasingly ineffective, particularly in high-dimensional spaces which contain ≥ 16

dimensions. These search problems arise in numerous domains, including data analysis,

cybersecurity and cryptography, where the ability to quickly perfrom a search is critical.

However, as the number of dimensions increases, search spaces expand exponentially, mak-

ing naive or brute-force approaches computationally intractable. This phenomenon, often

referred to as the ”curse of dimensionality,” [14] requires the development of specialized

algorithms that can effectively navigate and process such high-dimensional data spaces.

1.1.1 The Curse of Dimensionality

As the number of dimensions increases, computational and analytical tasks—such as

searching, clustering, and classification—become exponentially more difficult. This challenge

has been coined as ”the curse of dimensionality” and can be broken down into 3 main issues

as follows:

Exponential Growth of Search Space: In low-dimensional spaces, data points are

relatively close to one another. However, as dimensionality increases, the volume of the

search space grows exponentially, causing data points to become more sparse. This makes it
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difficult to efficiently partition and search the space. For example, if a dataset has 10 points

uniformly distributed in a 2-dimensional space, they might be relatively close together. But

in a 100-dimensional space, those same 10 points could be extremely far apart, making search

operations computationally expensive.

Loss of Meaningful Distance Metrics: Many search algorithms rely on distance metrics

(such as Euclidean distance) to compare data points. However, in high dimensions, distances

between points tend to become nearly uniform, reducing the effectiveness of these metrics.

Increased Computational and Memory Costs: Storing and processing high-dimensional

data requires significantly more memory and computational power. Algorithms that work

well in low dimensions (e.g., k-d trees [11, 15]) often become inefficient or break down en-

tirely in high dimensions because they rely on pruning strategies that lose effectiveness as

dimensions increase.

1.1.2 Leveraging Modern Hardware Platforms

High-dimensional searches demand increasing computational capabilities with the dimen-

sionality of the data. To address this, parallel processing techniques and hardware accel-

erators such as multi-core CPUs and GPUs are utulized. In particular, GPUs, which are

now integral to modern high-performance computing, provide significant advantages in ac-

celerating search algorithms. However, leveraging these resources efficiently requires tailored

algorithms that exploit parallelism while minimizing overhead associated with the increased

complexity of the hardware platform.

1.2 Parallel and GPU Computing

High-dimensional searches require so much work that sequential algorithms are intractable

for most searches. Therefore, in this dissertation, we examine parallel multi-core CPU and

GPU search algorithms. While parallel search algorithms on the CPU are similar to sequen-

tial ones, the GPU requires a different approach. As of 2025, 9 of the 10 top supercomputers
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use GPUs, highlighting their importance in high performance computing.

1.3 Dissertation Statement

Searching in high-dimensional spaces presents significant challenges due to the complex-

ity and scale of the search space. Traditional search methods often become inefficient as the

dimensionality of the search space increases, making it necessary to develop specialized al-

gorithms. Given the immensity of high-dimensional search spaces, additional computational

resources, such as multi-core CPUs or GPUs, are required to process and analyze data effec-

tively. To maximize efficiency and performance, it is crucial to design algorithms that fully

leverage these parallel architectures, ensuring that searching algorithms remain feasible and

scalable even as the size and dimensionality of the data increases.

1.4 Dissertation Outline

The outline for my dissertation is given in Figure 1.1. My dissertation focuses on searching

in high-dimensional spaces. This is broken into two main categories, Euclidean Space and

Hamming Space. There are two common ways of indexing in Euclidean space, the first

is metric-based indexing where the data in the Euclidean space is mapped to a distance-

space by replacing the coordinate values of each point in the dataset with the distance

to another point in the original Euclidean space. The points are then partitioned in the

distance-space that was created. The second method for indexing is to partition the dataset

based on the original coordinate values in the Euclidean space. We propose a Coordinate-

Oblivious Similarity Search (COSS), a metric-based indexing method for range queries and

is designed for the GPU. We show that COSS out-performs other state-of-the-art methods

on high-dimensional range queries. We improve on COSS by introducing the Multi-Space

Tree with Incremental Construction (MiSTIC). MiSTIC combines both coordinate- and

metric-based indexing strategies to partition the Euclidean space. MiSTIC outperforms
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Searching High-
Dimensional Space

Euclidean Space Hamming Space

Probabilistic
Searching

Metric-based
Indexing

Coordinate-based
Indexing

COSS 
(Chapter 3)

MiSTIC
 (Chapter 4)

Rapid Seed Generation
(Chapter 5)

npRBC 
(Chapter 6)

npRBC-GPU
(Chapter 7)

Figure 1.1: An overview of the search strategies and how they relate. COSS and MiSTIC
address range queries in high-dimensional Euclidean space. npRBC is our proposed

solution to searching for a correct key in a noisy environment using a probabilistic search
through a high-dimensional hamming space. Rapid Seed Generation is a survey of

combination generating algorithms evaluated for the GPU and CPU with workloads similar
to those in npRBC-CPU and npRBC-GPU (a GPU based version of npRBC-CPU).

other methods across a wide range of dataset characteristics, highlighting its robustness.

This dissertation also addresses the problem of searching in Hamming space. Hamming

space introduces unique problems compared to Euclidean distance space because of the need

for combination generating algorithms to examine the search space. These combination

generating methods are used for our proposed protocol Noisy-Probabilistic Response-Based

Cryptography (npRBC-CPU).

This dissertation is organized as follows: Chapter 2 gives a general background to search-
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ing in high-dimensional spaces, Chapter 3 introduces COSS for similarity searches, Chap-

ter 4 builds on the work in the previous chapter and introduces MiSTIC, Chapter 5 gives a

survey of combination generating methods, Chapter 6 introduces npRBC-CPU for authen-

tication in high noise environments, Chapter 7 extends the work of the previous chapter with

npRBC-GPU which uses GPGPUs to accelerate authentication and finally this dissertation

is concluded in Chapter 8.
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Chapter 2

Background

This section presents a brief background of searching in Euclidean Spaces as well as

searching for cryptographic keys using Response Based Cryptography (RBC). Additionally,

we discuss the indexing and search algorithms as well as the metrics we use to evaluate these

algorithms.

2.1 Euclidean (metric-space) Searches

In recent years datasets have been growing both in size and in the scope of the data

they contain. It is common for data records to store hundreds or thousands of attributes or

dimensions. This rise in both dimensionality and scale has motivated a number of works that

reduce computation times on such datasets [9, 14]. One such branch of research is metric-

space indexes which reduce the time needed for data analysis. These indexes are designed for

use on high-dimensional data where more commonly used indexes perform poorly. Metric-

based indexes use a spatial projection technique, usually by reorganizing the data based

on a distance to a point. This allows for the data to be indexed in an analogous lower

dimensional space as compared to the original data [55, 79, 80]. Metric-based indexes only

work in a metric-space (Euclidean is the most common metric-space). The formal definition

of a metric-space where metric-based indexing works is given in the following section.

7



2.1.1 Formally Defining a Metric-Space

The distance in a metric space between two points x and y, d(x, y), is defined by:

d(x, y) = (
∑n

i=1 |xi−yi|k)1/k, where x and y are two points and n is the number of dimensions

of the two points. k changes depending on the Minkowski distance that is being used [14].

For Euclidean distances, k = 2.

A metric space is defined by four characteristics [14, 55, 79]:

• Symmetry: d(x, y) = d(y, x)

• Positivity: d(x, y) ≥ 0

• Indiscernibility: d(x, y) = 0 if x = y

• Triangle Inequality: d(x, y) + d(y, z) ≥ d(x, z)

2.2 Defining Datasets and Points

Let us define, D, as a dataset containing |D| points (or feature vectors), in n dimensions.

Each point is defined as pj ∈ D, where j = 1, 2, . . . , |D|. We denote the coordinates of each

point, pj ∈ D, as pj = (x1, x2, . . . , xn). The Euclidean distance between points r ∈ D and

s ∈ D is defined as dist(r, s) =
√∑n

i=1(ri − si)2.

2.3 Similarity Searches

Similarity searches are common dataset operations that are computationally expensive [3,

12, 25, 77, 78, 92, 96, 113, 115]. A similarity search finds all data points D within a distance

threshold, ϵ, of a data point x. In a self-join operation all of the data points in D are

compared to all of the other data points to see if the distance between the points is less than

ϵ, d(x, y) ≤ ϵ, the operation is denoted as D ⋊⋉ϵ D. In a semi-join operation there are two

datasets P and Q, the points in P are compared to every point in Q to find the pairs of
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points that are closer together than ϵ, this operation is denoted as P ⋉ϵQ. The selectivity of

a similarity search is the average number of neighbors within ϵ for each point and is defined

as S = (|R| − |D|)/|D| where R is the result set and |R| is the total size of the result set,

which contains result set pairs of points that are within ϵ of each other.

A popular method for computing a similarity search is to generate a set of candidate

points for each query point and then compute the distances from the query point to each

candidate point; a search and refine approach. The candidate set of points is found during

the search step and contains points that tend to be near to the query point but are not

guaranteed to be within ϵ. The refine step is where the candidate points are compared

directly to the query point using distance calculations and this is often where the majority

of the computation of the similarity search is performed. Methods that reduce the size of

the candidate set will significantly reduce the overall computation.

There are a number of ways to measure distance and some indexes are able to work with

different types of distance metrics. Most indexes are restricted to a space that upholds the

metric-space definitions as defined in Section 2.1.1. One of the most common distance metrics

to use is the Euclidean distance which works in Euclidean spaces. In lower dimensions,

the distance calculation takes a relatively little amount of time to compute, whereas in

higher dimensions (≥ 16) [14, 17, 87] the calculation can require a significant portion of the

computation time.

2.4 Indexing

A basic implementation of a similarity search is simple but has a runtime complexity for

a semi-join operation of O(n · |P | · |Q|) where n is the dimensionality of the data and |P |

is the number of points in a dataset P which is querying a |Q| points form a dataset |Q|.

A self-join operation has a runtime complexity of O(n · |D|2) where D is the dataset and n

is the dimensionality of the data. For larger datasets this becomes an intractable problem

regardless of the hardware used and even datasets of moderate size can become intractable to
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compute with if they are high-dimensional [14]. To make similarity searches faster, indexing

methods have been developed to reduce the number of distance calculations needed at the

cost of preprocessing overhead [19]. These methods prune the search space so that points

only need to calculate the distance to a subset of other points that are nearby in the data

space. This has allowed similarity searches to be performed on larger datasets and reduced

the computational requirements in effectively all cases [79, 80].

There are a number of ways to index a dataset to allow for pruning. There are two main

categories that most indexes fall into; trees and grids [14, 35, 55]. Tree indexes create a

hierarchical structure where nodes on the tree are broken down into more subsequent nodes.

The nodes are divided in such a way as to partition either the data space or the set of data

points.

A grid index is created by sectioning the data in geometric patterns, usually linearly,

that separates the data into regions [48, 63, 64]. A grid search will add the points in regions

adjacent to the query point’s region to the candidate set.

Most algorithms directly index on the data point values, but a large subset of methods,

metric-based indexes, use one or more points in the data space to index the data [15, 55, 79,

80]. These methods tend to have better performance in higher dimensional spaces because

they are able to encapsulate more information in less space. This allows the algorithms to

more effectively prune the space where other tree or grid methods may prove ineffective.

Metric-based indexes can use other indexing structures on what is essentially a transformed

space [14]. The pruning happens in this transformed space but the actual distance calcula-

tions still need to occur in the original data space. While metric-indexes have proven to be

effective in certain spaces their additional complexity can lead to higher overheads that may

make them less attractive in many use cases.

Metric-based algorithms are also commonly used to combat “The Curse of Dimensional-

ity” [9]. This is because most indexes have reduced performance when the search distance ϵ

is high. In high dimensions the distance threshold needed for a given selectivity is usually
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(for a given data distribution) higher than in lower dimensionality. As the distance threshold

begins to approach approximately half of the range in a given dimension, pruning in that

dimension is not possible [35]. Metric-based methods can avoid this issue by indexing on

every dimension of the data together. This allows them to continue to prune the candidate

sets for each point as the distance threshold increases.

We describe some of the advantages and challenges of partitioning the space with both

grids and trees in what follows.

2.4.1 Grid Indexing

Grid-based indexes overlay a grid on the data that partitions the space evenly. One

example is the Epsilon Grid Order (EGO) that creates grid cells of length ϵ (the distance

threshold in a similarity search) [15, 63, 64]. To efficiently partition the space, the algorithm

selects some number of dimensions to index on. The dimensions are chosen at runtime based

on their variance. This allows the EGO methods to maximize pruning while having low

overhead. Each cell generated by the index contains a set of points Pc. All points in Pc will

have to check against all other points in the adjacent cells, but not to points in cells that

are not adjacent. This is because the cell widths are ϵ, so any points in non-adjacent cells

will have a minimum distance of ϵ.

Each cell in a grid index will have 3k adjacent cells where k is the number of indexed

dimensions. Only the non-empty cells are saved in the grid index to reduce the memory

storage requirements which would become intractable in high-dimensional spaces. Because

only the non-empty cells are retained in the index for a cell to find another adjacent cell,

a search will need to be performed. This is often achieved with a binary search that has a

runtime complexity of O(log2(|g|)) where g is the number of non-empty cells. Each cell will

have to perform 3k searches to find all adjacent cells.

There is a trade-off between increasing the number of indexed dimensions, k, and the

number of searches that must be performed. When k is low the time spent searching is
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negligible but the index will not prune as many distance calculations resulting in more

overall computation. If k is too high the time spent searching the index will reduce the

overall performance of the index. Generally, the best value for k has been experimentally

found to be around k = 6 for real world datasets [35, 48].

2.4.2 Tree Indexing

Trees are similar to grids in that they partition the space to allow for pruning searches

of points nearby a query point. One of the main differences between a tree and a grid is

how they identify adjacent cells. Instead of the searches that most grids employ, trees have

tree traversals that will locate adjacent nodes which will contain the candidate points [12,

57, 109, 115]. As an example, consider a depth first search which starts at the root and,

based on the value of the point being evaluated, traverses through the tree. Each layer of

the tree is somewhat synonymous with each indexed dimension of the grid described above.

The farther down the tree, the more refined the candidate set becomes.

In many cases, trees are able to traverse faster and more efficiently than a search could be

performed on a grid index. Trees can have a breadth first traversal in which the tree traversal

searches each node of the layer that the point may have candidates in, this approach reduces

the amount of checking because a single full traversal will generate the entire candidate set,

but increases the amount of memory that will be needed to hold all of the nodes of the tree

simultaneously [65]. A depth first traversal starts at the root node and traverses to the leaf

node. A depth first search will be more computationally expensive but require less memory

resources. Hybrid approaches will combine a partial breadth first search that then spawns

depth first traversal from nodes partway down the tree. This hybrid approach makes the

most of what memory resources are available to reduce the amount of work of the depth first

searches.

Regardless of the partitioning method of the tree-based index, too large of a tree will

cause a degradation in performance, while too small a tree will not have sufficient pruning.
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R1

R2

ϵ ϵ

(a) Metric-Based (b) Coordinate-Based

Figure 2.1: (a) An example of a metric-based index (similar to COSS [35]) partitioning a
two-dimensional space with two reference points R1, and R2. (b) An example of

partitioning with a grid (similar to GDS-Join [48]) in two dimensions where each of the
dimensions are used for indexing. Both methods use the triangle inequality to exclude

points in non-adjacent ϵ-width partitions from the search.

Once again, there is a selection process that needs to be evaluated to determine how much

partitioning there should be based on the distribution and dimensionality of the data. For a

tree, it is important to reduce the depth and the number of leaves that need to be queried.

Like the grid-based indexes, there is a trade-off between the search overhead and the number

of distance calculations that need to be performed.

2.4.3 Metric-Based Indexing and Coordinate-Based Indexing

The grid- and tree-based indexes discussed in the previous two sections describe how

to search partitions of the data space. Here we compare the two methods for representing

the points that are indexed. The most common way to construct an index is to partition

the data based on its coordinate values, as in the case of a kd-tree [11] or R-tree [8]. The

other way is to project the data into a new set of dimensions. The most common type of

projection is to use the distances from a set of points as the new dimensions of the data. The

projection uses a mapping function and for most indexes to work the mapping needs to be

contractive such that the distances between data points only decrease from the coordinate

space to the distance space [28]. The methods that use this mapping are called metric-based
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indexes, while the methods that do not map into a new space are coordinate-based indexes.

A comparison of metric-based indexing and coordinate based indexing is shown in Figure 2.1.

This figure shows an example of a 2-dimensional space that has been partitioned with either

a metric- or coordinate-based approach. The two reference points shown in Figure 2.1 (a)

have multiple concentric rings with a distance between each ring equal to the search radius

ϵ. The concentric rings partition the space based on the distance to the reference points.

The coordinate-based approach shown in Figure 2.1 (b) partitions the space evenly on the

vertical and horizontal axis with ϵ spaced grid lines.

Coordinate-based indexing is straight forward and a commonly known approach, however,

metric-based indexing is less commonly known and more complex to implement, therefore

in the next section we discuss metric-based indexing in depth.

2.5 Metric-Based Indexing

Figure 2.2: This figure from Hjaltson and Samet [55] demonstrates two types of distance
partitioning: (a) a ball partitioning method and (b) a hyperplane partitioning method.

There exist two main methods of partitioning a space for a metric-based index. The

first is generally referred to as ball or pivot-based indexing, in which the space is divided

into spheres based on the distance to some pivot point. A pivot point can be either an

arbitrary point in space or a point in the dataset and is used as a point of reference for index

construction. Figure 2.2(a) shows how the space is divided into two partitions S1 and S2 by
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pivot point p. The second is hyperplane partitioning where the space is divided by one or

more hyperplanes to create sub groups as in Figure 2.2(b). Hjaltason and Samet [55] classify

most metric-based indexes into these two categories. These two types of metric-based indexes

can be combined with a number of other methods such as contractive mapping, or spatial

projections to create an index. Ball partitioning can also be combined with hyperplane

partitioning to create an index that uses both to divide the space [14, 55]. Most of these

methods rely on the triangle inequality defined as d(x, y) + d(y, z) ≥ d(x, z) where d() is

the distance function and x, y, z are points. The triangle inequality is useful because it

gives a basis for a relationship between any three points and states that the sum of any two

distances between the points must be greater than a single distance, or rather any two sides

of a triangle must be greater or equal to the remaining side. This can be used to establish

bounds on the distance between two points x and y, if d(x, z) and d(y, z) are already known

without having to calculate d(x, y).

The main purpose of metric-based indexing is to establish lower or upper bounds on the

distance between points, or both [55]. By bounding the distances, the number of distance

calculations can be pruned. In the case of a join operation on a dataset, the establishment

of a lower bound on the distance between points can be used to remove any point from the

candidate set if the lower bound is greater than the distance threshold, ϵ. While self-joins

and semi-joins do not typically make use of an upper bound on the distance, finding the k-

nearest neighbors often needs the upper bound in order to ensure that all points that could

be a neighbor have been considered.

Some of the earliest metric-based indexing methods were proposed by Burkhard and

Keller in 1973 [19]. The proposed methods focused on a single query into a file system. The

authors noted that pruning could be done based on a distance to a distinguished feature

(a pivot point) by using the triangle inequality, and that this would reduce the number of

calculations that would need to be done. The authors proposed the Burkhard-Keller Tree

(BKT) which used these principles. Their idea has been extrapolated on by authors in
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the years since to solve not only nearest neighbor problems but also joins and other range

queries [43].

2.6 Summary of Challenges for Distance Similarity Searches

In this section we briefly review the challenges of distance similarity searches.

Curse of Dimensionality: As dimensionality increases, traditional search methods become

inefficient due to the tendency of data points to become equidistant. This phenomenon

reduces the effectiveness of indexing techniques.

Indexing Limitations: Indexing with a coordinate-based approach results in poor index

performance in high-dimensions due to the reduction in the number of partitions across

individual dimensions. Using a metric-based approach requires the placement of reference

points which has a substantial impact on performance. Since the optimal reference point

placement is dependent on the dataset characteristics there is no overall solution.

Balancing Overhead and Distance Calculations Performance: There is a trade-

off between the amount of partitioning that an index performs and the number of distance

calculations. The overhead and index search time increases as the partitioning increases, but

the number of distance calculations decreases. Balancing the overhead and search time with

the amount of distance calculations is also dependent on dataset characteristics, requiring a

data aware approach to index construction for the best overall performance.

In this dissertation we seek to address these challenges with the introduction of both

COSS and MiSTIC.

2.7 Searching Hamming Space

Hamming space is the set of all possible bits of a fixed length. It is used to measure the

distance between sets of bits, where the Hamming distance quantifies the number of differing

positions between two sets. We can use a cube to visualize a 3 dimensional Hamming space
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(0, 0, 0)
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(0, 1, 0)

(0, 1, 1)
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(1, 1, 0)

(1, 1, 1)

Figure 2.3: This figure is an example cube (a Hamming space with 3 dimensions) with a
path between vertices (0, 0, 0) and (1, 1, 1). The distance between the two vertices is 3,

which corresponds to the shortest number of edges between the two vertices.

as shown in Figure 2.3. The distance between two points (each point is also a vertex of the

cube) in the Hamming space is also the number of edges that need to be traversed from one

vertex to another. While a 3-dimensional Hamming space only has 23 possible points in its

Hamming space, the number of points in the space increases exponentially with the increase

in dimensionality which can make searching the high-dimensional spaces intractable.

When searching a Hamming space you start with a set of bits and then find all of the

other sets of bits that are within a given Hamming distance, where the Hamming distance is

the number of bits in each set which are not the same (i.e. there is a Hamming distance of

two between 1001 and 1010). The number of possible sets in a given Hamming space is 2n

where n is the fixed length of the sets of bits. In the context of computer security, the size

of the search space is called the bits of security, with a Hamming space of 118-dimensions

corresponding to 118-bits of security. As n increases, the search space becomes intractable,

when n ≥ 128 a brute force search is generally considered unfeasible even for the largest

supercomputers [5].

Instead of a brute force search we can search increasing the the sets around the query

set by permuting the query set. The magnitude of the permuted sets is given by n choose
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k, denoted as
(
n
k

)
, where k is the Hamming distance from the query set.

As we will discus in the next section, Hamming space searches are critical to Response-

based Cryptography (RBC) where bit sets (the keys) are rapidly permuted and hashed to

match a transmitted hash generated from another bit set which is some Hamming distance

from the one being permuted.

2.8 Response Based Cryptography (RBC)

Response-based Cryptography (RBC) is an innovative approach to securing communi-

cations and data, particularly in environments where traditional cryptographic methods

may fall short. This method leverages the unique responses of physical unclonable func-

tions (PUFs) to generate cryptographic keys and authenticate devices. PUFs are hardware-

based security primitives that exploit the inherent manufacturing variations in electronic

components to produce unique, unpredictable responses. These responses can be used as

cryptographic keys, providing a robust layer of security that is resistant to cloning and

tampering [24].

PUFs are central to the functioning of RBC. They act as hardware fingerprints, providing

a unique identifier for each device. The unpredictability and uniqueness of PUF responses

make them ideal for cryptographic applications. Unlike traditional cryptographic keys, which

are stored in non-volatile memory and can be extracted by attackers, PUF responses are

generated on-the-fly and are not stored, making them much harder to compromise [22, 74].

One of the key features of RBC is the introduction of controlled noise into the cryp-

tographic process. This noise makes it difficult for attackers to predict or replicate the

cryptographic keys. This is measured as the Hamming distance between the registered PUF

fingerprint (often stored on a server) and the response of the PUF to a challenge (the chal-

lenge is often generated by the same server which stores the registered PUF’s fingerprint).

This measured Hamming distance is the drift between the two fingerprints which is a subset

of the PUF image called a PUF seed.
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RBC has a wide range of applications, particularly in the field of Internet of Things (IoT)

and post-quantum cryptography. IoT devices often have limited computational resources and

cannot afford the overhead of traditional cryptographic methods. RBC provides a lightweight

and secure alternative that can be implemented on these devices. Additionally, RBC is well-

suited for post-quantum cryptography (PQC), as it does not rely on mathematical problems

that could be easily solved by quantum computers.

Despite its advantages, RBC also faces several challenges. One of the main challenges

is the inherent bit error rates in PUF responses. If keys do not match in cryptography

then authentication will fail, therefore RBC must find and then correct the erroneous bits.

Additionally, the introduction of noise and probabilistic responses can complicate the design,

implementation, and robustness of RBC systems.

2.8.1 Challenges of RBC

RBC using PUFs is a relatively new method in the field of computer security and as such

does not have as large a body of work to support it as metric-based indexing does. Despite

this, we are able to utilize previous work in related fields to solve some of the issues which

occur with RBC. When searching there are two main challenges that need to be addressed:

• Secure Hashing

• PUF Seed Permutation

The first, secure hashing, is mostly solved for our purposes. The National Institute

of Standards and Technology (NIST) has published guidelines for what Secure Hashing

Algorithm (SHA) methods to use [95]. Optimized versions of SHA are available for most

hardware platforms and can be easily adapted to new protocols.

The second, key permutation, is used as input into SHA. The PUF seed, which is stored on

the server, has to be permuted to account for a drift in the client device’s PUF. A combination

is generated to select which bits in the PUF seed to flip, and then those bits need to be flipped
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in the seed before it inputted to SHA. The output of SHA is then compared to the revived

hash/message digest before a new combination is generated and the seed further permuted.

Generating the combinations is non-trivial and can take a significant portion of the overall

runtime of the protocol. This is in part due to how well SHA has been optimized to run on

GPUs and as such takes a relatively short amount of time to compute each hash compared

to combination generation.

In this dissertation we seek to address this challenge with the following:

• Reducing the number of seeds that have to be searched.

• Reducing the combination generation time.

• Making the protocol more robust to communication interference.

2.9 Complexity and Evaluation

There are two approaches to evaluating search algorithms. The first is to examine the

theoretical asymptotic time complexity of the algorithms and compare them based on the

amount of calculations/work they perform. Using this approach we would rank the lower

complexity as better. For example, consider finding an element in a sorted list of integers

where a binary search has a time complexity of O(log n) while a scan has a time complexity

of O(n), we would consider a binary search to be faster since it has a lower complexity. This

approach is platform agnostic and is appropriate for the general evaluation of methods for a

simple comparison. One of the major difficulties with asymptotic time complexity analysis

is that some searches have a large range in bounds. For example DBSCAN, a popular

clustering algorithm that performs searches in Euclidean spaces does not have a well defined

time complexity [46, 103] with a generally accepted time complexity of O(n log n) but with

an upper bound of O(n2). This leaves a large amount of uncertainty in the time complexity

analysis which is not well constrained. When comparing algorithms that accomplish the same

task, this uncertainty makes it difficult to determine which algorithm should be employed
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based on performance. In the similarity search algorithms we evaluate, the upper bound is

O(n2) with a lower bound of O(n) for querying all pints in a dataset with n points.

The second approach for evaluating search algorithms is to examine empirical metrics,

such as the runtime (i.e. the time from start to finish). This raises a number of problems,

the foremost of which is that the runtimes are dependent on the hardware platform used

to execute the search algorithm. This adds a level of difficulty to evaluating algorithms

which can only be addressed through excess testing on a wide range of hardware platforms.

The benefit of this approach is that we obtain a more practical performance evaluation

and based on hardware platform specifications. Additionally, time complexity analysis uses

asymptotic notation which often obfuscates overheads that are present in many algorithms.

For expensive searches, the overhead tends to be negligible but on smaller workloads the

asymptotic notation may not be reflective of an algorithm’s real-world performance. By

evaluating the search algorithms on a range of dataset characteristics (i.e. distribution,

dimensionality etc.), we can show the effects of overhead as well as illustrate the actual

performance of the searches.

In this dissertation research, we focus on timed evaluations though we do consider the

time complexities of our algorithms and how those relate to the observed runtimes.

2.10 Parallel Computing and GPUs

Part of the focus of this dissertation is on designing data structures and algorithms that

take advantage of modern hardware. We use both parallel CPU and discrete GPU (i.e.

a GPU on a separate chip from the CPU) algorithms to accelerate our searches. Parallel

computing has a set of paradigms encapsulated by Flynn’s Taxonomy which we describe as

follows.

Flynn’s Taxonomy: In parallel computing there are four main ways of issuing instruc-

tions: (i) Single Instruction Single Data (SISD), where a single processor executes a single

instruction on a single data stream; (ii) Single Instruction Multiple Data (SIMD), where
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multiple data elements are processed simultaneously using one instruction; (iii) Multiple In-

struction Single Data (MISD), where multiple instructions operate on a single data stream;

and Multiple Instruction Multiple Data (MIMD), where multiple processors execute multiple

instructions on multiple data streams independently. Specific to GPUs, there is also Single

Instruction Multiple Threads (SIMT) where single instructions operate in lockstep across a

warp of threads.

GPUs have a substantially different architecture from CPUs with some of the following

benefits highlighted below for an NVIDIA A100 GPU [90] and an AMD EPYC 9004 series

CPU [4]:

• High memory bandwidth (GPU has ≥ 2 TB/s [90] versus up to 512 GB/s with the

CPU).

• High compute throughput (GPU has 312.5 TFLOPS for single-precision versus up to

11 TFLOPS with the CPU).

• Large number of compute cores (GPU has 6912 CUDA cores versus up to 128 cores on

the CPU).

While theoretically GPUs outperform CPUs available today, GPUs do come with some

substantial downsides which may significantly reduce comparative performance. Some of

these drawbacks are as follows:

• Warps of threads (32 threads with NVIDIA GPUs) must operate in lockstep because

of the single instruction multiple thread (SIMT) architecture.

• Limited global memory (GPU has up to 80 GB versus typically 512 to 1024 GB with

the CPU).

• Communication bottleneck over the interconnect from the CPU to the GPU (this is

often PCIe).
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• Overhead results in high latency when launching a large number of GPU kernels.

• Dynamic memory is largely unsupported (some recent advances allow for dynamic

memory but at the expense of highly reduced performance).

We discuss the strengths and weaknesses of both multi-core CPUs and GPUs in detail

below.

Multi-core CPUs: Multi-core CPUs tend to have higher clock speed than GPUs but

have far fewer cores. They have a lower memory latency than GPUs but also a lower overall

bandwidth. Additionally, each core on a CPU can operate independently from the other

cores allowing for flexibility when designing parallel algorithms. These attributes of multi-

core CPUs make them well suited to algorithms which have a large number of branching

instructions, since each core can operate independently, and scenarios in which a single thread

or process needs to complete before other work because a single thread executing on a core

on the CPU is going to compute faster than a single core on a GPU. CPUs will have reduced

performance when running into memory bandwidth limitations, a problem that GPUs were

specifically designed to address. CPUs will also have less overall computational throughput

when compared to a GPU because they have fewer overall cores. CPUs pair well with GPUs

for pre-processing data and building data structures which can then be transferred to the

GPU for the bulk of the computations as we show to be the case with COSS, MiSTIC and

npRBC-CPU.

GPUs: While GPUs where originally created for computer graphics their uses have

expanded over the years. Most supercomputers have GPUs for general purpose computing

which have more memory and cores but lower clock speed compared to consumer grade

GPUs which are still mostly used for graphics applications. GPUs have an inherent latency

because the all of the memory needs to be transferred from the host (by the CPU) to the

GPU. Additionally, creating and launching the number of threads necessary to saturate

the high core count on the GPU increases the latency due to these overheads. Because of

the high latency when using the GPU it is better for high throughput oriented problems
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which lends itself very well to searching high-dimensional spaces that tend to require a large

amount of computation and high memory bandwidth. GPUs have sets of threads (32 for

NVIDIA GPUs) called warps that must perform the same instructions at the same time

but can process different data. This is not a problem for range queries which perform

simultaneous distance calculations, nor is it a problem for most cryptographic algorithms

which can perform multiple encryptions or hash on different data at the same time.

In this dissertation we examine similarity searches designed specifically for the GPU,

which are compared to existing multi-core CPU methods. Additionally, we evaluate npRBC-

CPU on multi-core CPU hardware platforms and compare to npRBC-GPU, a GPU opti-

mized version of npRBC-CPU.

Now that we have introduced the key concepts needed to understand the content in this

dissertation, we begin with our first research area, similarity searches on Euclidean distance

spaces in the following Chapter.
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Chapter 3

Coordinate Oblivious Similarity Search (COSS)

This chapter presents COSS, which is a method for high dimensional similarity searches.

The goal with this work was to adapt modern approaches for similarity searches on the

GPU and adapt them to work with metric-based indexing in order to mitigate the curse of

dimensionality problem described in Section 1.1.1.

This work originally appeared in the reference below and has been adapted for this

dissertation from its original format.

Donnelly, B., & Gowanlock, M. Proceedings of the 34th ACM International Conference on

Supercomputing (ICS 2020), Barcelona, Spain, Article No. 8, pp 1–12, 2020.

3.1 Abstract

We present COSS, an exact method for high-dimensional distance similarity self-joins

using the GPU, which finds all points within a search distance ϵ from each point in a

dataset. The similarity self-join can take advantage of the massive parallelism afforded

by GPUs, as each point can be searched in parallel. Despite high GPU throughput, distance

similarity self-joins exhibit irregular memory access patterns which yield branch divergence

and other performance limiting factors. Consequently, we propose several GPU optimizations

to improve self-join query throughput, including an index designed for GPU architecture.

As data dimensionality increases, the search space increases exponentially. Therefore, to

find a reasonable number of neighbors for each point in the dataset, ϵ may need to be large.
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The majority of indexing strategies that are used to prune the ϵ-search focus on a spatial

partition of data points based on each point’s coordinates. As dimensionality increases, this

data partitioning and pruning strategy yields exhaustive searches that eventually degrade to

a brute force (quadratic) search, which is the well-known curse of dimensionality problem.

To enable pruning the search using an indexing scheme in high-dimensional spaces, we depart

from previous indexing approaches, and propose an indexing strategy that does not index

based on each point’s coordinate values. Instead, we index based on the distances to reference

points, which are arbitrary points in the coordinate space. We show that our indexing

scheme is able to prune the search for nearby points in high-dimensional spaces where other

approaches yield high performance degradation. COSS achieves a speedup over CPU and

GPU reference implementations up to 17.7× and 11.8×, respectively.

3.2 Introduction

Similarity searches are fundamental database operations and are used in data analysis.

For example, similarity searches [78, 96, 98, 115] are used in clustering algorithms [103], and

k-nearest-neighbors searches [3, 25]. This paper examines the distance similarity self-join

problem [42, 48, 78, 92], defined as searching a distance ϵ around each point in a dataset

and returning all of the neighbors within this search distance. We focus on a GPU-efficient,

coordinate-oblivious index that prunes the search for nearby points. While we use the

index for the distance similarity self-join, the index can be employed in other spatial search

algorithms.

A semi-join on two datasets A⋉ϵ B involves comparing every point in A to every point

in B with a complexity O(|A| · |B|). Comparatively, self-joins (A ⋊⋉ϵ A) involve comparing

all of the points in a single dataset with a complexity O(|A|2). In this paper, we examine

the self-join, but note that the method and most optimizations proposed can be employed

for the semi-join as well.

The brute force approach to the distance similarity self-join computes the distance from
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every point to every other point yielding a time complexity of O(n2), where n is the number of

data points in a dataset, making the approach impractical for large datasets. Index-trees use

the data’s coordinate values to build a hierarchical data structure of partitions. For example,

kd-trees [51, 123], R-trees (and R-tree variants) [8, 26, 52, 53, 57, 58, 65, 83, 87, 94, 120], and

X-trees [12] are all types of trees that prune the search for nearby objects and are optimized

for specific application scenarios. Grid-based indexes with fixed length cells [47, 48, 62, 92, 96]

have also been proposed to partition the dataset. The major difference between index-trees

and grids is that many index-trees construct the index based on the positions of the points,

whereas static grids partition the space independently of the data distribution.

Both trees [65, 94] and grids [47, 48, 62, 92, 96] have been designed for the GPU. Searching

an index on the GPU introduces several challenges related to both index types. For example,

searches on trees require tree traversals which may lead to divergent execution paths that

degrade performance on GPUs [65, 90]. Depending on the type of query, a static grid may

perform worse than a tree, because the data partitions are of equal size. For the self-join

problem with a fixed search radius, static grids are an attractive option because ϵ-length cell

sizes can be utilized, which bound the search to neighboring cells [62]. Additionally, grids

may have less branch divergence than trees, since trees require many branch conditions in

their traversals [65, 94].

The volume of the space that needs to be searched grows exponentially with data di-

mensionality. To find points near each other, the search distance ϵ needs to increase pro-

portionately to the increase in dimensionality. Figure 3.1 shows the ϵ needed to find one

average neighbor on a uniformly distributed dataset. We observe that as the dimensionality

of the data increases, ϵ has to increase to maintain finding a single neighbor. In a grid-based

index the search within a unit hypercube becomes brute force when ϵ = 0.5, which occurs

at only 18 dimensions (Section 3.4.1). This illustration shows that the pruning efficacy of

methods that index based on the coordinate space of the data (e.g., grids and trees) causes

most index searches to degrade rapidly into a brute force search. This is known as the curse
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Figure 3.1: ϵ vs. n showing the minimum value of ϵ required to find a single neighbor (on
average) within a unit n-dimensional hypercube, β = [0, 1]n, where the |D| = 106 data
points are uniformly distributed. When ϵ ≥ 0.5 (red dashed line), a grid-based index

degrades to a brute-force search.

of dimensionality problem [9].

The ability to efficiently use the GPU makes grid-indexing a good solution for large

dataset analysis. With a higher memory bandwidth, and a massive throughput for floating

point calculations [89], GPUs provide the ability to replace large multi-core systems with a

single device [119].

We propose COSS– a GPU algorithm for high-dimensional similarity searches. GPUs

have high memory bandwidth and high throughput for floating point calculations [89], which

are needed to compute Euclidean distances between neighbors. COSS is designed to address

high-dimensional similarity searches by constructing a coordinate-oblivious index in distance

space. COSS indexes based on the distance to an arbitrary point in space, that we denote

as a reference point. Data points are then ordered and assigned to bins based on this

distance. COSS has a similar instruction flow as searches on grids, but does not partition

on coordinate space. By indexing based on the distance to a reference point, we can construct

an index that does not rely on the individual coordinates of the data, but instead utilizes

the entire set of coordinate values for indexing. This reduces the curse of dimensionality

problem described above. We show that COSS is a more efficient algorithm than other
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state-of-the-art methods for high-dimensional distance similarity self-joins. We outline the

major contributions of this paper as follows:

• We propose a novel coordinate-oblivious indexing method, COSS, tailored to exact

similarity searches on high dimensional data using the GPU.

• By using our coordinate-oblivious indexing scheme, we optimize pruning power by

selecting the number of reference points and their location.

• We leverage several optimization that improve index performance and memory man-

agement, including dimensional ordering, short circuiting the distance calculations,

and batching the computation across multiple kernel invocations.

• We evaluate COSS on 3 real-world datasets, 2 synthetic datasets and compare to other

state-of-the-art methods, Super-EGO and GPU-Join.

The paper is organized as follows. Section 3.3 presents the problem statement, Section 3.4

discusses the curse of dimensionality problem and related work, Section 3.5 presents our

coordinate-oblivious indexing scheme, Section 3.6 presents the optimizations used in COSS,

Section 3.7 presents our results, and finally, Section 3.8 concludes the paper.

3.3 Problem Statement

We outline the distance similarity self-join problem, denoted as D ⋊⋉ϵ D, as follows. Let

D be a dataset, containing |D| points (or feature vectors), in n dimensions. Each point

is defined as pi ∈ D, where i = 1, 2, . . . , |D|. We denote the coordinates of each point,

pi ∈ D, as pi = (x1, x2, . . . , xn). Like other works [12, 47, 48, 58, 62, 92, 96] we use the

Euclidean distance similarity measure. The Euclidean distance between points r ∈ D and

s ∈ D is defined as dist(r, s) =
√∑n

j=1(rj − sj)2. The self-join performs similarity searches

on all points in the dataset, pi ∈ D. A pair of points r and s are added to the result set
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if dist(r, s) ≤ ϵ. The value of ϵ directly controls the selectivity of the self-join, where the

selectivity refers to the average number of neighbors found per point in the dataset, D.

In this paper, all processing occurs in-memory. We consider the case where the result set

size may exceed the GPU’s global memory capacity instead of limiting our work to the case

where the result set must fit within global memory on the device. Since the result set size

is typically much larger than the input dataset size, we do not allow for the case where the

input dataset exceeds global memory capacity.

3.4 Background

In this section, we provide an overview of the motivation and literature. We use CUDA

terminology throughout this section and paper.

3.4.1 Motivation: Selectivity and the Curse of Dimensionality

We illustrate the relationship between dimensionality (n), ϵ, and selectivity, where selec-

tivity refers to the average number of neighbors found by each point. We denote selectivity

as S = (|R| − |D|)/|D| where R is the result set and D is the input dataset. We draw on

the example given by Kalashnikov [62], and refer the reader to that paper for a compre-

hensive discussion of selectivity. Consider a unit hypercube containing |D| = 106 uniformly

distributed data points in the bounding volume defined by β = [0, 1]n. Because points are

uniformly distributed in the hypercube, as the dimensionality, n, increases, the search dis-

tance ϵ will need to increase to find neighboring points. Assume that we wish to find 1

neighbor on average (i.e., a selectivity S = 1).

We compute the value of ϵ needed to find S = 1 using geometric arguments. First, we

define the volume of an n-dimensional sphere with radius ϵ as follows: V (n, ϵ) = g(n)ϵn,

where g(n) = πn/2

Γ(n
2
+1)

. If the volume needed to search a query point lies entirely within β,

and is not positioned near the edge of the bounding volume, β, then the point is more likely

to find neighbors within its search radius. We consider this best case scenario for a given
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search.

To find a selectivity of S = 1 point on average, we want to find the value of ϵ where

|D|·g(n)ϵn ≥ 1. Solving for ϵ, we obtain ϵ ≥ (|D|·g(n))−1/n. Figure 3.1 plots ϵ vs. dimension

(n), where a value of ϵ below that, plotted for a given value of n, yields S < 1 (less than

1 neighbor found per point on average). Since grid indexing schemes constrain the search

to adjacent grid cells, then a search in β with ϵ ≥ 0.5 will degrade to a brute force search

because searching adjacent grid cells will span the entire bounding volume, β [62]. From the

plot, we find that at n = 18, ϵ ≥ 0.53 is needed to find a single neighbor. Consequently, for

uniformly distributed data, indexing the data based on their coordinate values will degrade

to a brute force search when n ≥ 18 dimensions. This illustrative example shows the pitfalls

of using grid-indexing schemes for high-dimensional data. Additionally, other methods that

index the data based on a point’s coordinate values, such as index-trees (e.g., R-tree [52],

X-tree [12], kd-tree [123]), suffer from the same curse of dimensionality problem.

3.4.1.1 Dimensionality Reduction and Approximate Solutions

One method of processing high-dimensional datasets and counteracting the curse of di-

mensionality is to use a feature extraction method like Principle Component Analysis [116]

or Map Analysis [25]. While reducing the effective dimensions of the data is a straight-

forward method for reducing the computation time, there is a loss of data that results in

approximate solutions. For an exact solution, a larger amount of computation is needed [48],

and we focus on exact similarity searches in this paper.

3.4.2 Related Work

Indexing methods can reduce the runtime of a distance similarity self-join by reducing

the total number of distance calculations needed [58]. Indexing methods partition the in-

put dataset, allowing the algorithms to prune the search space by only evaluating nearby

searched query points. There are two main approaches to indexing: one is to construct an
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index using the coordinate values of the points (e.g., kd-trees [123]), and the other is a data

oblivious approach that creates the index by partitioning the space (e.g., statically parti-

tioned grids [62]). Our COSS algorithm is differentiated by its coordinate-oblivious index;

COSS does not rely on either the data coordinate values or partitioning the coordinate space

to construct the index.

3.4.2.1 Index-trees

Trees construct a hierarchical index that partitions the coordinate space. [8, 12, 26, 51,

52, 53, 57, 58, 65, 83, 87, 94, 120, 123]. For example, in an R-tree, when a query point

is being searched, the tree is traversed to find points within the query point’s minimum

bounding box. When concurrently searching the tree, traversals cause thread divergence on

the GPU because of irregular instruction flow [65, 94]. Several methods have been developed

to improve tree searching performance on the GPU. For example, Kim et al. [65] propose a

technique that allows trees to search on the GPU, minimizing the divergence and avoiding

back-tracking.

While most CPU index-trees use a depth first search, GPU implementations use a breadth

first search to help reduce branching [94]. The downside of the breadth first search is that it

can require a large amount of dynamic storage. [94] Large storage requirements are problem-

atic because of the limited amount of memory available on the GPU. Even with a number

of optimizations made for index-trees that use the GPU, the architecture of the GPU may

not be well-suited to index tree searches.

3.4.2.2 Grid-based Indexes

Grid-based indexing methods [47, 62, 92] build a structure that partitions the space and

then assigns points to a cell based on their coordinate values. The index itself is constructed

in a data oblivious manner, but the points are assigned to the cells based on the coordinate

values of the points. In contrast to the R-tree, grid-based index searches use a deterministic
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instruction flow when checking adjacent cells. This makes grid-based index searching more

well-suited to the GPU architecture. ϵ Grid Order [15] indexes use cells that have edges of

length ϵ, when ϵ becomes a large portion of the range in a single dimension, the number of to-

tal cells decreases along with pruning efficiency. We discuss two grid-based implementations

in the following section.

3.4.2.3 The iDistance Method

Jagedish et al. [59] propose the iDistance method which creates an adaptive B+-tree by

indexing the points on distance to a reference point in the coordinate space. Each point in the

dataset is assigned to the closest reference point. A one-dimensional B+-tree is constructed

using the distance from each data point to its assigned reference point. This indexes the

data on a single dimension based on distance to the nearest reference point. In contrast

to indexing directly on the coordinate space of the data, points that are adjacent in the

iDistance B+-tree may not be adjacent in the coordinate space.

Similarly to COSS, the iDistance method uses the distance to reference points to con-

struct an index. In contrast to our proposed algorithm, iDistance creates a one-dimensional

tree using multiple reference points, while COSS creates a multi-dimensional grid-like in-

dex. The data points are assigned locations in the index based on their distance to every

reference point in the COSS algorithm, while iDistance only uses the distance to a single

reference point for each data point. Therefore, COSS has the ability to increase pruning

capability compared to iDistance. While iDistance is not implemented on the GPU, the

B+-tree structure would have the same problems as other tree-indexes as discussed above,

while COSS is designed specifically to exploit GPU hardware.

3.4.3 Reference Implementations

We compare COSS to two state-of-the-art reference implementations Super-EGO and

GPU-Join. We review the two methods below.
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3.4.3.1 Super-EGO

Kalashnikov’s Super-EGO [62] is a CPU-only grid-indexing method that indexes di-

mensions intelligently. By carefully selecting which dimension to index, the Super-EGO

algorithm is able to increase pruning. One weakness of the algorithm pointed out by the

authors is that, for datsets normalized to [0, 1]n, any ϵ ≥ 0.5 causes the runtime to become

quadratic. This is a similar weakness shared by other grid-based indexes and index-trees

which our method addresses. In this paper we use Super-EGO as a reference for evaluat-

ing the performance of COSS.

3.4.3.2 GPU-Join

Gowanlock and Karsin [47] introduce a GPU grid-index for joins that has several opti-

mizations to improve performance on high-dimensional datasets. GPU-Join reduces the

number of indexed dimensions to avoid increasing the cost of index searches, while this in-

creases the number of distance calculations, it reduces the overall work. When reducing the

amount of partitioning, the algorithm uses statistics to decide which subset of the dimensions

to index on, thereby maximizing the pruning effectiveness of the index. These optimizations

allow GPU-Join to address high-dimensional datasets.

3.5 Indexing on Distance Spaces for High-Dimensional Data

3.5.1 Overview: Indexing by Distance to Points

To mitigate the curse of dimensionality (see Section 3.4.1), we can construct a coordinate-

oblivious index. Our proposed index uses the distance to an arbitrary point in the coordinate

space. We call this arbitrary point a reference point and find the distance between it and

every other point in the dataset. Figure 3.2 shows the distance space with a reference point

RP and 10 data points. The distance from the reference point is segmented into ϵ-width

bins. The point p4 in Figure 3.2 is in the second bin, so we know that there is no possibility
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of it being within ϵ of p8 which is in the fourth bin. Searches for points within ϵ of p4 can

prune any points that are not in bins 1, 2 or 3, because points in other bins exceed the search

distance ϵ.

We refer to the distance space as the location of each pi ∈ D based on its distance to the

reference points (e.g., Figure 3.2 is a 1-D distance space, and Figure 3.3 shows a 2-D distance

space). We refer to the coordinate space as the typical Cartesian space that contains the

input dataset point coordinates of each pi ∈ D.

The index stores the bins that each point is located in. The number line in Figure 3.2

shows how the points would be placed into bins based on their distance to the reference point

(RP ). In Section 3.5.2.1 we show how we use the distance to a reference point to construct

the index.

By indexing with the distance to a reference point, we avoid relying on the coordinate

space to partition the data. This method directly addresses the issue that arises from selec-

tivity and the curse of dimensionality discussed in Section 3.4.1. This index is still affected

by the increase in the dimensionality of the data, but only insomuch as that it affects the

distances between points. The distance space is entirely independent of the dimensionality

of the data. Consequently, this yields an opportunity to have a higher pruning capacity than

methods that index on the coordinate space (e.g., index-trees and grids).

3.5.2 Bin and Index Construction

3.5.2.1 Reference Point Bin Construction

We create a set of W reference points, where the reference points are denoted as lt, where

W = (l1, l2, . . . , l|W |) and has the coordinates lt = (x1, x2, . . . , xn). We construct all reference

point bins, B = (B1, B2, . . . , B|W |), by computing the the Euclidean distance between all

pi ∈ D to all reference points, W . We define an array Q, where |Q| = |D|, which contains

the point ids. We then stable sort the arrays B (keys) and Q (values) as key-value pairs.

This is repeated |W | times, each time using a different subset of B. Consequently, points

35



RP

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

1 2 3 4 5 6
Bins

RP p1p2p3p4 p5 p6p7p8 p9p10

Bin 2

Bin 3

Bin 4

Bin 5

Bin 6

Figure 3.2: This figure shows a graphical example of an index with a single reference point,
RP . The number line in the bottom of the image shows where points fall into ϵ-width bins

based on their distance to RP .

that are within the same bin are stored contiguously in Q.

Example Bin Construction: In Figure 3.3 we construct an array B for the bins using

two reference points RP1, and RP2, for an example dataset D = (p1, p2, . . . , p10), where

|D| = 10. In step 1, we start with RP2, and find the distance from every point pi ∈ D to

RP2, finding which bin each point falls into. We store the bin number for each point in array

B2, and store the corresponding point ids in Q. After B2 has been computed, we sort Q and

B2 with a stable key-value sort that uses the bin numbers in B2 as the key. This gives us

an ordered array Q that starts with points in the lowest bin number and ends with points

in the highest bin number. Arrays B2 and Q in step 1 of Figure 3.3 show this sorted state.

In step 2 we consider RP1 and repeat the procedure in step 1. When we use the stable

sort on B1 and Q, the points will maintain the order from B2 in step 1 within the individual

bins of B1. This gives a final array B that is sorted from lowest to highest bin. Note that

while p2, p6 and p9 are spatially far apart, we can see that they have the same final bin

numbers in the B array. This illustrates that points may be within the same bin in our
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index (nearby in the distance space) but distant in the coordinate space.

After B has been constructed, B contains duplicate bin ids. We reduce B to remove

the duplicate bin ids to create B′, such that we do not store redundant bin ids in the array;

therefore, B′ contains all of the non-empty and unique bin ids. To keep track of which points

are in each bin, we construct a range array C as will be discussed in Section 3.5.2.2.

3.5.2.2 Index Construction

We compute the Euclidean distance between each reference point in W and pi ∈ D,

yielding the bin that contains each point. Using this information, we sort the points based

on bin and store this information in Q. Next, we store B′ (constructed as described in

Section 3.5.2.1) which contains the unique bin ids (since many points may fall within a

single bin, and some bins are empty, we only store the ids of the non-empty bins). We

construct an array A that maps Q to B′, which indicates the bin id of each point id in Q.

For example, the point in Q[i] is stored in the bin at B′[A[i]]. We construct an array C where

|C| = |B′| and C[A[i]] contains the range of points in Q that are stored in bin B′[A[i]]. We

illustrate the components of the index, when we show an example search in the next section.

3.5.3 Searching the Index

Each pi ∈ D is located within a single bin, where each bin is defined by |W | bin numbers.

Each bin has an address corresponding to the bin numbers. For example, a bin constructed

with two reference points has bin numbers y1 and y2; therefore, adjacent bins are in the

ranges [y1 − 1, y1 + 1] and [y2 − 1, y2 + 1]. All the points in a bin will only need to evaluate

the distance to points in the same, or adjacent bins as non-adjacent bins are separated by a

distance ≥ ϵ.

We refer to a query point as a point in the dataset that is being searched. To find the

adjacent bins for a query point, we take the query point’s bin and compute the adjacent bin

numbers (described above). We then do a binary search on array B′ for those bin numbers.
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Figure 3.3: Example showing the construction of B and Q for two reference points. Every
additional reference point adds an additional construction step. Note that the distance to a
reference point within a bin does not impact the sorting, but the stable sort maintains the

ordering from previous steps within a bin.

Note that B′ only contains non-empty bins, so only a fraction of searches find a non-empty

bin. Increasing the number of reference points increases the number of binary searches, as

each query point executes 3|W | binary searches.

Since we compute the self-join, we can eliminate duplicate distance calculations using
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Figure 3.4: Grid indexing example, where Q is the point array, A is the lookup array, B′ is
the unique bin array, C is the range array, and D′ is the sorted data array. For clarity, only

one reference point is shown. When there are multiple reference points, B′ will be a
multidimensional array, constructed as described in Section 3.5.2.

the reflexive property (i.e., dist(r, s) = dist(s, r)), which reduces the total work by roughly

half. To eliminate these distance calculations, we use the Unidirectional Comparison strategy

developed by Gowanlock and Karsin [48] to select which bin numbers each query point will

need to search. In short, the method halves the average number of adjacent bin searches.

We refer the reader to Gowanlock and Karsin [48] for more detail. This optimization does

not apply to the semi-join problem, only the self-join. All other optimizations (described in

Section 3.6) can be applied to both the self-join and semi-join problems.

Example Search: Immediately after index construction, we transform D into D′ by key-

value sorting based on Q. This causes all of the coordinate data in D′ to be mapped to the

indices of Q.

For clarity, we outline an example search of our index without the Unidirectional Com-
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parison [48] strategy and only index using a single reference point. Figure 3.4 shows an

example of a search to find those points within ϵ of the query point p61 ∈ D. Point p61

at Q[25] maps to B′[9] using mapping array A. Since p61 is found in bin 48, we need to

search adjacent bins, yielding a bin range of [47, 49] (the three arrows from A to B′). Bins

47, 48, and 49 are found in Ch = 8, 9, 10, respectively. Note that the non-empty bins are

not stored in B′ or C, which is why indices of B′ correspond to the indices of C. Bins 47,

48, and 49 contain the following candidate points and comprise the candidate set K, where

K = {D′[20], . . . , D′[24]} ∪ {D′[25], D′[26]} ∪ {D′[27], . . . , D′[38]}. The Euclidean distance

is computed between p61 and each point in its candidate set, K.

With multiple reference points the search only needs to consider more bins in B′. These

are additional binary searches whose effects on the performance of COSS is discussed in

Section 3.7.4.1.

3.5.4 Selecting the Location of Reference Points

We propose two reference point placement heuristics. While the selected position of each

reference point in the coordinate space is arbitrary, the positions will impact the pruning

efficiency of the algorithm. We note that finding the optimal positions of reference points

that minimize the number of point comparisons is intractable.

RP-Inner: This strategy places multiple reference points close to the center of the data.

We take the average value of the data in each dimension and place the first reference point

at that location. The subsequent reference points are placed around the centered reference

point in an expanding area. This creates a large number of small bins near the average

center of the data, with bins that grow in size with distance from the center. Figure 3.5(a)

shows an example of this placement strategy and the pattern of bins that develops near the

center of the data.

RP-Outer: This strategy places the reference points at the edges of the data. The first

reference point will be placed at the farthest range in every coordinate. To place the subse-
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Figure 3.5: (a) shows the pattern generated with the RP-Inner placement strategy. (b)
shows the pattern generated by the RP-Outer placement strategy.
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Figure 3.6: We compare the runtimes for RP-Inner and RP-Outer reference point
placement strategies with MSD (n = 90, ϵ = 0.007), SuSy (n = 18, ϵ = 0.015), Uniform

(n = 10, ϵ = 0.35), Expo (n = 16, ϵ = 0.04).

quent reference points, we take the number of dimensions, n, and divide that by the number

of remaining reference points v = n/(|W | − 1). The reference points will have v max range

values, with the rest of their coordinate values being 0 (every reference point, besides the

first, has v unique non-zero values). This scatters all of the reference points around the

outside of the data distribution. Figure 3.5(b) shows what three reference points on the

outskirts of the data looks like. The bins made by the expanding rings are fairly consistent

in size. Note that as the distance from one reference point increases, the distances to the

other reference points decrease. The larger bins from the increased distance are offset by the

smaller bins from the decreased distances, creating bins with a more even point distribution

than RP-Inner.
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Placement Method Comparison: Figure 3.6 shows the difference in total runtime for

two real-world and two synthetic datasets. In every experiment, the RP-Outer place-

ment strategy outperforms the RP-Inner placement strategy. Therefore, in all following

evaluations of COSS we use the RP-Outer placement strategy.

3.6 GPU Algorithm and Optimizations

In this section we present an overview of COSS and algorithm optimizations.

3.6.1 Algorithm Overview

We present the pseudocode of COSS in Algorithm 1 and refer to the optimizations

outlined later in this section. The COSSSelfJoin procedure begins by loading in the

dataset D on line 2 and then ordering D according to the variance in each dimension (line 3

see Section 3.6.6). We then select our reference point placement based on the values in D′

(line 4, see Section 3.5.4), set the number of threads per point (line 5, see Section 3.6.2), and

construct our index (line 6, see Section 3.5.2). We compute the number of batches on line 7,

initialize the max result size to zero (line 8) and then begin looping through every batch

on line 9. For every batch we; execute COSSKernel on the GPU (line 10) as described

on lines 17–30, check if the result size is smaller than the max results size (line 11) and pin

memory for the result set buffer (line 12) if the result size was larger, and finally transfer

and store the results on the host (lines 14 and 15).

The COSSKernel begins by storing the global thread id, and the query point’s id and

bin (lines 18 to 20). For every possible adjacent bin (line 21), we get the bin number to

search (line 22) and search B′ with a binary search to find which index that bin is at in B′

(line 23). Note that on line 22, to avoid duplicate calculations by exploiting the reflexive

property of the distance calculation, we apply the unidirectional comparison strategy [48]

described in Section 3.5.3. If the bin is found in B′ (line 24) we retrieve the min and max

index into Q from C and store those points as the candidate set of the bin, Z (lines 25
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Algorithm 1 COSS Algorithm

1: procedure COSSSelfJoin
2: D ← inputData()
3: D′ ← dimensionalOrdering(D)
4: W ← placeReferencePoints(D′)
5: t ← setNumberThreadsPerPoint()
6: Q,A,B′, C,D′ ← constructIndex(D′,W )
7: g ← computeNumberOfBatches(D′)
8: maxSize ← 0
9: for i ∈ (1, 2, . . . , g) do
10: resultSize ← COSSKernel(Q,A,B′, C,D′, t)
11: if resultSize > maxSize then
12: pinMemory(resultSize)
13: maxSize ← resultSize
14: results ← tranferResultsToHost(resultSize)
15: R ← R ∪ results
16:
17: procedure COSSKernel(Q,A,B′, C,D′, t)
18: tid ← getThreadID()
19: queryPointID ← Q[tid/t]
20: queryPointBin ← A[tid/t]
21: for i ∈ (1, 2, . . . , 3|W |) do
22: binToSearch ← generateNextBin(queryPointBin, i)
23: binToSearchIndex ← searchBins(B′, binToSearch)
24: if binToSearchIndex ̸= ∅ then
25: minIndex, maxIndex ← C[binToSearchIndex]
26: Z ← {Q[minIndex], . . . , Q[maxIndex]}
27: for j ∈ (1, 2, . . . , |Z|) do
28: distance ← dist(Q[tid/t], Q[Z[j]], D′)
29: if distance ≤ ϵ then
30: results ← results ∪ (queryPointID, Z[j])

and 26). The pseudocode refers to assigning a single thread to process one query point

(t = 1). When t > 1 we divide the |Z| candidate points to be processed by t threads on

line 27. In particular, for each query point, let l = 1, . . . , t. Thread l is assigned candidate

point j where (l − 1) mod j = 0. Then we compute the distance between the query point

and all candidate points, checking if they are within ϵ (lines 28 and 29). If the distance is

within ϵ we add the point pair to the result set (line 30).

3.6.2 GPU Thread Allocation

Modern GPUs have thousands of cores. We can make use of the cores by dividing the

distance calculations for a query point across multiple threads. (The query point q is the
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point that is evaluating a set of candidate points K found through the use of the index.)

A query point q with an associated candidate set, K, will divide the work across multiple

threads t. Where each thread has |K|/t distance calculations to compute. Without the loss

of generality and for illustrative purposes we assume t divides |K|. Figure 3.7 plots the

runtime vs. the number of threads per a point on the MSD dataset (other datasets exhibit

similar performance with the change in threads per a point). Every query point is assigned

multiple threads to compute the distance calculations to refine the candidate set, K. From

the experiments in Figure 3.7, we find that t = 8 achieves a good performance, and we use

t = 8 threads in all the evaluation.

3.6.3 Batching Scheme

Depending on the search distance, ϵ, and data distribution, the result set size, |R|, may

exceed global memory capacity. To ensure that the result set does not exceed global memory

capacity, we divide the total computation into several batches. The batched execution allows

us to concurrently execute tasks (e.g., pinning memory and host-GPU data transfers) in

multiple CUDA streams. In this paper we use two CUDA streams.

The number of query points per a batch, h, is governed by the amount of global memory

available to store results, which is contingent on the selectivity discussed in Section 3.4.1.

The CUDA block size b and the number of blocks p determine the number of points that

are evaluated in each batch/kernel invocation. We experimentally found that a block size

b = 1024 yields the best performance. We use the number of blocks p per kernel invocation

to determine h. The number of points evaluated per a batch is h = b · p and we can use h

to find the total number of batches g = ⌈|D|/h⌉. The total number of threads per a batch

is u = bpt, where t is the number of threads per a point as discussed in Section 3.6.2.
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Figure 3.7: Runtime vs. the number of threads (t) on the MSD dataset
(n = 90, S = 4− 1892) shows that the while a small number of threads per a point has

significantly longer runtime, t = 5− 10 achieves good performance.

3.6.4 Concurrent Execution of Batches

The result sets generated on the GPU are large, it is more efficient to manually pin the

memory needed and then reuse the pinned memory buffer. By pinning memory we can

increase the effective bandwidth of the PCIe interconnect that connects the GPU to the

host [90]. To determine how much memory needs to be pinned, each CUDA stream (COSS

is evaluated with 2 streams) will execute one batch then take the size of the results and pin

that much memory for the stream. The subsequent batches with smaller result set sizes can

reuse the pinned memory buffer. After every batch is computed by a kernel invocation on

the GPU we ensure that the pinned memory is sufficiently large to store the data, if not, we

reallocate a larger pinned memory buffer.

High-dimensional distance similarity searches are compute bound. We can take advantage

of the high computation time to hide memory transfers. Using two concurrent streams, one

stream executes the kernel, and one sends results back to the host. Other host-side tasks

are mostly hidden using two streams.
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3.6.5 Short Circuiting the Distance Calculations

The distance calculation as defined in Section 3.3, is the summation of the distances in

individual coordinate dimensions. When calculating this distance we compute the first term

of the summation and add it to a running total distance, then compute and add the second

term to the running total and so forth for all n terms. After we compute and add each

term, we can check to see if the running total has exceeded the distance threshold, ϵ. If the

running total exceeds ϵ we stop computing the distance, which reduces the total number of

floating point operations computed.

3.6.6 Dimensional Ordering

We can increase the effectiveness of short circuiting (Section 3.6.5) by finding the variance

of each dimension of the original data. We can then rearrange the point coordinates of the

data so that the highest variance is first and the lowest variance is last. For example,

the points pi ∈ D where pi = (x1, x2, . . . , xn), where n is the number of dimensions, will

become pi = (xnmax , xnmax−1, . . . , xnmin
), where nmax is the dimension that had the most

variance and nmin is the dimension that had the least amount of variance. When computing

the distance calculations, this will result in the distance accumulating faster, leading to an

earlier short circuit for most points. In high dimensions, this is especially effective because

of the large number of dimensions and how early a distance calculation can exceed ϵ. Other

grid-based algorithms use a similar dimensionality reordering method, including the two

reference implementations, GPU-Join and Super-EGO.

3.7 Experimental Evaluation

3.7.1 Experimental Methodology

All host code is written in C/C++ and GPU code is written in CUDA and is compiled

with the GNU compiler with the O3 optimization flag. GPU code is compiled using CUDA

46



Table 3.1: Datasets used in the evaluation.

Dataset n Size (|D|) ϵ Selectivity (S)
MSD [13] 90 515, 345 0.005− 0.01 4− 1892
SuSy [6] 18 5× 106 0.01− 0.02 5− 780
Higgs [6] 28 11× 106 0.035− 0.045 5− 91
Uniform 10 2× 106 0.25− 0.45 2− 551
Expo 16 2× 106 0.03− 0.05 4− 1226

9. Our platform consists of 2x Intel Xeon E5-2620 v4 CPUs clocked at 2.10 GHz, with a

total of 16 physical cores, and 128 GiB of main memory, equipped with an Nvidia GP100

GPU with 16 GiB of global memory (Pascal generation).

In all experiments, we report the average runtime as averaged over 3 trials. As described

in Section 3.7.3, we compare our algorithm, COSS, to GPU-Join, and Super-EGO. We

refer to the total runtime of each algorithm using respective algorithm components described

in Section 3.7.3.

To ensure that our experiments reflect real-world application scenarios, we report the

selectivity of our searches as defined in Section 3.4.1.

3.7.2 Datasets

We select three real-world datasets from the literature and generate two synthetic datasets.

MSD is a 90-D dataset containing song features, SuSy (18-D) and Higgs (28-D) are from

particle physics. All datasets used in this paper are normalized for each dimension in the

range [0, 1]. The range of dataset dimensions is consistent with other papers (real-world

datasets in other works span n = 9− 32 [75], n = 2− 784 [62], and n = 18− 90 [47]).

We selected uniformly and exponentially distributed datasets. The Uniform dataset

represents the case where indexing on the data point coordinates leads to an increasingly

exhaustive search (Section 3.4.1). The Expo dataset represents the opposite of the Uniform

dataset, where there is one over-dense region and a large under-dense region. Expo was

generated with λ = 40. The datasets are summarized in Table 3.1.
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3.7.3 Implementations

COSS: COSS is evaluated when we enable all of the optimizations outlined in Section 3.6.

We select a fixed set of parameters that achieve good performance across all experimental

scenarios. COSS is configured with 2 CUDA streams, t = 8 threads per a point, 6 reference

points and the RP-Outer reference point placement strategy (Section 3.5.4). We include

the time it takes to construct the index, pin and transfer memory, perform the distance

calculations, and store the final results on the host. COSS is evaluated using 64-bit floating

point values.

GPU-Join (GPU Reference Implementation): As described in Section 3.4.3.2, GPU-

Join [47] uses a grid-based indexing scheme for the GPU. The algorithm uses several opti-

mizations, including projecting the coordinates into k < n dimensions, reordering the data by

variance in each dimension, short circuiting the distance calculation, and reducing distance

calculations by searching on an un-indexed dimension. We use the experimental parame-

ters and configuration used in Gowanlock and Karsin [47] when executing GPU-Join. In

particular, we enable all of their optimizations, and index on k = 6 dimensions, and use

256 threads per block. GPU-Join is executed using 64-bit floating point values which is

consistent with COSS. Using the experimental methodology in Gowanlock and Karsin [47],

the runtime excludes the time to index the dataset, but includes all GPU computation, and

transferring the data and results to and from the GPU.

In contrast to COSS, GPU-Join does not eliminate duplicate searches for the same

point, as GPU-Join [47] presents performance results that are directly applicable to both

the self-join and the semi-join on two datasets (the self-join can eliminate duplicate work, but

the semi-join on two datasets cannot). Therefore, we expect that GPU-Join will perform

at least double the distance calculations as COSS.

Super-EGO (CPU Reference Implementation): As described in Section 3.4.3.1,

Super-EGO indexes using a grid with ϵ-length cells, and prunes the search by employing

a data reordering scheme. The algorithm is parallelized for multi-core CPUs. We execute
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(b) SuSy (n = 18, S = 5− 780)
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(c) Expo (n = 16, S = 4− 1226)
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(d) Uniform (n = 10, S = 2− 551)

Figure 3.8: Index binary search time (s) vs. number of reference points.

Super-EGO using 16 threads (the number of physical cores on our platform). Since Super-

EGO fails to execute when using 64-bit floating point values, we execute the algorithm with

32-bit values. This gives an advantage to Super-EGO over GPU-Join and COSS. The

runtime is computed as the time to EGO-sort and join. The code is publicly available on

the author’s website.1

1https://www.ics.uci.edu/~dvk/code/SuperEGO.html.
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3.7.4 Impact of COSS Parameters on Performance

Performance is evaluated on all datasets in this subsection except Higgs which was omit-

ted due to space constraints. The results from Higgs are consistent with the datasets used

in this subsection.

3.7.4.1 Binary Search Time

COSS uses binary searches to find adjacent non-empty bins in B′. We evaluate the binary

search time vs. number of reference points and plot it in Figure 3.8. While the binary search

times are insignificant in small numbers, when the number of reference points increases

beyond 6 ,with 36/2 searches per point (see Section 3.5.3), it begins to impact performance.

In Figure 3.8 we observe the exponential growth in search time with the increase in the

number of reference points. From this we conclude that it would be disadvantageous to use

≳ 6 reference points.

3.7.4.2 Pruning Efficiency

The efficiency of COSS is dependent on the amount of pruning that it can achieve.

The amount of pruning is dependent on both the reference point placement strategy and

number of reference points. Figure 3.9 plots the fraction of distance calculations vs. number

of reference points where the fractions is calculated as |K|/|D|2, where |K| is the number

of distance calculations made by COSS. Increasing the number of reference points greatly

reduces the total number of distance calculations.

3.7.4.3 Effect of Number of Reference Points on Runtime

From the previous experiments we can see that the number of reference points impacts

the performance significantly. Figure 3.10 shows the response time based on the number of

reference points used. Figure 3.8 combined with Figure 3.9 explains how the response time in

Figure 3.10 increases after 6 reference points. While the percentage of distance calculations
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(b) SuSy (n = 18, S = 5− 780)
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(c) Expo (n = 16, S = 4− 1226)
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(d) Uniform (n = 10, S = 2− 551)

Figure 3.9: Fraction of distance calculations vs. number of reference points.

decrease, the number of binary searches increases rapidly. There is a trade off between time

spent on the searches and time spent on the distance calculations. We find that 6 reference

points performs well on all experimental scenarios.

3.7.5 Comparison to Reference Implementations

In this section we look at the experimental results across three real world data sets and

one synthetic dataset. Table 3.1 shows a summary of the datasets used. We choose to use

6 reference points for making comparisons to other methods to maintain consistency across

different datasets.
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(b) SuSy (n = 18, S = 5− 780)
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(c) Expo (n = 16, S = 4− 1226)
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Figure 3.10: Runtime (s) vs. number of reference points.

3.7.5.1 Real World Datasets

The real-world datasets (MSD , SuSy and Higgs) are used to compare the performance

of COSS with Super-EGO and GPU-Join. The datasets dimensions’ span n = 18 − 90

and are evaluated on a large range of search distances and selectivity values.

MSD Dataset: Figure 3.11(a) shows the runtime vs. ϵ on the MSD dataset. The perfor-

mance of COSS degrades gracefully with increasing ϵ. COSS significantly outperforms the

reference implementations. We find that COSS has a speedup of up to 5.38× and 3.76×

over GPU-Join and Super-EGO, respectively.

SuSy Dataset: In Figure 3.11(b) we plot the runtime vs ϵ on the SuSy dataset. From the
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(c) Higgs (n = 28, S = 5− 91)

Figure 3.11: Runtime (s) vs. ϵ on real-world datasets. Comparing COSS, GPU-Join, and
Super-EGO.

plot we observe that while all three methods (COSS, GPU-Join, and Super-EGO) have

similar runtimes at ϵ = 0.01, both GPU-Join and Super-EGO suffer a rapid increase in

runtime with the increasing ϵ values. COSS yields a speedup of up to 4.78× overGPU-Join

and 4.15× over Super-EGO.

Higgs Dataset: Figure 3.11(c) plots the runtime vs ϵ on the Higgs dataset. We observe

that COSS has better performance at all ϵ values with a speedup of up to 8.85× over

GPU-Join and 4.73× over Super-EGO.
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3.7.5.2 Synthetic Datasets

On the synthetic datasets (Expo and Uniform), the data has the same variance in each

dimension. Therefore, all three algorithms are unable to use their respective optimizations

that exploit the statistical properties of the data (e.g., dimensional ordering in Section 3.6.6).

Exponentially distributed data allows the self-join to find a reasonable number of neigh-

bors with a moderate search radius. Whereas uniformly distributed data requires a large

search radius to find many neighboring points (Section 3.4.1). The selectivity yielded by

Expo is more similar to real-world data distributions than Uniform.

Exponentially Distributed Data: Figure 3.12(a) plots the runtime vs. ϵ on the Expo

datasets. From the figure, we observe that COSS significantly outperforms both GPU-Join

and Super-EGO. For example, at ϵ = 0.05, we obtain a speedup of 5.78× and 17.69×, over

GPU-Join and Super-EGO, respectively.

Grid Killer – Uniformly Distributed Data: Figure 3.12(b) plots the runtime vs. ϵ

on the Uniform dataset. Note that Super-EGO failed to execute on this dataset. COSS

achieves a speedup of 11.8× over GPU-Join at ϵ = 0.45. From the figure we observe that

while the performance of COSS degrades gracefully with increasing ϵ, the pruning efficiency

of GPU-Join decreases rapidly.

As described in Section 3.4.1 on uniformly distributed datasets, to achieve a reasonable

average number of neighbors per point, ϵ needs to be sufficiently large. In Figure 3.11(b),

GPU-Join has 4, 4, 3, 3, and 3 cells in each indexed dimension at ϵ = 0.25, 0.30, 0.35, 0.40,

and 0.45, respectively. Consequently, the grid used in GPU-Join is unable to prune a large

fraction of the points, and the algorithm approaches the brute force quadratic complexity.

For example, in the worst case, if there are 3 cells in each dimension, then a point located

in the center of the grid is compared to all |D| points in the dataset. Similarly, all multidi-

mensional data access methods that directly index on the coordinates of the input data will

suffer from the curse of dimensionality.

As discussed in Kalashnikov [62] (Super-EGO), when the search distance exceeds half
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Figure 3.12: Runtime (s) vs. ϵ on synthetic datasets. Comparing COSS, GPU-Join, and
Super-EGO.

Table 3.2: Average speedup of COSS over GPU-Join and Super-EGO across all values
of ϵ in Section 3.7.5.

Dataset MSD SuSy Higgs Expo Uniform
GPU-Join 4.50 3.04 6.84 7.49 8.79
Super-EGO 3.88 3.08 3.35 15.66 -

of the bounding volume, the algorithm degrades to brute force. While optimizations such

as short circuiting the distance calculation are able to reduce point comparison cost, only

a better pruning strategy, such as that employed by COSS, is able to significantly improve

performance.

3.8 Discussion and Conclusions

In this paper, we propose COSS, a GPU-efficient coordinate-oblivious similarity self-

join algorithm. To our knowledge, no other indexing methods have been proposed that

utilize distance space for the GPU. We summarize the performance of COSS in Table 3.2

which plots the average speedup obtained on all datasets in Table 3.1. This shows that our

novel index mitigates the curse of dimensionality problem on datasets up to 90 dimensions.

While the reference implementations degrade to brute force searches on uniformly distributed
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data, COSS is still able to prune the search in this scenario. Overall, our index significantly

outperforms the two reference implementations which index on the coordinate space.

Future work includes transforming coordinate space into distance space for other related

similarity search problems, such as k-nearest neighbor searches. While we proposed two

heuristics for reference point placement in this paper, a future direction is to investigate

other placement strategies.
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Chapter 4

Multi-Space Tree with Incremental Construction (MiSTIC)

This chapter introduces MiSTIC which is a continuation of the work in the previous

chapter which introduced COSS. MiSTIC addresses two main goals. The first was to

mitigate the cost of binary searches which the previous chapter highlighted as a bottle-

neck in performance, especially with a higher number of reference points. The second goal

of MiSTIC was to address the difficulty with placing the reference points. The previous

chapter introduced two reference point placement strategies which had a large difference in

performance indicating that this was a potential area for improvement. MiSTIC uses an

incremental approach to creating the index structure which allows for flexibility regarding

reference point placement. Additionally, we sample the data and attempt to place refer-

ence points in response to the data itself instead of the bounding volume of the data space

(data-aware as opposed to the previous data-oblivious approach). While this increased the

complexity of MiSTIC as compared to COSS, it also increased the robustness of MiSTIC

to different datasets and improved performance in almost every scenario we examined.

This work originally appeared in the reference below and has been adapted for this

dissertation from its original format.

Brian Donnelly and Michael Gowanlock. Multi-Space Tree with Incremental Construc-

tion for GPU-Accelerated Range Queries. 2024 IEEE 31st International Conference on High

Performance Computing, Data, and Analytics (HiPC), pp. 132-142, 2024.
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4.1 Abstract

Performing range queries is prohibitively expensive as the dimensionality of the data

increases. Indexing data structures reduce the time complexity of these searches by elim-

inating superfluous distance calculations. The state-of-the-art utilizes the GPU due to its

high distance calculation throughput as compared to multi-core CPUs. Previous state-of-

the-art indexes fall into two categories: metric- and coordinate-based indexes, both of which

partition the space using different approaches. The indexes partition the space to generate

a set of candidate points for a given query which are later refined by distance calculations.

Popular metric-based indexes partition the data based on distances to reference points, where

the placement of the reference points determines the partitioning of the data space but the

effectiveness depends on the distribution of the data. In high-dimensions, coordinate-based

indexes typically partition the data based on a subset of the coordinate dimensions. Re-

gardless of the index type there is a tradeoff between index search overhead and the number

of distance calculations, where increasing the number of partitions will increase the search

overhead but will decrease the number of distance calculations computed. In this paper, we

propose Multi-Space Tree with Incremental Construction (MiSTIC), a blended approach

which uses both metric-based and coordinate-based partitioning strategies coupled with in-

cremental index construction. We evaluate MiSTIC on 5 real-world datasets and compare

performance to both a state-of-the-art metric-based index, COSS, and a state-of-the-art

coordinate-based index, GDS-Join. We find that MiSTIC outperforms the state-of-the-art

methods with an average speedup of 2.53× over COSS and 2.73× over GDS-Join.

4.2 Introduction

Advances in science and technology are producing quantities of data that have surpassed

our analysis capabilities [100]. Range queries are an important tool that data scientists use

to process large volumes of data, as they answer a fundamental question: Which objects in
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a dataset are similar to my query object(s)? However, range queries are computationally

expensive [3, 25], and so reducing the cost of this operation is key for extracting information

from large datasets.

Indexing Multi-dimensional Data Points: Indexes are data structures that store the

dataset (D) and partition the data space. The index is then searched which produces a

candidate set of points that may be within the search distance (ϵ), this candidate set is then

refined using distance calculations. This is the search-and-refine strategy and is used for

efficiently querying large datasets [63, 80, 85].

Increasing data dimensionality necessitates a corresponding increase in the search dis-

tance because the data space grows exponentially with dimensionality [124]. For a uniformly

distributed dataset of a fixed size, an increase in the dimensionality will result in an expo-

nentially larger separation between points, thus the search distance must be increased to find

nearby points. This problem with high-dimensional spaces has been termed the Curse of

Dimensionality [14], where an index may be completely ineffective at pruning searches and

degrade into a brute force search (i.e., all of D will need to be examined for a given search).

Coordinate- vs. Metric-based Indexes: Coordinate-based indexes directly use the

coordinates of each point in a dataset for partitioning (e.g., a canonical index is a kd-

tree [10]). Using the kd-tree as an example, as the search distance increases, an increasing

number of partitions in the tree will need to be examined, and in the extreme case, the entire

kd-tree will need to be searched, thus degrading into a brute force search. To address this

problem, a metric-based indexing strategy should be used instead [28, 80, 85].

A metric-based approach uses a contractive mapping function to embed the dataset into

a lower dimensional space [28]. For a metric-based index, the contractive mapping uses

distances from points in a dataset to a set of reference points. These distances are the

new coordinates in the mapped space. Contractive mapping guarantees that the distances

between points in the dataset only decrease so all points within the search radius are obtained

and there is no accuracy loss.

59



Metric-based indexes maintain effectiveness as the distance threshold increases because

each coordinate in the mapped space uses all of the coordinate information in the original

data space. This creates more partitions which still allow for pruning the search in instances

where coordinate-based methods degrade to brute force.

GPU-Acceleration and Distance Calculations: The total work computed is propor-

tional to the search distance (ϵ). Also, increasing the data dimensionality will increase the

cost of each individual distance calculation. Higher cost distance calculations incentivize

more aggressive index partitioning tailored to each query. To this end, we propose an index

with ϵ-width partitions where the index construction cost is offset by a substantial increase

in performance by decreasing the number of distance calculations. In terms of peak perfor-

mance, GPU hardware has exceeded the capacity of multi-core CPUs. Range queries are

an excellent algorithm for GPU acceleration for the following reasons: (i) the algorithm is

throughput-oriented, as we are interested in computing a batch of range queries; (ii) each

query point can be computed independently by one or more threads, although this leads

to other issues regarding the Single Instruction Multiple Thread (SIMT) architecture; and,

(iii) the GPU has superior distance calculation throughput compared to the CPU. For these

reasons, with the exception of small workloads, the GPU outperforms multi-core CPU range

query algorithms [35, 45, 47].

Drawbacks and Contributions: We outline several drawbacks of prior work in this area

(D1-3):

D1 There is a vast quantity of work on the CPU outlining efficient indexes but many of

those structures, particularly trees, do not perform well on the GPU.

D2 Due to the curse of dimensionality problem outlined above, some areas of research have

instead focused their attention on approximate range queries [61, 122], which avoids

many of the problems associated with searching high dimensional datasets. However,

they do not return an exact result, which is often required in scientific and engineering

domains.
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D3 Previous indexes have used either a metric- or coordinate-based approach, leading to

indexes tailored to dataset characteristics which reduce the overall robustness of the

methods.

We address the drawbacks with contributions C1-6:

C1 We propose a novel multi-space index, the Multi-Space Tree with Incremental Con-

struction (MiSTIC), which combines metric- and coordinate-based approaches which

are more robust than using a single indexing type.

C2 The index uses incremental construction to increase the pruning efficiency of the index

when coupled with a heuristic for determining the effectiveness of candidate partitions.

C3 We propose a new reference point placement strategy that exploits dataset characteris-

tics, yielding good partitioning.

C4 The index exploits several facets of GPU architecture including good locality and caching

behavior and uses instruction level parallelism (ILP) to hide accesses to global memory.

C5 We compare MiSTIC to one metric- and one coordinate-based GPU reference imple-

mentation on five real-world datasets. We show that MiSTIC is robust to different

dataset characteristics and consistently outperforms the state-of-the-art methods COSS

and GDS-Join with a speedup of 2.53× and 2.73×, respectively.

C6 Contrary to other work, we find that minimizing distance calculations does not neces-

sarily lead to the best performance, rather load balancing may be more important.

This paper is organized as follows: Section 4.3 outlines the problem statement and related

work. Section 4.4 presents MiSTIC and associated optimizations. Section 4.5 presents the

experimental evaluation. Lastly, Section 4.6 concludes the work.
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4.3 Background

4.3.1 Problem Statement

We define a dataset, D, which contains |D| points (or feature vectors), where each point

has n dimensions. Each point is denoted as xi ∈ D where i = 1, 2, . . . , |D|. Each point, xi,

is defined by a set of coordinate values in n dimensions denoted as {x1
i , x

2
i , . . . , x

n
i }. A range

query search finds all of the xi ∈ D which are within a distance threshold, ϵ, of a query

point.

In a self-join operation all of the data points in D are compared to each other. The

operation returns {q1, q2, . . . , qi}, where qi contains the points in D which are within ϵ of xi.

The total number of returned points, |Q| = ∑|D|
i=1 |qi|, is most often greater than |D| such

that the memory required to store the results from a self-join query exceeds the memory

capacity of a GPU, requiring batched computations where intermittent results are transferred

back to the host. In the case that D also exceeds the memory capacity of a GPU, the

batched computations will only transfer a partition of D which is required for that batch of

computations. This enables the self-join to be computed on the GPU regardless of |Q| and

|D| and the global memory capacity of a particular GPU model.

We define the Euclidean distance between two points, a and b as dist(a, b) =
√∑n

j=1(a
j − bj)2

and we add a result to the result set when dist(a, b) ≤ ϵ. We use the Euclidean distance

because it is the standard distance metric that is employed in the literature [35, 45, 47, 62].

4.3.2 Index Supported Range Queries

A distance similarity self-join is straightforward to implement using a nested loop, and

when including the dimensionality of the data, n, it has a time complexity of O(n · |D|2).

For even moderately sized datasets, the quadratic time complexity becomes an intractable

problem, particularly in high dimensions [14]. To improve performance, indexing methods

have been developed to reduce the number of distance calculations needed at the cost of
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Figure 4.1: (a) An example of a metric-based index (similar to COSS [35]) partitioning a
two-dimensional space with two reference points R1, and R2. (b) An example of

partitioning with a grid (similar to GDS-Join [48]) in two dimensions where each of the
dimensions are used for indexing. Both methods use the triangle inequality to exclude

points in non-adjacent ϵ-width partitions from the search.

preprocessing overhead [19]. These methods prune the search space so that points only

calculate the distance to a subset of other points that are nearby in the data space. This

allows range queries to be performed on larger datasets by reducing the total computational

cost.

Most indexes use either a grid or a tree structure to store the partitions of the index [14,

35, 55]. Trees create a hierarchical structure where nodes in the tree are decomposed into

smaller subsequent nodes. In contrast, a grid typically partitions data using axis-aligned

regions [48, 63, 64]. Both trees and grids can be data-agnostic, where the index is constructed

statically without using information about the data points (i.e., only using the bounding

volume), or they can be data-aware and use the data points during index construction, as

exemplified by a kd-tree [10].

As shown in Figure 4.1(a), metric-based indexes (also referred to as distance-space, pivot-

point, or coordinate-oblivious indexes), use a set of points in the same space as the data as

references for partitioning the dataset [15, 55, 80]. These methods tend to have better perfor-

mance than coordinate-based indexes in high-dimensional spaces because they incorporate

every coordinate into a single mapped dimension. Metric-based indexes create indexing
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structures on a transformed space [14]. Pruning the search occurs in this transformed space

but the distance calculations occur in the original data space. While metric-based indexes

have proven to be effective in high-dimensional spaces, their additional complexity leads to

higher overheads that make them less attractive for low dimensional searches [35].

The time complexity of range queries using an index (such as an R*-tree, kd-tree, or

MiSTIC) is an open problem. The number of distance calculations for the self-join operation

has an upper bound of O(|D|2) and a lower bound of O(|D|). Because the time complexity

is a function of the search radius, ϵ, and is unconstrained, it is possible that all points

will need to be compared to each other. There has been some discussion in the literature

regarding practical values of the search radius and the lack of a more robust complexity

analysis [46, 103].

4.3.3 State-of-the-art & Reference Implementations

We outline the range query algorithms from the literature that we will compare with

MiSTIC in Section 4.5. As described in Section 4.2, recent advances in GPU hardware have

surpassed the capabilities of multi-core CPUs and so range queries are best carried out on

the GPU. Consequently, we do not compare to any multi-core CPU algorithms, as they are

typically only advantageous on small workloads for which GPU acceleration is unwarranted

as illustrated by previous work [45].

We compare our work to COSS [35] and GDS-Join [49] which are GPU-accelerated

range query algorithms that use metric- and coordinate-based indexes, respectively. We

summarize the algorithms as follows and note that the authors have made their code publicly

available such that we can make a comparison to their work1. We also compare to a highly

optimized brute force implementation, Brute, which is a baseline for comparison.

GDS-Join performs range queries using the GPU [47, 48, 49]. It constructs a compact

coordinate-based grid index on the data as shown in Figure 4.1(b). The algorithm includes

1https://github.com/bwd29/Coordinate-Oblivious-Similarity-Search/ and https://github.

com/mgowanlock/gpu_self_join/.
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several optimizations, such as reordering the sequence in which query points are processed

to limit load imbalance within warps2. It indexes the data in r < n dimensions to reach a

trade-off between index search overhead and the number of points that need to be refined

using distance calculations. The distance calculation kernel takes advantage of the GPU’s in-

struction level parallelism to hide global memory access latency [111]. We compare MiSTIC

to GDS-Join as it is a state-of-the-art coordinate-based index and is therefore suitable for

different dataset properties than metric-based indexes.

COSS or Coordinate-Oblivious Index for Similarity Searches, is a metric-based index, de-

signed for GPU acceleration and partitions the space as shown in Figure 4.1(a). The index

design was motivated by the drawbacks of coordinate-based grid indexes to be better for

high-dimensional range queries [35].

Brute is a brute-force implementation we created for comparison which is highly optimized

to use coalesced memory access patterns, good locality to increase cache hits, and reorders

the dimensions of the data based on variance to increase the efficiency of short circuiting the

distance calculations (which has a substantial impact on brute-force algorithms). Brute

lacks index construction overhead allowing it to outperform indexing methods on small

datasets.

4.3.4 Limitations of the State-of-the-Art

We show in Section 4.4 that MiSTIC addresses several limitations of the state-of-the-art

methods, which include:

• COSS and GDS-Join search the index to find non-empty partitions on the GPU using

binary searches instead of using tree traversals. A drawback of this is that a single binary

search has to perform log2(|G|) accesses to global memory, where |G| is the number of non-

empty partitions in the index (empty space is not indexed to limit global memory usage).

In contrast, a tree traversal aborts early when children do not exist, which typically results

2Warps are groups of 32 threads on the GPU that execute the same instruction in lockstep. Throughout
this paper, we use CUDA terminology, but the concepts are the same across GPUs from different vendors.
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in fewer accesses to global memory compared to binary searches.

• The reference point placement in COSS and the dimension selection in GDS-Join de-

termines how the partitions are generated; however, the strategies are static. MiSTIC

addresses this limitation by using incremental index construction to examine several sets

of candidate partitions that when combined together produce an efficient index structure

that prunes the search better than a static method.

• Metric- and coordinate-based indexes have fundamentally different approaches with perfor-

mance dependent on different dataset characteristics [49]. This necessitates the selection of

an indexing method based on dataset characteristics, like intrinsic dimensionality, which

are non-trivial to discover. MiSTIC merges the two approaches to yield an algorithm

which dynamically adapts to the dataset without foreknowledge of dataset characteristics.

This leads to performance gains over both metric- and coordinate-based indexing methods

regardless of the dataset.

4.4 MiSTIC

As described in Section 4.3.4 there are three goals for MiSTIC, firstly to replace a

potently expensive binary search with a tree traversal, secondly to allow for incremental

construction, and finally to combine both metric- and coordinate-based partitioning strate-

gies.

Our tree is constructed using a combination of the intersections of ϵ-width shells centered

on each reference point (the metric-based method) and a grid of ϵ-width axis-aligned cells

(the coordinate-based method) which create partitions. Each query requires a search over

the index to identify nearby partitions containing data points. There are two methods for

searching the partitions; (i) a binary search or (ii) a depth first tree traversals.

A binary search (which is used in the reference implementations) can be used on the last

layer of the tree and requires log2(|G|) memory accesses [35], where |G| is the number of

non-empty index locations (also the size of the last layer of the tree). The worst case for
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a binary search is if the searched-for partition is empty and therefore not in the array of

non-empty partitions, as this requires a full search of the array.

A depth first tree traversal will have a maximum of r memory accesses into the data

structure, where r is the number of layers of the tree representing partitions which are either

metric- or coordinate-based. The best case for a tree traversal is if the searched-for partition

is empty because the search terminates when a branch of the tree has no partitions. This is

the opposite of the binary search and results in the tree traversals performing fewer memory

access when there are more empty partitions than non-empty. Additionally, tree traversals

require fewer memory accesses as compared to a binary search when log2(|G|) > r which

occurs when the index partitions the data effectively (i.e., the data is separated into numerous

partitions which yields good pruning). The number of non-empty partitions of ϵ-width is

dependent on the ϵ used in the search, so large ϵ values result in fewer partitions and may

therefore be more efficient using binary searches.

In Figure 4.1, an example of how MiSTIC partitions a two-dimensional coordinate space

is shown. The non-empty partitions that are created by the overlapping shells from the

reference points or the non-empty cells in the grid become leaves on the tree. In high

dimensional space the number of partitions will increase to such a level that it becomes

intractable to store each partition, therefore only the non-empty partitions are used in the

last layer of the tree (as shown by Lr in Figure 4.2). The non-terminal layers of the tree

keep track of the empty shells generated by that layer’s reference point, but those nodes on

the tree do not have any children nodes, which allows for depth first searches to terminate

early.

As ϵ increases, the width of the shells and cells also increase resulting in fewer and larger

partitions. While a high dimensional space will have more partitions for a given ϵ, in order to

have a practical query the ϵ value will have to increase as the dimensionality increases. This

leads to a small subset of partitions which contain the majority of the dataset. This is offset

by effective partitioning of the data using a combination of metric- and coordinate-based
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Figure 4.2: Tree indexing example, where L is the tree structure with r layers/reference
points. bx is the maximum partition range in that layer, b′x is the number of non-empty
partitions where x is the layer number. P is the point array and |D| is the number of

points in the dataset.

partitioning strategies.

4.4.1 Tree Structure

We outline the tree structure of MiSTIC which contains both metric-based partitions

created with reference points and coordinate-based partitions created by partitioning dimen-

sions in the coordinate space (see Figure 4.1). The tree construction is performed on the

CPU while the final data structure is transferred to the GPU for searching and distance

calculations.
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First Layer – Figure 4.2 shows the structure of an example tree with r reference points/in-

dexed dimensions. The tree has one layer, L, for every reference point or indexed dimension.

The first layer of the tree, L1, is constructed by first calculating the maximum distance

from the first reference point to all of the points or the maximum coordinate value of all of

the points in the data. This maximum value is used to find the total number of possible

partitions for that layer, b1, by dividing the maximum value by the distance threshold ϵ used

in the search. An array of size b1 is then allocated. The layer L1 is then populated with an

incrementing counter and zeroes to represent non-empty and empty partitions, respectively.

A partition is non-empty if the distance from a point to the reference point associated with

L1 falls within the range of a partition or if the coordinate values of a point for an indexed

dimension falls within that range. For the first layer, the index of a partition in the array is

the distance from the reference point or the coordinate value divided by ϵ. This is not true

for all subsequent layers. b′1 is the number of non-empty partitions in L1, and is the sum of

the array L1 and b′1 ≤ b1 since there cannot be more non-empty partitions than the total

number of potential partitions.

The values in layers L1 through Lr−1 represent the current non-empty partition count

such that the value in Lx−1 at a non-empty index will point into the next layer Lx, where x

is the layer number. The value does not directly correspond to the index in the next layer

but is rather a multiple of the range of partitions for the reference point/indexed dimension

associated with the next layer.

Middle Layers – Subsequent layers after L1 are generated using the previous layer’s values

for bx and b′x. Lx allocates b′x−1 · bx partitions. The idea is to have a section of Lx which has

bx partitions for each non-empty partition in the previous layer Lx−1. To populate Lx, each

point is compared to the reference point associated with Lx, and this will yield the partition

number that will be non-empty based on the previous layer’s partition for that point. A

point in partition y in the previous layer Lx−1 and in partition z of layer Lx will be in the

index y · bx + z. This index will be switched to the current non-empty partition count from
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zero if no other point was found in that partition previously, otherwise the partition will

have already been set, and no update is required.

Final Layer – The last layer of the tree, Lr, is unique as it contains the counts of how

many points are in each partition of the final layer. The layer is constructed similarly to the

previous layer but instead of only noting if the partition is non-empty, a count is incremented

in that partition every time a point is located there, and all subsequent partitions are also

incremented. This creates a mapping from Lr to P where each value in Lr points to a starting

location in P which contains the first point in that non-empty partition. The points in P

which belong to that partition are found by accessing the next starting location in Lr which

denotes where the next partition begins. The final partition in layer Lr will have a maximum

range |D| which corresponds to the size of the dataset D, and will be the maximum index

of array P .

4.4.1.1 Partitioning Strategy

The placement of the reference points (metric-based layers) and the selected dimensions

for indexing (coordinate-based layers) has a significant impact on the performance of the

algorithm. However, finding the optimal reference point placement or selection of dimensions

to index that minimize the total number of distance calculations, is intractable. Many

attempts have been made to try to model reference point placement strategies [20, 29, 30, 80]

and determine which dimensions to index [49] but because of the complexity of the problem

and the dependency on the data distribution there is no single best solution. MiSTIC

chooses metric- or coordinate-partitions using a partitioning strategy and evaluates them

using a heuristic. Selecting reference points and indexed dimensions to consider for tree

construction is carried out with three different partitioning strategies (PS):

PS1: We give the intuition of an approach that examines the variance of points within

partitions. Consider that the greater the variance, the better pruning a reference point

should have in general because the points will be separated into more partitions which
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reduces the total number of distance calculations. To this end, we select initial reference

points from a random distribution of values to create a reference point set, R′, containing q

reference points R1, R2, . . . , Rq. The initial set of randomly generated reference points R′ are

then evaluated using a sample of the data set to find the variance in the distances between

R′ and a subset of data points, C or δ = S2 =

∑a=|C|
a=1 (dist(R′

a, Ca)−X)2

|C| − 1
, where X is the

mean of distances between R′
a and all points in C.

PS2: The reference points are generated using the strategy outlined in previous work [35]

which places the reference points around the outside of the data. This is effective at reducing

partitions that are adjacent in the index but are spatially distant in the original coordinate-

space.

PS3: We select the dimension to index for the coordinate-based partitions based on the

variance of each dimension. Previous work has shown that the dimensions with the highest

variance are the best dimensions to construct an index [47, 48]. We only evaluate the

r = 6 highest variance dimensions for each layer to reduce the amount of work needed for

index construction. This corresponds to the dimensions used for indexing in the reference

implementation, GDS-Join.

Regardless of the strategy used, in the best case the points will be evenly spread through-

out the partitions associated with R′
x and in the worst case they will be distributed into only

a few partitions. The variance of R′
x with respect to C is a good indication of how clus-

tered the points will be into the partitions, with higher variance correlated with more evenly

distributed points.

4.4.2 Incremental Tree Construction

To construct the tree index incrementally as described by Algorithm 2, the procedure

takes as input the dataset (D), the distance threshold (ϵ), an array of reference points or

dimensions to index R′ (generated as described in Section 4.4.1.1) and the number of layers

of the tree (r), as shown on line 1. The algorithm constructs each layer of the tree on the
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Algorithm 2 Incremental tree construction.

1: procedure TreeConstruction(D, ϵ, R′, r)
2: for i ∈ {1, 2, . . . , r − 1, r} do
3: for j ∈ {1, 2, . . . , |R′| − 1, |R′|} do
4: M ← ParV alue(R′

j , D)
5: bi ← ⌈(max(M)/ϵ)⌉ · b′i−1

6: for k ∈ {1, 2, . . . , |D| − 1, |D|} do
7: ParNum[j, k] ← ⌊(M [j, k]/ϵ)⌋
8: Ofs ← (Par[i, ParOfs[i− 1, k]]− 1) · bi
9: ParOfs[i, k] ← Ofs+ ParNumbers[j, k]
10: if ParCnts[i, ParOfs[j, k]] = 0 then
11: b′i ← b′i + 1

12: ParCnts[i, ParOfs] ← ParCnts[i, ParOfs] + 1

13: Heuristic[j] ← CalcHeuristic(ParCnts)

14: Ri ← R′[minimum(Heuristic)]
15: Count ← 0
16: for j ∈ {1, 2, . . . , bi − 1, bi} do
17: if ParCnts[i, j] ̸= 0 then
18: Count ← Count+ 1
19: Li[j] ← Count
20: else
21: Li[j] ← 0

22: Sum ← 0
23: for i ∈ {1, 2, . . . , br − 1, br} do
24: Sum ← Sum+ Lr[i]
25: Lr[i] ← Sum

26: Return L

CPU starting with layer L1 and proceeding to layer Lr in a loop starting on line 2. For

each layer of the tree, each potential reference point or indexed dimension in R′ needs to

generate a layer Li (line 3). To generate a layer for a given reference point in R′ first the

distance to all the points in D is used to generate a distance vector M with the function

ParV alue() on line 4. To generate a layer for an indexed dimension in R′, ParV alue() will

return the coordinate value for each point which matches the dimension being indexed. The

total number of partitions for that layer bi for a given reference point R′
j are calculated by

finding the maximum value in M , dividing it by ϵ, and multiplying it by the previous layer’s

non-empty bins, b′i−1 (line 5).

Each potential layer needs to iterate through every point in D to find: (i) the partition

number, ParNum, from the floor of the distance from Dk to R′
j divided by ϵ (line 7); (ii) the

offsets, Ofs (line 8), of the point from the beginning of Li which is found from the point’s
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previous partition in Li−1 multiplied by the bi value calculated on line 5; (iii) the offset into

the layer for each partition, ParOfs, is the previously calculated Ofs added to the ParNum

on line 9; (iv) the partition counters, ParCnts, which tracks how many points are in each

partition for a given layer Li. If a partition goes from empty to non-empty (line 10), b′i is

incremented to track the non-empty partitions for Li (line 11).

After each point has been assigned a partition, a heuristic for that potential layer is

calculated using ParCnts on line 13. The best layer for Li is selected based on which

potential reference points or indexed dimension in R′ generated the lowest heuristic value

(line 14). Once Ri has been selected, layer Li is constructed as outlined in Section 4.4.1

(lines 15 – 21). The final layer, Lr is a special case and needs to have a running total to

track the number of points in each partition which are found by keeping a running total of

the values in the partitions of Li when i = r. This replaces the values in the array with the

running total as shown on lines 22 – 25.

Parallel Incremental Construction – Constructing the tree incrementally (see Algo-

rithm 2) requires that each layer be constructed |R′| times. While this increases the amount

of work needed to construct the tree, each layer of the tree is dependent on the previous layer

and the amount of parallelization is limited when statically constructing the tree. When con-

structing the tree incrementally, each layer must be evaluated for each potential reference

point or indexed dimension. This allows for parallelization such that a thread is assigned to

generate each potential layer on line 3. The overhead from evaluating potential layers of the

tree is mostly hidden with concurrent construction, resulting in a negligible increase in the

overall construction time.

Heuristic for Incremental Construction – When constructing the tree incrementally

there needs to be a heuristic to determine which potential layer will lead to the best perfor-

mance. Without a good heuristic, the tree may select a given layer which may be effective on

an individual basis, but not when considering overlapping partitions with the other layers.

This would increase both the construction overhead and search time while failing to offset
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Algorithm 3 Searching the tree.

1: procedure TreeSearch(A, B, r, I)
2: if I[A[0]] = 0 then
3: return False
4: BTotal ← B[0]
5: Loc ← A[1] +B[0] + (I[A[0]]− 1)
6: for i ∈ {1, 2, . . . , r − 1} do
7: if I[Loc] = 0 then
8: return False
9: BTotal ← BTotal +B[i]
10: Loc ← BTotal + (I[Loc]− 1) +A[i+ 1]

11: if I[Loc] = I[Loc− 1] then
12: return False
13: return (I[Loc− 1], I[Loc])

these costs with increased distance calculation pruning. We define StdDev as the standard

deviation which is calculated as follows:
√∑br

i=0 |Lr[i]−X|2/|D|, where X is the average

number of points in each partition of the layer, Lr. We select the layer that has the lowest

standard deviation to minimize the difference in the number of points between partitions.

We examined several heuristics but found that StdDev outperformed them, so we omit

describing them.

4.4.3 Searching the Tree

While tree construction occurs on the CPU, searching the tree occurs on the GPU. The

search requires four inputs (line 1 in Algorithm 3). A, B, r, and I refer to an array indicating

a partition to find, an array of the size of each layer of the tree, the number of layers, and an

array that stores all of the tree layers in adjacent memory as L1, L2, . . . , Lr−1, Lr, respectively.

A, has r values each representing an index in I which corresponds to a partition adjacent to

the partition of the point that is initiating the search. For each layer of the tree as depicted

in Figure 4.2, the search finds if the value of I corresponding to partition indicated by A that

matches the layer to be searched is zero, which indicates an empty partition and terminates

the search.

In Algorithm 3, the search starts at the first layer on line 2 which evaluates if the adjacent

partition is empty and terminates the search if true. If not, then the location of the adjacent
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partition for the next layer is calculated on line 5. The algorithm also starts a counter for

the total partition sizes BTotal on line 4 which will be used for determining the offset into

array I.

On line 6 the algorithm enters into a loop to evaluate if the adjacent partition continues

to be non-empty (line 7) then calculates the offset (line 9) and location (line 10) for the next

layer of the tree. If the adjacent partition is found to be empty for any layer (including the

last on line 11 which is an exception because Lr stores the location of points in P , so an

empty partition is indicated by no change in the value compared to the previous index) then

the search terminates, otherwise it returns the lower and upper bound of points within the

adjacent partition on line 13. These bounds correspond to points in the array P (as shown

in Figure 4.2) and define the candidates for the query point for that particular adjacent

partition indicated by A.

Binary Searches – Instead of using tree traversals, MiSTIC can be configured to use a

binary search to locate non-empty partitions in the final layer of the tree. Since the last layer

of the tree is sorted we represent it with a linear (one dimensional) ID which a binary search

uses to find a specific non-empty partition. As stated in Section 4.3.4, binary searches have

drawbacks compared to tree traversals, especially while searching a large number of non-

empty partitions. We investigate MiSTIC with both search methods and evaluate their

impact on performance.

4.4.4 Other Optimizations

While the main contribution of this paper is our efficient index, MiSTIC, we outline

several other optimizations that are needed to ensure that we do not overflow the result set

buffer on the GPU, and perform efficient distance calculations.
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4.4.4.1 Batching the Computations

The distance calculation kernels need to be batched because of GPU memory limitations.

Most result sets, Q, from a self-join operation on a large dataset will need more memory

than is available on the GPU to store |Q| pairs of points. The number of batches needed

depends on the number of points in the dataset and ϵ, with a larger number of points (or ϵ)

requiring a larger number of batches to compute. The limiting factor for how many points

are computed in each batch is the global memory needed to store the result set for each

batch. Between each batch/kernel invocation, the result set (Q) is sorted and transferred to

the host, freeing space for the next batch. The global memory on the GPU is allocated once

and data is transferred to the host using a pre-pinned memory buffer to reduce the overhead

due to data transfers over PCIe.

4.4.4.2 Instruction Level Parallelism and Short Circuiting

The kernel utilizes instruction level parallelism (ILP) for higher computation throughput

by hiding accesses to global memory. This is done by unrolling iterations of the loop which

computes the distances between points. The number of iterations unrolled limits the amount

of ILP that is possible. We experimentally determined that unrolling by four loop iterations

had the best performance with MiSTIC on the platform and so the parameter is fixed to

four in the experimental evaluation.

In addition to using ILP for computing distance calculations, we also allow for the distance

calculations to short circuit and abort early. We use a variable to keep a running total of

the distance accumulated, and with ILP this total gets updated every four dimensions. At

each update we terminate the distance computation if it has exceeded ϵ. This reduces the

amount of work needed to compute distance calculations between points that are far away

from each other.
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4.5 Experimental Evaluation

4.5.1 Evaluation Platform

Experiments are executed on a platform with 2× AMD EPYC 7542 CPUs (64 total physi-

cal cores) clocked at 2.9 GHz with 512 GiB of main memory and a 40 GiB NVIDIA A100 GPU.

The code uses CUDA v.11 and is compiled with the O3 optimization flag. Multi-threaded

CPU code is parallelized using the OpenMP library.

4.5.2 Implementation Configurations

In the results, we report the response time and variant metrics, such as speedup. The

total response time (or end-to-end time) excludes loading the dataset into main memory

as this is the same for all experiments, and includes all data transfers to/from the GPU,

and host-side overheads such as storing and organizing the final result set in main memory.

Each method uses batching on the GPU to allow for result sets that exceed the GPU’s

memory capacity, which is a necessity for moderately large datasets. All indexing methods

are configured to use r = 6 reference points/indexed dimensions. While this will not always

be the optimal configuration across all datasets, it allows for a fair comparison across all

methods. Similarly, prior work showed that indexing in r = 6 dimensions (for coordinate-

based indexes) and using r = 6 reference points (for metric-based indexes) was found to

yield good performance on a range of workloads [35, 48, 49].

MiSTIC: We use a kernel block size of 256 with 1024 blocks per kernel for 262,144 threads

per kernel invocation. MiSTIC uses r = 6 layers, with 38 potential layers (16 reference

points using PS1, 16 reference points using PS2 and 6 indexed dimensions using PS3) per

layer as discussed in Section 4.4.1.1. The code repository used for evaluation is available to

the public 3.

COSS: We experimentally found that a kernel block size of 1024 with 128 blocks per kernel

3Code available at https://github.com/bwd29/self-join-MiSTIC
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Table 4.1: The five real-world datasets (normalized to the range [0, 1]) that we use in our
evaluation where the data dimensionality n, intrinsic dimensionality i (rounded) and

dataset size |D| are shown along with the values of ϵ that correspond to the three target
selectivity values.

Dataset n i |D| Ss Sm Sl

Wave [97] 49 15 287,999 0.0054 0.00702 0.008358
MSD [13] 90 29 515,345 0.0076 0.00913 0.011334

Bigcross [1] 57 3 11,620,300 0.0131 0.01994 0.0281
SuSy [6] 18 9 5,000,000 0.01703 0.02078 0.025555
Higgs [6] 28 19 11,000,000 0.049186 0.05558 0.063117

launch (131,072 threads total) with 2 concurrent GPU streams has the best performance.

GDS-Join: A kernel block size of 32 with a dynamic number of blocks per launch with 3

concurrent GPU streams was found to have the best performance on our platform.

Brute: We configured Brute to run with a kernel block size of 256 with 512 blocks per

kernel launch for a total of 131,072 threads per launch, which was found to have the best

performance on our platform.

4.5.3 Selection of the Search Distance ϵ

We will show how performance scales as a function of the search distance (ϵ). To compare

the performance between datasets having different sizes and dimensions (|D| and n), the

typical convention is to use search distances that span the same range of selectivity values

across all datasets. The selectivity, S, refers to the mean number of points found by all

searches carried out on a dataset. For the self-join this refers to |D| searches, and so the

selectivity S = (|Q| − |D|)/|D|, where |Q| is the total number of results returned. In this

paper, we select three target (small, medium, and large) selectivity values, corresponding to

Ss = 28, Sm = 210, and Sl = 212, respectively. These selectivity values span several orders of

magnitude and so they allow us to examine how the algorithms scale with increasing search

distance and thus workload.

Note that there is not an analytical method to calculate what the search distance, ϵ,

should be to yield the abovementioned selectivity values because the real-world datasets
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Figure 4.3: The fraction of the total response time spent constructing the tree for each of
the selectivity values Ss, Sm, and Sl across the five real-world datasets for r = 6.

Table 4.2: The partitioning strategy (1-3) dynamically selected for each layer of MiSTIC
as described in Section 4.4.1.1 for the five real-world datasets and each selectivity level.

Dataset
Ss Sm Sl

L1 L2 L3 L4 L5 L6 L1 L2 L3 L4 L5 L6 L1 L2 L3 L4 L5 L6

Wave 2 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1
MSD 2 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1
Bigcross 3 2 1 1 1 1 3 2 1 1 1 1 3 2 1 1 1 1
SuSy 3 1 1 1 1 1 3 1 1 1 1 1 3 2 1 1 1 1
Higgs 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

do not follow known data distributions (e.g., uniform, exponential, or normal) and so we

perform a search on all datasets to first determine the ϵ values that correspond to each of

the selectivity values above. All of the ϵ values yield a selectivity that is within 1% of the

target selectivity values (Ss, Sm, and Sl) and are given in Table 4.1.

4.5.4 MiSTIC Performance Analysis

MiSTIC: Tree Construction – We examine the fraction of time spent on tree construc-

tion for each selectivity level in Figure 4.3. Tree construction overhead has a large impact

on performance on the smaller datasets and lower selectivity levels which are correlated with

lower total response times. As the number of distance calculations increase with higher selec-

tivity levels and larger datasets, the tree construction time fraction becomes negligible. Tree

construction accounts for up to 65% of the total time; however, we will show that MiSTIC

maintains a competitive performance level despite the tree construction overhead. Reference

implementations COSS and GDS-Join have negligible index construction overhead.
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Table 4.3: Speedup of using the StdDev heuristic over the SumSqrs heuristic, where the
speedup is the total response time of SumSqrs over StdDev.

Dataset Ss Sm Sl

Wave 0.96 1.08 1.10
MSD 0.86 1.05 1.86
Bigcross 19.64 13.10 9.34
SuSy 3.65 2.66 2.13
Higgs 1.02 0.96 0.98
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Figure 4.4: The fraction of |D|2 distance calculations vs. selectivity values across the five
real-world datasets for r = 6.

The partitioning strategies (PS) used for each layer of the tree are given in Table 4.2.

Only L1 and L2 did not always select our novel partitioning strategy, PS1. L1 uses the

reference point placement strategy also used by COSS (PS2) for Wave and MSD while

MiSTIC uses PS3 (the PS used by GDS-Join) on Bigcross and SuSy for L1. Additionally,

there are 4 cases where PS2 is used for L2 and Higgs always uses PS1. The partitioning of

the first few layers has a larger impact on overall performance than subsequent layers because

of how the heuristics select subsequent layers. Even though PS2 and PS3 are rarely selected,

they substantially improve MiSTIC’s performance. Forcing MiSTIC to use a single PS

reduces performance regardless of which PS is used.

Heuristic Comparison for Construction – MiSTIC is evaluated using two different

heuristics for incremental construction to reduce total distance calculations as discussed in

Section 4.4.2. The incremental construction evaluates 32 reference points for each layer as

well as the 6 highest variance dimensions and then selects which reference point or dimension
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to use for that index layer based on which had the minimum heuristic value. It should be

noted that MiSTIC is a greedy algorithm and so the heuristics are not guaranteed to find

the global minima.

In Figure 4.4, the fraction of |D|2 distance calculations (the number of distance calcula-

tions required of a brute force approach) needed by both heuristics is plotted for each dataset

and selectivity level. The number of distance calculations is an estimate for the amount of

work that will be performed on the GPU; therefore, a lower number of distance calculations

is correlated with higher overall performance. For all selectivity levels of the Wave dataset

and the first two selectivity levels of the MSD dataset, the SumSqrs heuristic leads to fewer

distance calculations. For every other dataset and selectivity level, the StdDev heuristic

results in fewer calculations. The SumSqrs method fails to create a large number of parti-

tions which yields poor performance particularly on the Bigcross and SuSy datasets. This

is supported by Table 4.3 where the speedup of StdDev over SumSqrs is up to 19.64×.

The overall performance of MiSTIC with each heuristic is not solely based on the number

of distance calculations however, as observed in Table 4.3 where the speedup of StdDev

over SumSqrs exceeds 1 even while performing more distance calculations on Sm and Sl of

Wave and Sm of MSD . This is due to the StdDev heuristic resulting in partitions which

have similar number of points and therefore yielding similar workloads for the GPU threads

that will search and refine the points in these partitions. On the GPU, if the amount of work

between threads is unbalanced then the throughput of the device will be reduced due to the

SIMT architecture. This makes it imperative to have a balanced workload and therefore an

even distribution of points in the partitions is ideal for achieving the best performance on

the GPU. StdDev is a better heuristic than SumSqrs because it creates more partitions

resulting in fewer distance calculations and it distributes the points evenly across partitions

resulting in better load balancing.

MiSTIC: Binary Search vs. Tree Traversal – In Section 4.4.3 we describe the two pos-

sible methods for searching the tree; tree traversals or binary searches. The average speedup
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Table 4.4: The average speedup across selectivity levels of performing tree traversals
searches over binary searches for each dataset, where speedup is the ratio of the response
time for binary searches over tree traversals. The average number of non-empty partitions

is included for analysis.

Dataset Speedup Partitions
Wave 1.05 2,152
MSD 1.02 5,537
Bigcross 1.04 21,057
SuSy 1.36 27,284
Higgs 0.96 902
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Figure 4.5: Response time as a function of the three selectivity values across the five
real-world datasets for each reference implementation.

across the selectivity levels of the self-join using MiSTIC which uses the tree traversal de-

scribed by Algorithm 3 as compared to a binary search is described in Table 4.4. The tree

traversals are more efficient than the binary searches when the number of non-empty parti-

tions in the index is higher due to the increased costs of binary searches as the size of the

array being searched increases. A secondary factor in the efficiency of the searches is the
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Figure 4.6: The fraction of |D|2 distance calculations vs. selectivity values across the five
real-world datasets for r = 6.
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Table 4.5: The average speedup across selectivity levels for MiSTIC over the reference
implementations, where speedup is the ratio of response time of the reference

implementation over MiSTIC.

Dataset COSS GDS-Join Brute
Wave 1.17 1.43 1.02
MSD 1.17 1.70 1.36
Bigcross 2.65 1.84 5.74
SuSy 5.15 6.89 5.26
Higgs 2.52 1.78 2.36
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Figure 4.7: Standard deviation of the number of points in each partition vs. selectivity
values for the five real-world datasets.

ability of the tree traversal to short-circuit and terminate before checking each layer of the

tree. This happens in datasets with over-dense regions where there is a higher chance of

adjacent partitions being empty, as opposed to a more uniformly distributed dataset where

the non-empty partitions are more likely adjacent to other non-empty partitions. We observe

from Table 4.4 that SuSy has the greatest speedup using tree traversals while also having

the largest number of non-empty partitions on average across the selectivity levels. Only

Higgs is faster with binary searches because it has few non-empty partitions.

4.5.5 Comparison to the Reference Implementations

Now that we have demonstrated key facets of the performance of MiSTIC we compare

it to the reference implementations (COSS, GDS-Join, and Brute). Figure 4.5 shows

the total response time (s) vs. selectivity level across five real-world datasets. The average
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speedup for Ss, Sm, and Sl for MiSTIC over the other implementations is given in Ta-

ble 4.5. We observe that MiSTIC has the lowest response time in every instance except

for Figure 4.5(a) where Brute has a lower response time due to the index construction

overhead shown in Figure 4.3.
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Measuring Distance Calculations – In Figure 4.6, we plot the fraction of |D|2 distance

calculations that are performed for MiSTIC, COSS and GDS-Join (Brute is omitted

because it performs |D|2 calculations). The fraction of |D|2 calculations represents the

reduction of distance calculations due to the index as compared to Brute. Measuring

the number of distance calculations needed is a good representation of the amount of work

that each algorithm performs but does not directly correspond to the response time. In

Figure 4.6, we observe that MiSTIC performs more distance calculations than either COSS

or GDS-Join for the Wave and MSD datasets but has a lower response time (Figure 4.5).

This behavior is also observed for the SuSy dataset at Sl where MiSTIC performs more

calculations than GDS-Join but yields a speedup of 17.07× over GDS-Join.

We also observe in Figure 4.6 that the number of distance calculations needed for the

highest selectivity level on the Higgs dataset approaches |D|2. This is the effect of the

curse of dimensionality, which is difficult to mitigate for these selectivity levels, even for the

metric-based index COSS.

Workload Balancing – The GPU uses a Single Instruction Multiple Thread (SIMT)

execution model which requires all threads within a warp to execute operations in lockstep.

MiSTIC assigns one thread to each point in the dataset; therefore, threads belonging to

separate partitions that are assigned to the same warp may have load imbalance due to

differing numbers of comparisons between candidate points. Therefore having a similar

number of points assigned to each partition improves workload balancing, and reduces the

time it takes for all threads in a warp to complete their distance calculations. We hypothesize

that one reason MiSTIC is faster than COSS and GDS-Join is because the variance of

points in each partition is lower for MiSTIC than these reference implementations. To

examine load balancing, Figure 4.7 shows the standard deviation of the number of points

in each non-empty partition. MiSTIC has the lowest standard deviation, and therefore

the best load balancing and most even distribution of work among threads. This is in part

due to the StdDev heuristic used during incremental construction which prioritizes this
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distribution of points among the partitions. COSS has the highest standard deviation in

every scenario but as described in prior work [35], workload imbalance is partially offset

by assigning multiple threads to each point and batching the computations based on the

amount of work.

Selecting Between Brute and MiSTIC– There are some cases whereMiSTIC performs

worse than the brute force approach, Brute (Figure 4.5). This is due to index construction

overhead which requires a large fraction of the total time when there at low selectivity levels

and/or when |D| is small. Brute has a time complexity of O(|D|2) which is penalized less

by smaller datasets. In these scenarios, the response times are low and occur when GPU

acceleration is unwarranted.

Why is MiSTIC Faster? – As described above, MiSTIC sometimes performs more

distance calculations than COSS or GDS-Join, but is faster than those algorithms across

all datasets and selectivity levels. We summarize why MiSTIC is faster than the other

approaches as follows: (i) MiSTIC uses tree traversals instead of binary searches to per-

form index searches. (ii) The StdDev heuristic leads MiSTIC to distribute the points

evenly across the partitions, which results in a more balanced workload and increased per-

formance. (iii) MiSTIC is robust to data characteristics because of the blending of metric-

and coordinate-based partitioning strategies.

4.6 Conclusion

MiSTIC demonstrates that a blended approach to partitioning yields a more robust

index than either a metric- or coordinate-based indexing method. Consequently, MiSTIC

can be used instead of selecting a metric- or coordinate-based index based on the dataset

characteristics. We show that MiSTIC’s incremental construction substantially improves

performance when coupled with the StdDev heuristic. Additionally, the novel reference

point placement strategy improves the pruning efficiency of MiSTIC by intelligently placing

reference points to maximize the variance of the points in the associated partitions. The
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experimental evaluation shows that MiSTIC is the best GPU index for range queries on

large high-dimensional datasets, with an average speedup over the state-of-the art reference

implementations of 2.53× and 2.73× for COSS and GDS-Join, respectively.
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Chapter 5

Parallel Combination Generation on the CPU and GPU for

Secure Key Retrieval

COSS and MiSTIC were both introduced in the previous two chapters. One of the

problems with similarity searches shared by both COSS and MiSTIC is searching for par-

titions in the index. To find points in the index that may be adjacent to a query point, the

algorithm needs to search adjacent partitions to the partition the query point was assigned

to. This requires that the address for each partition will have to search for partitions in the

index which vary by up to 1 in each dimension of the index (where the dimension of the

index is k, the number of reference points or indexed dimensions used in construction of the

index). For example an index with k = 4 may have a partition with address {3, 1, 4, 1}. A

subset of adjacent partitions include partitions with addresses: {2, 1, 4, 1}, {3, 1, 5, 1} and

{2, 1, 5, 1}. In total, each partition would have 3k−1 adjacent partitions. To generate which

partitions to search for in the index, a mask is generated and combines the query partitions

address. For the example the masks used would be: {−1, 0, 0, 0}, {0, 0, 1, 0} and {−1, 0, 1, 0}.

Generating these masks is a non-trivial combinatorial operation. COSS uses an even more

complicated version of this which allows partitions to only compare in one direction which

reduces computation for self-join operations.

These combinatorial operations are necessary for performing searches in a Hamming space

which requires a starting address and then a mask is used to modify the starting address. In

the following chapter, different combinatorial methods are evaluated for performance using
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the retrieval of a corrupted hash input as an example application. While the applications

discussed in this chapter are different than those in the previous two chapters the searching

strategy and fundamental problem is similar.

This work originally appeared in the reference below and has been adapted for this

dissertation from its original format.

Brian Donnelly and Michael Gowanlock. Performance Characterization of Parallel Com-

bination Generators on CPU and GPU Systems. To appear in the Proceedings of the 15th

International Workshop on Accelerators and Hybrid Emerging Systems (AsHES 2025).

5.1 Abstract

Combinatorics is a fundamental aspect of computer science and encompasses many as-

pects from graph theory to automata. One often overlooked aspect of combinatorics is

combination generation which is key to several applications, and critically key to several

security protocols. Despite this, there has been an insignificant research dedicated to im-

proving combination generating algorithms since their original introduction roughly 50 years

ago. Since their introduction, a number of aspects of computing have changed including the

introduction of multi-core CPUs and GPUs. This work examines combination generating

algorithms which create combinations for all possible values of n objects taken k at a time.

In this paper, we parallelize seven existing combination generation algorithms and optimize

one for improved performance on modern parallel architectures. We perform a thorough

evaluation of all eight algorithms on a wide range of parameter spaces to gauge their scal-

ability. Combination generators are typically used as a subroutine in a larger application,

and so we also examine the performance when combinations are used as input into another

routine. We show that the architectural differences between the CPU and GPU influence the

performance of the algorithms and include analyses to explain these differences. From our

evaluation, we recommend specific combination generators that have the best performance

based on architecture and application scenario.
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5.2 Introduction

In this paper, we examine generating combinations of n objects taken k at a time. Appli-

cations that demand large combination spaces (typically large n) yield high computational

cost to generate these combinations. Combination generation is important for many fields

including communications, molecular biology, computer architecture, engineering, cyberse-

curity, among others [84]. In the field of cybersecurity alone, combination generation is used

largely for encryption tasks, including homomorphic encryption [101], block ciphers [50, 121],

image encryption [40, 88], in addition to digital signature schemes [41].

History and Background: Early combination algorithms were developed in the 1960s and

1970s to generate combinations of n objects taken k at a time, which are still used today. A

survey by Payne and Ives in 1979 [91] compared a number of these algorithms. Since that

time, there have been changes in computer architecture and how these algorithms are used,

most notably in the size of the combination spaces being explored. The comparison in Payne

and Ives’s work evaluated algorithms in two cases: n = 16 where k ≤ 8, and n = 32 where

k ≤ 4; each having a maximum combination count of 12,870 and 35,960, respectively. In

later work by Akl [2], the combination spaces were expanded by a small margin.

Batched/Throughput-oriented Combination Generation: We focus on evaluating

algorithms based on their efficiency of bulk (or batched) combination generation. This is

the typical use case for combination generators where a given application requires producing

large combination spaces [74, 84]. This implies that throughput-oriented architectures, such

as the GPU, may be proficient at computing combinations for large combination spaces.

Performance Characterization Under Two Application Scenarios: We examine two

application scenarios. In the first, we examine combination generation in an isolated setting

where where combinations are generated and are not used as input into another routine.

In the second, we examine adding our combination generators to an application to observe

potential changes in overall performance behavior.

The first application scenario yields insight into application behavior when there are no
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other tasks that need to share compute resources. The second application scenario yields

insight into the case where combination generation is used as a subroutine within a larger

computational task. The performance of GPUs are very sensitive to the coupling of tasks

within a single GPU kernel because resources need to be carefully managed to achieve good

performance. For instance, adding a second task within a GPU kernel is likely to increase

register pressure which could impact the kernel’s theoretical occupancy, or having two tasks

occupy shared memory may limit the number of threads that can be executed in a CUDA

block1.

Case Study Application: To examine performance behavior in the second application

scenario above, we employ a case study application. In this scenario, we correct a corrupted

cryptographic key based on the hash (using SHA3 [38]) of the original key, which is used

in protocols such as response-based cryptography [74]. We use this case study to illuminate

the performance differences between the combination generating algorithm when there is

contention for compute resources.

Reevaluating the State-of-the-art: To the best of our knowledge, there have not been

any survey papers in the literature that perform extensive benchmarks on these algorithms

since Akl’s work in 1981 [2], and as we will discuss in Section 5.4, parallel algorithms in this

area are limited. We assess the performance of parallel combination generation algorithms,

which addresses a significant gap in the literature that is long overdue for reevaluation, as

many applications, including our motivating case study application in cybersecurity, rely on

fast combination generators.

Summary of Novel Contributions: (i) We categorize seven combination algorithms based

on their properties to explain the performance behavior of each algorithm and to identify

characteristics which make them suitable for specific application scenarios. (ii) We compare

the performance of the seven algorithms and show which performs the best on the multi-core

CPU and GPU. (iii) We optimize a variant of Algorithm 515. Our table-based variant

1We use CUDA terminology throughout this paper.
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achieves a mean speedup of 7.07× and 5.01× over the original algorithm when executed on

the CPU and GPU, respectively.

The paper is organized as follows. The binomial coefficient calculation and the properties

of combination generating algorithms are defined in Section 5.3. The history and background

of combination generating algorithms is described in Section 5.4. All of the evaluated com-

bination generating algorithms are described in Section 5.5. The experimental evaluation is

presented in Section 5.6. Finally, the discussion and conclusions are presented in Section 5.7.

5.3 Definitions and Properties

In this section we define the binomial coefficient and outline the properties of combination

generation algorithms.

5.3.1 Calculating the Binomial Coefficient

The binomial coefficient
(
n
k

)
defines a set of combinations that are unique and we refer

to this unique set of combinations as a combination space. The combination space consists

of combinations in an ordered sequence where the order in the sequence is dependent on the

algorithm used for combination generation. The number of combinations of n objects taken

k at a time is calculated as follows:

C(n, k) =

(
n

k

)
=

n!

k! · (n− k)!
. (5.1)

C(n, k) is typically calculated with a commonly used iterative algorithm described by

Algorithm 4.

5.3.2 Combination Generating Algorithm Properties

We summarize the properties of combination generating algorithms using terminology

from the literature. We compare algorithms and summarize their properties in Table 5.1.
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Algorithm 4 Computing the Binomial Coefficient

1: procedure C(n, k)
2: x ← 1
3: for i ∈ 1, . . . , k do
4: x ← x · (n− i)
5: x ← x

(i+1)

6: Return x

We use these properties when describing the eight algorithms that we evaluate in Section 5.5.

5.3.2.1 Ranking vs. Unranking Algorithms

Ranking algorithms generate a sequence of combinations such that generating the next

combination requires the current combination [68] and these algorithms often have specific

starting conditions that are required to generate the first combination. In contrast, an

unranking algorithm needs the iteration number of the combination and generates combina-

tions out of order. All Unranking algorithms must compute multiple binomial coefficients

(Equation 5.1) for each combination generated [67].

Comparing the two approaches, ranking algorithms must generate combinations in the

order they occur in a sequence but are very computationally efficient, whereas unranking

algorithms are more flexible and generate any combination of a sequence in any order, albeit

at an increased cost for each generated combination. It should be noted that ranking and

unranking algorithms do not generate combinations in the same order, thus the ith combi-

nation in a ranking algorithm’s sequence will not be the same as the ith combination in the

unranking algorithm’s sequence.

5.3.2.2 Historyless Algorithms

A combination generating algorithm is historyless if the algorithm only requires the

previous combination to generate a subsequent combination [102]. An algorithm is not

historyless if it requires additional information beyond the previous combination. Historyless

algorithms have the benefit of requiring less memory and typically fewer memory accesses.
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Table 5.1: Properties of the eight combination generating algorithms that we evaluate.

Algorithm Unranking Ranking Historyless Cyclical Reversible Pointer Storage (bytes per thread) Ref.
Algorithm 515 ✓ N/A N/A N/A ✓ k · 4 [18]
Algorithm 515 (Ta-
ble)

✓ N/A N/A N/A ✓ k · 4 + 8 · (n · k)/t

Pnxcb ✓ ✓ ✓ ✓ ✓ k · 4 [91]
Algorithm 154 ✓ Semi ✓ k · 4 + 1 [81]
Algorithm 94 ✓ ✓ Semi ✓ k · 4 [71]
Chase’s Sequence ✓ ✓ (k + 1) · 4 + (k + 1) + 4 [27]
Cool-Lex Branch-
less

✓ ✓ n+ 8 [99]

Cool-Lex Loopless ✓ ✓ n+ 8 [99]

5.3.2.3 Cyclical Algorithms

An algorithm is cyclical if the last combination generated can be used to generate the

first combination in the sequence [99]. Cyclical algorithms are able to generate the entire

combination sequence regardless of the initial combination.

5.3.2.4 Reversible Algorithms

Reversible algorithms allow for generating the previous combination based on the current

combination [91]. A cyclical and reversible algorithm is able to generate the last combination

in the sequence from the first combination in the sequence.

5.3.2.5 Pointer Algorithms

A pointer algorithm has k pointers to indicate the locations in n that are permuted [91].

The pointers are used to define the combination rather than storing n values. For example,

the binary combination 01001001 in the set of
(
8
3

)
is represented by the pointers 1, 4, 7

instead of needing all 8 values (i.e., storing both the permuted and non-permuted bits).

This guarantees memory conservation since k < n (k = n is trivially computed).

5.4 Background and Related Work

There are numerous algorithms for generating a set of
(
n
k

)
combinations, all of which

generate combinations in a specifically ordered sequence which may be useful some problem
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constraints [37, 70, 84, 102, 106, 114]. In contrast, we focus on generating all possible

combinations C(n, k), where the ordering of the combination sequence is irrelevant. This

addresses the problem of generating all possible combinations that are within a hamming

distance k of a given sequence of n objects which is required for our case study outlined in

Section 5.2. Since combination ordering is irrelevant, with the only requirement being that

the combination space is explored exhaustively, the best algorithm has the lowest response

time for a given set of input parameters n and k.

Combination generation with ordered sequences: While we do not focus on problems

where the ordering of a sequence is important, we do observe that using any parallel archi-

tecture will disrupt the ordering since the sequence will be generated non-deterministically.

This is especially true for massively parallel architectures such as GPUs, where the number

of threads generating combinations may be greater than the number of combinations being

generated by each thread. Thus controlling the exact order in which the sequence generates

is nearly impossible. For application scenarios where strict ordering is necessary (which is

by definition a sequential process) it may be impossible to efficiently parallelize sequence

generation. An alternative is to use an unranking algorithm (such as Algorithm 515 [18])

which generates combinations in any order at the expense of performance.

Recursive Algorithms: One algorithm for general combination generation is to use a

recursive function. Recursive functions are not well-suited to the GPU due to its limited

stack size; thus they are not considered in this work. Also, recursive algorithms have never

been popular because of their low performance and were not evaluated in previous works as

well [2, 91].

De Facto Algorithm: A commonly used combination generation algorithm is reported

in Knuth’s The Art of Computer Programming [66], which is called Gosper’s Hack and

it generates combinations rapidly and in place with only a few bit-wise operators. The

drawback of Gosper’s Hack is that it performs well for native data types. The bit-wise

operators require significant modification for non-native data types (where the value n is
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not either 8, 16, 32, or 64 for most systems) and this significantly degrades the performance

relative to other algorithms [74].

Parallel Algorithms: There has been limited work on designing parallel combination

generating algorithms. One such algorithm by Torres et. al. [108] is limited to n − k + 1

processors, which makes it usable on the CPU but not on the GPU where the number of

active threads will be greater than most n values. For example, given typical parameters,

such as n = 256 and k = 5, only a maximum of 252 threads could be created, which might

be suitable for a CPU, but not a GPU. Furthermore, Torres et. al. [108] does not compare

their combination algorithm to any other algorithms.

Another set of algorithms by Kokośınski [68] introduces a number of unranking algorithms

which generate a different sequence than the unranking algorithm we evaluate but with

similar computations. Kokośınski proposes that all unranking algorithms are straightforward

to parallelize since they generate combinations out of order; however, they do not offer

details on parallel performance nor consider hardware limitations that are typical of parallel

algorithms.

Pioneering works: Previous works have evaluated some of the same algorithms that we

examine here. Payne and Ives work [91] contradicts later work by Akl [2] where the former

work found the Pnxcb algorithm to have the best performance while Akl’s work found

Misfud’s Algorithm 154 [81] has the best performance. One discrepancy between these

two evaluations is that they compared on different n and k combinations as well as different

hardware platforms. We examine many of the same algorithms as the two contradicting

evaluations and expand on them to evaluate the parallel performance of these algorithms on

larger combination spaces using the CPU and GPU.

5.5 Summary of Evaluated Algorithms

We select seven algorithms from the literature to evaluate. We chose one unranking al-

gorithm and two non-pointer algorithms as well as four pointer -ranking algorithms. This
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yields an extensive performance evaluation that includes algorithms that have different per-

formance characteristics and properties which may be useful in certain contexts. The seven

selected algorithms best represent the highest performing state-of-the-art combination gen-

erating algorithms as supported by previous benchmarks [2] and other works [37]. The

properties of these algorithms are compared and summarized in Table 5.1. All of the algo-

rithms were translated to the C and CUDA C programming languages. In addition to the

seven algorithms in the literature, we optimize the unranking algorithm, Algorithm 515,

for increased performance and compare to the seven other algorithms.

To generate sequences in parallel we save a combination in each algorithm’s sequence and

use that as a starting combination for each thread. In what follows, the only algorithms that

do not need to save starting combinations are Algorithm 515 and Algorithm 515 (Ta-

ble), which are both unranking algorithms.

Algorithm 515: This algorithm was proposed by Buckles and Lybanon in 1977 [18] and

was an early unranking algorithm to generate combinations in a lexicographical sequence.

Instead of needing the previous combination to generate the subsequent combination, Al-

gorithm 515 instead repeatedly calculates the binomial coefficient described in Section 5.3.

Algorithm 515 is straightforward to parallelize as it only requires the sequence number

of the combination, thus negating the need to save starting combinations.

Algorithm 515 (Table): While Algorithm 515 is useful because of its low memory

requirements, it is the slowest algorithm evaluated in this work due to the cost of repeatedly

calculating the binomial coefficient described by Algorithm 4. To increase the performance

of Algorithm 515, while also maintaining the benefits of an unranking algorithm, we

precompute a table of binomial coefficients. This table is n by k elements and replaces the

binomial coefficient calculation inAlgorithm 515 at the cost of increased memory accesses.

This table is shared across all threads. We find that the Algorithm 515 (Table) always

outperforms Algorithm 515 in our evaluation.

Pnxcb: This algorithm is a modification of Liu and Tang’s NXCB algorithm [76]. Pnxcb
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is an optimized pointer version of NXCB introduced by Payne and Ives [91]. Pnxcb is

reversible, which allows a parallel algorithm to double the number of threads per starting

combination by having one thread work forward in the sequence while another thread works

backwards in the sequence. This is important when the number of starting combinations is

large because it decreases the memory footprint of the algorithm. Pnxcb is also able to start

generating the sequence from any iteration in the sequence since it is a cyclical algorithm.

Since Pnxcb is historyless, cyclical, reversible, and uses pointers, it is the most adaptable

to different scenarios of the ranking algorithms evaluated.

Algorithm 154: Algorithm 154 is a combination generator introduced by Mifsud in

1963 [81]. This algorithm generates combinations in a lexicographical sequence with a special

case for the first combination generated. Algorithm 154 is semi-historyless since it requires

a single Boolean variable to track if the combination is the first; otherwise it requires no other

additional memory.

Algorithm 94: Kurtzberg proposed Algorithm 94 in 1962 [71] as one of the first combi-

nation generating algorithms. The starting conditions for the algorithm requires an array of

zeros while the last iteration in the sequence will generate the first combination, thus making

the algorithm cyclical after the first combination is generated. If there are pre-computed

iterations in the sequence, then any of those iterations could be used as a starting point to

generate the entire sequence.

Chase’s Sequence: Chase’s Sequence (also known as Algorithm 382) is a near-perfect

Gray code [27, 66] that guarantees that the difference between each combination is as small

as possible. This makes each iteration in Chase’s Sequence as similar as possible to

both the previous and the next iteration. While Chase’s Sequence has increased memory

overhead due to the required history for each iteration, it is still useful in implementations

where the similarity between each iteration is important. Chase’s Sequence requires not

only the k pointers to the permuted values but also additional variables to keep track of the

history, thus adding k + 9 bytes to be saved between each generated combination.
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Cool-Lex Branchless and Cool-Lex Loopless: Ruskey and Williams introduced a new

series of combination generating algorithms in 2009 [99] that use the Cool-Lex ordering

algorithm. The ordering of the sequence is fully cyclical; thus any of the Cool-Lex algo-

rithms can start at any iteration in the sequence. Ruskey and Williams introduced several

algorithms, where the two most suited to parallel architectures, particularly the GPU, are

the branchless and loopless algorithms. Both the branchless and loopless algorithms require

n bytes to store the current combinations since they are not pointer algorithms. Additionally

they require two integers of history for each combination which results in an additional 8

bytes. Because the Cool-Lex algorithms do not use pointers, they are not well suited to

problems with high n values, as storage cost scales with n.

5.5.1 Parallelizing the Algorithms

Algorithm 5 GPU Combination Generation.

1: procedure CombinationGPUKernel(n, k, p, S)
2: tid ← (blockIdx.x ∗ blockDim.x) + threadIdx.x
3: b ← C(n, k)/p
4: if C(n, k) mod p ̸= 0 and tid ≤ C(n, k) mod p then
5: b ← b+ 1

6: for i ∈ 1, 2, . . . , b− 1, b do
7: CombinationAlgorithm(n, k, S[tid])

To parallelize the algorithms on the GPU, each thread is assigned a starting combination

stored in S, where subsequent combinations for each thread are generated from this starting

combination (unranking algorithms use the iteration number tid∗b+i on line 7 instead of S).

Because we examine much larger workloads than prior work (up to 1.86×1011 combinations),

we simply assign sufficient threads, p, such that each thread computes roughly b = 10, 000

combinations, with the C(n, k) mod p remaining combinations assigned evenly across the

threads. Although this is straightforward to parallelize, the starting combinations are non-

trivial to create, with most algorithms requiring unique starting conditions.

Algorithm 5 describes the distribution of work across all of the threads on the GPU and is

applied to each combination algorithm by updating the combination algorithm as appropriate
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Table 5.2: The AMD and Intel platforms used in our experimental evaluation, where the
number of physical CPU cores are reported. PlatformA contains the GPU used in the

evaluation.

Platform
CPU GPU

Model #
Cores

Clock L3
Cache

Memory Model #
Cores

Clock Memory

PlatformA 2×Epyc 7542 64 2.9
GHz

2×128
MB

512
GiB

Nvidia
A100

6912 1.4
GHz

40 GiB

PlatformB 2×Xeon Platinum 8358 64 2.6
GHz

2×48
MB

512
GiB

- - - -

on line 7. The distribution of work to threads on the CPU is done similarly except that the

CPU thread ID is assigned on line 2. Algorithm 5 requires the n and k values used for

the combination generation as well as the number of threads, p, and the starting position

saved for each thread stored in S (with the exception of unranking algorithms which do not

require S). The number of combinations assigned to each thread, b, is computed on line 3

and modified if the number of combinations cannot be evenly divided among the threads on

lines 4 and 5.

5.6 Experimental Evaluation

To understand performance behavior on multi-core CPUs and the GPU, we examine the

performance of the algorithms on two platforms as outlined in Table 5.2. The platforms

use AMD (PlatformA) and Intel (PlatformB) CPUs such that our evaluation is robust

and conclusions apply to platforms from two CPU vendors. PlatformA also contains the

Nvidia A100 GPU used in our evaluation.

5.6.1 Experimental Methodology

The GPU code is written in CUDA v12.3 for NVIDIA GPUs and we use a kernel block

size of 32, which was experimentally determined to be the optimal block size across all

combination generating algorithms. On the CPU we use 64 threads (corresponding to the

number of physical cores on each platform) and parallelize the algorithm with OpenMP. The

CPU code was written in C++ and compiled with GNU v8.5.0 using the -O3 optimization
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flag.2

CPU Performance Metrics: We define the parallel speedup of CPU algorithms as s =

T1/Tp, where T1 and Tp are the algorithm response times with p = 1 and p = 64 threads,

respectively. The parallel efficiency is given by e = s/p.

GPU Performance Metrics: We compare the performance of the GPU algorithms to the

CPU using p = 64 threads/cores. We compute the GPU speedup over the multi-core CPU

as: sGPU = T64/TGPU , where T64 is the response time of the parallel CPU algorithm, and

TGPU is the response time of the GPU algorithm.

Application Scenarios: As described in Section 5.2, we examine combination genera-

tion under two scenarios: the first generates combinations in isolation to understand raw

throughput, and the second is where the combinations are used as a subroutine in a larger

application. Our case study application couples the SHA3 hashing algorithm with combina-

tion generation in the same GPU kernel which is required in the cybersecurity application

outlined in Section 5.2. We perform experiments with both SHA3-256 and SHA3-512 to

highlight the impacts of increasing compute resource requirements when using SHA3-512

as compared to SHA3-256. We denote the different workloads as W0, W1 and W2 which

correspond to isolated permutation generation, SHA3-256, and SHA3-512, respectively.

5.6.2 Combination Sets Evaluated

The performance of the algorithms vary with n and k; therefore, we present most results

as an average of numerous executions with differing n and k values and we refer to these as

combination sets. In particular, we evaluate all of the algorithms on the two combination

sets (CS) outlined in Table 5.3 which have a wide range of combination parameters (n and k)

with values that address modern workloads. The combination spaces for each CS has up to

seven orders of magnitude more combinations than that of the pioneering literature [2, 91].

We also perform a more detailed examination of n = 100, k = 7 from CS-1 and n =

2All code will be made publicly available upon acceptance and the link reported in this footnote.
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Table 5.3: Overview of combination sets (CS) where the maximum combinations column
corresponds to the n and k values that yield the greatest number of total combinations.

|CS| refers to the number of combination spaces for a set.

CS |CS| n Range k Range
Max.
Combinations

CS-1 80 n=10, 20, . . ., 100 k=1, 2, . . ., 8 186 · 109
CS-2 32 n=128, 256, . . ., 1024 k=1, 2, 3, 4 46 · 109

Table 5.4: The mean response time (s) for workload W0 (raw throughput workload) across
all combinations in CS-1 and CS-2 for each algorithm as executed on the two multi-core

CPU and GPU platforms. The lowest response times are highlighted in bold face.

Algorithm
PlatformA CPU

p = 64 cores/threads
PlatformB CPU

p = 64 cores/threads
GPU: A100

CS-1 Mean
Time

CS-2 Mean
Time

CS-1 Mean
Time

CS-2 Mean
Time

CS-1 Mean
Time

CS-2 Mean
Time

Algorithm 515 189.56 667.40 88.33 310.64 5.58 14.76
Algorithm 515 (Table) 7.50 41.03 4.06 22.40 0.65 2.46
Pnxcb 0.82 1.35 0.66 0.87 0.08 0.03
Algorithm 154 0.64 0.80 0.56 0.28 0.09 0.03
Algorithm 94 0.60 0.76 0.61 0.26 0.09 0.04
Chase’s Sequence 96.84 101.43 45.77 52.55 0.64 0.07
Cool-Lex Branchless 8.39 5.60 5.64 3.69 0.40 0.44
Cool-Lex Loopless 4.33 2.60 5.20 3.83 0.38 0.43

512, k = 4 from CS-2. Additionally, CS-2 corresponds to commonly used values for the

cybersecurity case study application, as key sizes are multiples of 128-bits.

5.6.3 CPU Results: Raw Throughput Workload (W0)

In what follows, we highlight the raw combination generation throughput (W0) using the

two multi-core CPU platforms. We refer to the results reported in Tables 5.4–5.5.

Unranking Algorithms (Algorithm 515 and Algorithm 515 (Table)): As we

will show, despite a higher response time than the ranking algorithms evaluated, Algo-

rithm 515 and Algorithm 515 (Table) offer significant advantages in terms of flexibil-

ity to dynamic application scenarios (Section 5.5), therefore we highlight the performance of

these algorithms here (and in Section 5.6.5 where we compare them on the GPU).

From Table 5.4, Algorithm 515 has the highest response time across all algorithms

and both permutation sets for the CPU on PlatformA and PlatformB. This is directly

the result of repeated binomial coefficient calculations described by Algorithm 4. Algo-

rithm 515 is compute-bound and so the response time is directly related to the number of
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Table 5.5: Scalability of multi-core CPU and GPU algorithms on PlatformA and
PlatformB. The parallel speedup (s) and parallel efficiency (e) of the CPU algorithms is
shown using p = 64 threads on PlatformA and PlatformB; we omit showing T1 due to
space constraints, but it can be calculated using T1 = s · Tp. The response time of the GPU

algorithms (TGPU) and speedup over the CPUs in PlatformA and PlatformB are
shown.

Algorithm
PlatformA CPU

p = 64 cores/threads
PlatformB CPU

p = 64 cores/threads
GPU: A100

Time (Tp)
(s)

Speedup
(s)

Par. Eff.
(e)

Time (s)
(Tp)

Speedup
(s)

Par. Eff.
(e)

Time (s)
(TGPU )

Speedup
(sGPU )

over
Plat-

formA
CPU

Speedup
(sGPU )

over
Plat-
formB
CPU

n = 100, k = 7
Algorithm 515 664.38 40.02 62.53% 319.73 40.57 63.39% 19.36 34.32 16.52
Algorithm 515 (Table) 42.82 16.37 25.58% 37.74 19.90 31.09% 2.41 17.77 15.66
Pnxcb 4.83 10.01 15.64% 2.97 8.04 12.56% 0.28 17.25 10.61
Algorithm 154 4.36 10.76 16.81% 2.56 9.59 14.98% 0.30 14.53 8.53
Algorithm 94 3.76 8.67 13.55% 2.62 8.71 13.61% 0.29 12.97 9.03
Chase’s Sequence 397.23 0.16 0.25% 178.95 0.25 0.39% 0.51 778.88 350.88
Cool-Lex Branchless 30.87 4.29 6.70% 17.53 6.73 10.52% 1.55 19.92 11.31
Cool-Lex Loopless 15.13 3.30 5.16% 15.84 2.04 3.19% 1.49 10.15 10.63

n = 512, k = 4
Algorithm 515 336.86 32.18 50.28% 163.48 32.67 51.05% 9.28 36.30 17.61
Algorithm 515 (Table) 27.02 16.75 26.17% 12.29 39.26 61.34% 1.47 18.38 8.36
Pnxcb 1.08 4.52 7.06% 0.80 3.67 5.73% 0.03 36.00 26.66
Algorithm 154 0.70 10.13 15.83% 0.35 14.83 23.17% 0.03 23.33 11.66
Algorithm 94 0.70 4.02 6.28% 0.30 11.61 18.14% 0.03 23.33 10.00
Chase’s Sequence 97.06 0.11 0.17% 52.98 0.15 0.23% 0.06 1617.67 883.00
Cool-Lex Branchless 5.17 4.54 7.09% 3.16 6.59 10.30% 0.34 15.21 9.29
Cool-Lex Loopless 2.30 4.31 6.73% 3.40 1.79 2.80% 0.29 7.93 11.72

combinations, C(n, k), that are generated. Our optimized version, Algorithm 515 (Ta-

ble) has a mean speedup of 21.76× and 13.87× over Algorithm 515 for CS-1 and CS-2,

respectively. Algorithm 515 and Algorithm 515 (Table) achieve the highest parallel

efficiency of any algorithms because they have the greatest compute to memory access ratio.

Parallel Scalability: The CPU parallel performance of each algorithm is examined for p =

64 cores/threads on both platforms in Table 5.5. All of the algorithms benefit from increasing

p from 1 to 64 cores with the exception of Chase’s Sequence. Chase’s Sequence has

a lower response time when p = 1 than when p = 64 across both platforms and both

combination sets. Chase’s Sequence requires the largest amount of storage to create each

combination (see Table 5.1), resulting in a large number of memory accesses. This leads to

a slowdown when threads compete for memory bandwidth. However, even when p = 1, it

has a greater response time than the other ranking algorithms with the exception of Cool-
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Lex Branchless; therefore, we consider it ill-suited for combination generation on the

CPU.

From Table 5.5, we find that with the exception of Algorithm 515 andAlgorithm 515 (Ta-

ble), the algorithms do not yield very high parallel scalability/efficiency. This is largely

because the algorithms use more memory operations to generate combinations resulting

in memory/cache-bound performance behavior which yields low parallel efficiency. Despite

this, the fastest CPU algorithm on PlatformA, Algorithm 94, yields a moderate parallel

speedup of 8.67×. Algorithm 94 yields the second to lowest response time on PlatformB

and it achieves a similar speedup. Overall, the 8.67–8.71× speedup for Algorithm 94 is

moderate but respectable.

Intel vs. AMD CPUs: While both PlatformA and PlatformB have similar CPU

metrics (64-cores with a clock speed of 2.9 GHz and 2.6 GHZ for PlatformA and Plat-

formB, respectively), PlatformB consistently outperforms PlatformA with few ex-

ceptions. For this reason, in all that follows, we focus on comparing the algorithms on

PlatformB.

Comparison to prior work: Overall, of the eight algorithms on the CPU,Algorithm 94

has the highest performance in most scenarios which contradicts the results of both Payne

and Ives’, and Akl’s previous works [2, 91]. This contradiction is explained by three factors:

(i) the evolution of computer architectures over the last fifty years, (ii) the algorithms are

executed in parallel instead of sequentially; and, (iii) we examine larger (modern) workloads

compared to those pioneering works.
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Observation #1

The fastest algorithms use optimizations that reduce computation, which yields a low

compute to memory access ratio. Despite moderate multi-core scalability, for best

performance on multi-core CPUs, we recommend that Algorithm 94 is employed.

Other architectures that have higher aggregate memory bandwidth and cache through-

put will be well-suited to parallel combination generation algorithms.

5.6.4 GPU Preprocessing Overhead

We now examine combination generation on the GPU. As described in Section 5.5.1,

starting combinations are required to parallelize the algorithms on the GPU.3 The greatest

amount of preprocessing overhead occurs for both Cool-Lex algorithms (see Table 5.1),

which have the greatest memory footprint, with a maximum data size of 4.38 GB (for CS-2

when n = 1024, k = 4). The overhead is solely related to data transfer and we find that

the upper bound time needed to transfer the data between the host to the GPU is < 0.15 s

using PCIe 4.0 with a bandwidth of 32 GB/s, which is at most 2.63% of the total response

time for the Cool-Lex algorithms when n = 1024, k = 4. The median memory required by

the Cool-Lex algorithms is 17 MB when n = 1024, k = 4, yielding negligible data transfer

time. All other algorithms will have less overhead so we do not elaborate here.

Observation #2

The preprocessing overhead for assigning starting combinations to GPU threads does

not negatively impact performance.

5.6.5 GPU Results: Raw Throughput Workload (W0)

In this section we discuss the results of our experiments on the GPU and focus on the

optimized version of Algorithm 515 and the best performing algorithm on the GPU,

3Starting combinations are also required on the CPU; however, because the CPU supports far fewer
threads than the GPU, the overhead is negligible.
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Pnxcb.

Unranking Algorithms (Algorithm 515 and Algorithm 515 (Table)): From

Table 5.4 we observe that Algorithm 515 has the highest response time and Algo-

rithm 515 (Table) has the second highest response time. Recall from Section 5.6.3 which

compared Algorithm 515 to Algorithm 515 (Table) that Algorithm 515 (Table)

yielded a speedup of 21.76× and 13.87× on CS-1 and CS-2, respectively. Similarly, on the

GPU Algorithm 515 (Table) achieves a speedup of 8.59× and 6.00× on CS-1 and CS-2,

respectively. Therefore, our optimized Algorithm 515 (Table) maintains a significant

performance advantage over Algorithm 515 on the GPU.

Pnxcb: The algorithm with the lowest overall response time on the GPU is Pnxcb.

Other ranking algorithms with similar performance on the GPU, Algorithm 94 and Al-

gorithm 154, also have low storage requirements of either k or k + 1 bytes, respectively

(Table 5.1). This low space complexity allows for higher cache throughput on the GPU. We

elaborate on the cache usage of these algorithms in Section 5.6.9.

Observation #3

A comparison of combination generators yielded highly differentiated performance on

legacy architectures. However, on modern architectures, the performance difference

between the fastest algorithms is often negligible, particularly on modern workloads.

We find that Pnxcb is the best algorithm for combination generation on the GPU

across large parameter ranges.

5.6.6 Comparison of CPU and GPU: Raw Throughput Workload (W0)

In this section we compare the experimental results for the GPU and CPU. Overall,

the GPU achieves a speedup over the CPU ranging from 6.22× to 71.51× and from 6.50×

to 750.71× for CS-1 and CS-2, respectively. We attribute this massive speedup to the

increased memory bandwidth of the GPU for the ranking algorithms (see Observation #1)

and the increased computational throughput for the unranking algorithms as compared to
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Figure 5.1: The response time (TGPU) in milliseconds for W0 showing all n and k
combinations in CS-2 for Pnxcb on the GPU.

the CPUs.

5.6.7 Examination of Individual Parameters in CS-2: Raw Throughput Work-

load (W0)

In Sections 5.6.5 and 5.6.6, we examined performance on the combination sets, CS-1

and CS-2, as averaged over all parameters in those sets. Here, we show the performance

across each individual value of n and k in CS-2 to demonstrate how the response time

increases with these parameters. Due to page limitations, we cannot show the results for

all algorithms, so we focus on Pnxcb and Algorithm 515 (Table), similarly to that in

Section 5.6.5.

Figures 5.1 and 5.2 show the results of this experiment on the GPU for Pnxcb and

Algorithm 515 (Table), respectively. From both figures, we observe that the performance

is more sensitive to k rather than n. We attribute this to the impact k has on not only the

number of combinations generated, but also the amount of work needed to generate each

combination. This analysis shows that due to the large differences in response times between
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Figure 5.2: The response time (TGPU) in milliseconds for W0 showing all n and k
combinations in CS-2 for Algorithm 515 (Table) on the GPU.

n and k values, the average response times reported for CS-1 and CS-2 can be misleading,

particularly when assessing whether an algorithm is suitable for a fixed value of n and k.

This is because the average response times are dominated by the largest n and k values for

a given algorithm, e.g., in Figure 5.1 at C(n, k) = (128, 1), TGPU = 0.1 ms, whereas it is

495.8 ms when C(n, k) = (1024, 4).

5.6.8 Case Study using Key Retrieval on the GPU: Workloads W1 and W2

Based on the significant performance gains yielded by the GPU over the CPU, in this

section, we focus solely on the GPU.

Raw combination generation throughput does not adequately describe application per-

formance when the combination generator is used as a subroutine in a larger application. As

described in Section 5.2, for our case study, we examine the retrieval of a cryptographic key

that has been corrupted by using a stored hash of the original key. We note here that we

implement this in the response-based cryptography protocol [74], where the two tasks, com-

bination generation and hashing, are executed within the same GPU kernel, and thus both
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of the tasks require their own resources (e.g., registers, memory bandwidth, shared memory).

The k value in this case corresponds to the Hamming distance between a corrupted key with

n bits and the original key. For example, when k = 3, three bits of the n bits in the key have

flipped (have been corrupted), and we retrieve the original key by searching all
(
n
k

)
possible

keys and match the hash output from each possible key to the stored hash. We can then

recover the original key by choosing the combination which generated a matching hash.

We focus on CS-2 because the values of n are multiples of 128 bits, which are needed

in the security application. We present the mean response times across all parameter values

in CS-2 for the raw throughput workload (W0), hashing with SHA3-256 (W2), and hashing

with SHA3-512 (W3) in Table 5.6, where the lowest times are highlighted in bold face.

It is clear that the performance of the algorithms change when coupled with the hash-

ing workloads (W1 and W2). However, the relative performance of the algorithms remain

the same with the exception of Algorithm 515 (Table). Algorithm 515 (Table)

is more robust to workload requirements than the other algorithms which we attribute to

Algorithm 515 (Table)’s balance of compute and memory requirements. While our opti-

mized Algorithm 515 does not have the best mean performance on W2, is still maintains a

respectable relative performance with < 12% greater response time than the best algorithms.

Observation #4

Benchmarking algorithms in isolation on GPU architectures may result in prematurely

discarding algorithms that may have great utility when used as a subroutine in a larger

application.

5.6.9 GPU Profiling Results

To understand each algorithm’s performance behavior and to demonstrate that the al-

gorithms are well optimized for the GPU, we profile their execution using the Nvidia Nsight

Compute tool. Instead of averaging results over all combinations in a combination space,
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Table 5.6: The mean response time (s) across all combinations in CS-2 for each algorithm
as executed on the GPU with varying workloads. The lowest mean times in each column

are highlighted in bold face. Note that there are several identical mean times, or times that
are very close to each other and have insignificant differences in performance.

Algorithm W0 (No Hashing) W1 (SHA3-256) W2 (SHA3-512)
Algorithm 515 14.76 27.80 38.25
Algorithm 515 (Table) 2.46 7.83 10.10
Pnxcb 0.03 8.70 8.92
Algorithm 154 0.03 8.69 8.92
Algorithm 94 0.04 8.69 8.93
Chase’s Sequence 0.07 8.72 8.95
Cool-Lex Branchless 0.44 11.38 13.21
Cool-Lex Loopless 0.43 11.32 13.15

Table 5.7: Profiler results using Nvidia Nsight Compute for n = 512, k = 4 on the A100
GPU. The computational throughput, memory throughput, L1 and L2 Cache hit rates are

reported as a percentage where the maximum for each is 100%.

Algorithm
Time (s)

Comp.
Throughput (%)

Mem.
Thoughtput (%)

L1 Cache
Hit Rate (%)

L2 Cache
Hit Rate (%)

Num.
Registers

W0 W1 W2 W0 W1 W2 W0 W1 W2 W0 W1 W2 W0 W1 W2 W0 W1 W2
Algorithm 515 9.28 17.01 23.05 63.61 43.66 32.78 0.79 21.73 16.30 100.00 99.95 99.93 99.85 100.00 99.99 44 157 173
Algorithm 515 (Table) 1.47 5.51 6.85 13.33 42.13 33.96 64.32 37.76 30.60 100.00 99.87 99.86 99.88 99.96 100.00 29 157 173
Pnxcb 0.03 4.88 5.06 12.05 29.71 28.76 68.68 75.99 74.44 99.73 99.99 100.00 100.00 100.00 100.00 24 157 173
Algorithm 154 0.03 4.91 5.12 8.71 29.49 28.34 69.54 75.36 73.25 99.61 99.99 100.00 99.99 100.00 100.00 32 157 173
Algorithm 94 0.03 4.86 5.08 15.57 29.87 28.68 69.00 76.31 74.14 99.65 99.99 100.00 100.00 99.99 100.00 32 157 173
Chase’s Sequence 0.06 4.90 5.08 19.62 29.82 28.93 74.00 76.12 74.72 99.42 99.98 99.99 99.80 99.99 100.00 30 157 173
Cool-Lex Branchless 0.34 6.56 7.73 4.94 43.77 37.25 75.59 58.87 50.76 79.98 99.23 99.75 98.96 99.99 100.00 26 157 173
Cool-Lex Loopless 0.29 6.53 7.65 4.19 44.03 37.67 79.21 59.03 51.17 88.12 99.37 99.78 99.76 99.97 100.00 24 157 173

we select C(512, 4) = 2.8 × 109 combinations from CS-2 because this is the configuration

typically used in the real-world security application outlined in Section 5.6.8. We show the

performance without a workload (W0) and with a workload (W1 and W2).

In our results below, we focus on several metrics. Ideally we would include a roofline

analysis that illustrates whether a given algorithm is compute-bound or memory-bound.

However, because our data types are integers, we are unable to collect this information

using the Nvidia Nsight Compute tool, as it only supports roofline statistics for floating

point operations. However, as we will show below, most algorithms are cache bound, and so

roofline statistics are not of great consequence.

We summarize the profiling results shown in Table 5.7. The table shows the computa-

tional throughput, global memory throughput, L1 and L2 cache hit rates and the number

of registers that each thread requires in the kernel. All of the algorithms have low compu-

tational throughput, except for Algorithm 515 (as described in Section 5.5, it needs to

repeatedly calculate the binomial coefficient for each combination). However, the response
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time is still greater than the other memory-bound ranking algorithms. All of the algorithms

achieved >98% cache hit rate for both the L1 and L2 caches with the exception of Cool-

Lex Branchless and Cool-Lex Loopless which had an L1 cache hit rate of only ≈80%

and ≈88% for W0, respectively.

The number of registers used by the combination generating algorithms on the GPU is

low and does not decrease the occupancy for W0, where occupancy is a measure of the per-

centage of time that the streaming multiprocessors (SMs) are active. When the combination

generation is coupled with hashing for the case study (W1 and W2), the number of registers

used is dependent on the SHA3 version, with 157 registers for SHA3-256 and 173 registers for

SHA3-512. This becomes the limiting factor for occupancy and subsequently fewer threads

are active at any given time. This results in a higher cache hit rate for all of the ranking

algorithms as shown in Table 5.7.

5.6.10 Discussion: Optimized Version of Algorithm 515

We report on our optimized implementation of Algorithm 515 by highlighting several

results examined throughout the evaluation and discussing its capabilities as outlined in

Section 5.5.

Performance: Algorithm 515 (Table) replaces the binomial coefficient calculations in

Algorithm 515 with a table of binomial coefficients. This decreases the compute through-

put and significantly increases the memory throughput as shown in Table 5.7 from 0.79%

to 64.32% for n = 512, k = 4 with W0. However, Algorithm 515 (Table) outperforms

Algorithm 515 despite using more memory. On W0, the optimization results in a mean

speedup of 21.76× and 13.87× over Algorithm 515 on PlatformB for CS-1 and CS-2,

respectively, and a mean speedup of 8.58× and 6.00× over Algorithm 515 on the GPU

for CS-1 and CS-2, respectively (Table 5.4). Despite having relatively poor performance in

terms of raw combination generation throughput (W0) relative to the ranking algorithms,

Algorithm 515 (Table) is comparable and in some cases even faster when coupled with
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a workload as is the case for W1 which uses SHA3-256 as described in Table 5.6. Specif-

ically, our evaluation determined that Algorithm 515 (Table) is the fastest algorithm

when n ≥ 768 and k = 4 for W1 which are the scenarios in which the largest number of

combinations are generated.

Adaptability to Application Scenarios: Beyond comparing the performance of the algo-

rithms, it is also beneficial to examine the ease of implementation and flexibility to applica-

tion scenarios. All of the ranking algorithms require pre-computing the starting conditions for

each thread, whereas the unranking algorithms do not. This is why Algorithm 515 (Ta-

ble) is the best algorithm for most scenarios. Algorithm 515 (Table) has comparable

performance to the ranking algorithms while maintaining the flexibility of Algorithm 515.

Observation #5

We recommend Algorithm 515 (Table) for most scenarios due to robust perfor-

mance when coupled with a workload, the ease of implementation and the flexibility

of the algorithm to dynamic application scenarios.

5.7 Conclusions

The performance of combination generating algorithms has changed significantly in the

last fifty years since they were first comprehensively evaluated. The benchmarks presented

in this paper highlight the impact that different architectures have on the performance of

combination generation algorithms. By providing robust benchmarks on two multi-core

CPUs and one GPU, this paper offers a comprehensive examination of performance behav-

ior. This indicates which algorithm should be selected for a given application that employs

combination generators.

While our results are inconsistent with the pioneering works [2, 91], we note that these

works were conducted before the proliferation of multi- and many-core architectures. These

contradictions between the works illuminate the need for an updated evaluation of combi-
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nation generation algorithms provided in this paper.

We summarize several key findings as follows. (i) Algorithm 94 is the fastest algorithm

on the CPU, which directly contradicts the findings of Payne and Ives’, and Akl’s previous

works [2, 91]. (ii) Pnxcb is the fastest algorithm on the GPU. (iii) Algorithm 515 (Ta-

ble) achieves a significant speedup over the original and performs exceptionally well when

coupled with a workload on the GPU.

Our evaluation focuses on characterizing the performance of batched combination gen-

eration algorithms. These approaches can be employed in several applications; for example,

the response-based cryptography protocol presented by Lee et al. [74] requires generating

over 8 billion combinations, where n = 256 and k = 5. In our case study we show how

choosing the correct combination generating algorithm can impact the overall performance

of their protocol.
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Chapter 6

Authentication in High Noise Environments using PUF-Based

Parallel Probabilistic Searches

The previous chapter examined the problem of matching a corrupted input to a hash

with the original input. This is a fundamental part of larger cryptographic protocols such

as Response Based Cryptography (RBC). One of the main bottlenecks in RBC is the time

required to search through so many possible hash inputs. The previous chapter examined

the best methods for performing this task as quickly as possible. In this chapter other

optimizations are discussed which reduces the total workload needed for RBC rather than

accelerating a specific component of the search.

This work originally appeared in the reference below and has been adapted for this

dissertation from its original format.

Donnelly, B. & Gowanlock, M. Authentication in High Noise Environments using PUF-

Based Parallel Probabilistic Searches. To appear in the Proceedings of the 28th IEEE High

Performance Extreme Computing Conference (HPEC).

6.1 Abstract

Enabling secure communication in noisy environments is a major challenge. In these en-

vironments, the outputs of cryptography algorithms undergo error where several bits change

states and since these algorithms cannot tolerate any error, authenticating and securing
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communication between parties is disrupted. We propose a noise-resistant public key in-

frastructure protocol that employs physical unclonable functions (PUFs). PUFs act as a

unique fingerprint for each device in a network; however, their state may drift over time due

to fluctuations in temperature and other factors. Using a PUF requires a search to identify

flipped bits which is conducted on a secure server that has the benefit of removing error

correction on low-powered client devices. We exploit the probabilistic nature of PUF bit

error rates (BERs) and use this information to aid in the search process that resolves the

noise imparted by the environment. We show that using a 256-bit PUF-generated seed (a

PUF response) our protocol is robust to a PUF BER of ≈11% (or 30 of 256 bits) and a

transmission bit error rate (TBER) of 30%. In this scenario, on average the authentication

mechanism on a secure server requires ≲5 s. We also show results for higher PUF BERs

which have a <100% authentication success rate which indicates the upper limit on the PUF

BER tolerance of our protocol.

6.2 Introduction

One drawback of Public Key Infrastructure (PKI) is that all devices in the network use

public/private key pairs, and the private key is typically stored in non-volatile memory (e.g.,

disk). If a private key is recovered from a device by an attacker, then they are able to

masquerade as the user of the private key.

Several efforts have been proposed to mitigate this drawback by equipping client devices

with Physically Unclonable Functions (PUFs) for the purposes of authentication [21, 22].

PUFs are volatile memory and are unique due to variance in the manufacturing process,

allowing each PUF to act as a unique fingerprint for a device. PUFs are employed to generate

random numbers (hereafter referred to as seeds) that are used as input into cryptography

algorithms. The cells in a PUF are unstable and drift over time due to environmental factors

such as temperature [107]. This error needs to be corrected, otherwise authentication will

fail. One method that has been proposed to mitigate this error is to use error correction
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codes (ECC), data helpers, and fuzzy extractors [7, 34, 44, 56] but they have two major

drawbacks: (i) many devices are low-powered and are unable to correct for the error due to

latency and/or power constraints; and, (ii) these mechanisms leak information [33, 69, 110]

about the PUF if the device is compromised.

To address the drawbacks of error correction codes, the Response-Based Cryptography

(RBC) protocol was developed [21, 23, 72, 93, 117, 118] which places the computational

burden of authenticating PUF-equipped client devices on a secure server such that low-

powered client devices do not need to employ error correction codes, data helpers, or fuzzy

extractors. In the RBC algorithm, during enrollment, a server records the PUF images that

are deployed in client devices. During the handshake between the server and client, the server

instructs the client to read a subset of its PUF cells (this is denoted a PUF challenge), and

the client uses this to generate a seed (a PUF response) which is used to create public/private

key pairs. The client sends the public key to the server for authentication and the server

generates a public key from the client PUF image. Because the seed generated by the PUF

may have drifted and has a bit error rate (BER) >0% relative to when the PUF was enrolled,

the server performs a search by flipping bits in the seed generated from the PUF image such

that it reproduces the client’s public key. If it does so within a Hamming distance threshold,

the client is authenticated.

Lee et al. [73] proposed an efficient search method for iterating over PUF seed spaces.

The search method employs the probability that a given cell in the PUF is likely to flip

(this is information obtained during the PUF enrollment process), such that an ordering

of candidate seeds is exploited. This allows searching the PUF seed space intelligently

instead of searching without any knowledge of the probability that a PUF cell will flip. This

significantly improves the performance of the RBC search by reducing the total number of

seeds that need to be searched and allows for authentication even when PUFs may have

drifted significantly from their initial state.

The research on RBC to date, including the most recent by Lee et al. [73] does not
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permit any error in the transmission between the client and server. Securing communication

in noisy or low signal environments is critical for many applications. Examples include

unmanned autonomous vehicle (UAV) drone package delivery [82] in low signal environments,

or wireless communication at a music concert where numerous people are accessing the same

network. Securing communication in these settings is challenging for cryptography because

by definition, cryptography primitives do not tolerate any error. A motivating example is

as follows: Consider the following canonical scenario employing Alice and Bob that wish to

communicate. Assume an asymmetric public key infrastructure (PKI) system where Alice

wishes to receive an encrypted message from Bob. Alice generates a public/private key pair

and sends her public key to Bob but the public key contains an error (i.e., one bit has flipped)

due to noise in the transmission environment. Bob encrypts and sends Alice a message using

her public key; however, Alice is unable to decrypt the message with her private key due to

the erroneous public key received by Bob. This example illustrates that if any of the bits

are incorrect, then secure communication is impossible between two parties. While ECC

can be used to address this issue it burdens the low-powered device with more work while

also enabling attackers to exploit vulnerabilities in ECC information leakage. By correcting

for the noisy environment on the server and not the client, we gain an additional layer of

security.

To address communication in noisy environments, the contributions of this paper are two-

fold. First, we propose an authentication protocol that is resilient to noisy environments.

Second, we optimize the system through algorithmic innovations and the parallelization

potential of modern multi-core CPUs which are needed to reduce authentication latency.

The same benefits of RBC are retained in our protocol, which include: requiring that the

secure server perform error correction, thus allowing client devices to be lightweight/low-

powered, and employ a probabilistic search of the PUF seed space. Our protocol bolsters

the prior work on RBC by extending it to noisy or low-signal communication environments.

To summarize, we make the following contributions.
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Figure 6.1: The response-based cryptography protocol that is robust to noise (npRBC).
The RBC search engine is shown in Figure 6.2. This inspiration for this figure is from

similar figures in the literature [73, 74].

• We introduce Noisy Probabilistic Response-Based Cryptography, npRBC, a protocol to

authenticate low powered devices in high noise environments.

• We evaluate the protocol using a Monte Carlo approach that spans PUF BER noise

levels between 20-45 bits and transmission errors (TBER) up to 44% (the upper bound

is 50% [104]). The PUF BER is derived from enrollment data of an SRAM PUF and the

TBER is selected in intervals that represent varying levels of noise in the environment.

The paper is organized as follows: Section 6.3 outlines the proposed protocol, npRBC,

Section 6.4 presents the experimental evaluation, and finally, Section 6.5 concludes the paper

and discusses future work directions.

6.3 npRBC

Our response-based cryptography protocol, npRBC, builds on the work of Lee et al. [73]

which showed that response-based cryptography can employ knowledge of enrollment data

which quantifies the bit error rate (BER) of each cell in a client’s PUF and stores this

information in the PUF image on a secure server. Our proposed protocol differs from Lee et

al. [73] as it is robust to noise and requires that the client send a SHA3-512 message digest
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Figure 6.2: The probabilistic RBC search engine. Colors represent comparisons between
client and server information.

(M1) of the hashed 256-bit seed and also a ciphertext (C1) generated with AES256 using the

same 256-bit seed as the key. Sending both M1 and C1 allows the protocol to better identify

the candidate seed which the client used to generate M1 and C1 rather than using M1 alone,

as was the case in Lee et al. [73].

We outline the steps of our protocol, npRBC, which are illustrated in Figures 6.1 and

6.2. The steps in the protocol pertaining to Figure 6.1 are as follows:

1. Client/Server: The server/certificate authority (CA) performs a handshake with the client

and tells it which cells to challenge in its PUF.

2. Client: The client uses this information to generate a 256-bit seed (S1) for two purposes

in Steps 3–4 below.

3. Client: S1 is salted and then is used to generate a public/private key pair (Pk1/Pr1).

4. Client: S1 is used as input to create a message digest using SHA3 (M1) and ciphertext

generated by AES256 (C1).

5. Client: M1 and C1 are sent to the server for authentication.

6. Server: The server performs the RBC search (outlined in the steps below). After the
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search finds the most likely seed, S ′, generated by the client it is used as input to a

cryptographic algorithm (e.g., ECC, or a post-quantum cryptography algorithm), the

client’s public key is generated (Pk1) and registered on the registration authority.

The steps in the protocol pertaining to Figure 6.2 (the RBC Search Engine in Figure 6.1)

are as follows:

1. The server receives M ′
1 and C ′

1 from the client.

2. The server reads the initial seed from the client’s PUF image (Sinit).

3. The server hashes Sinit to create a message digest M and checks if it matches M ′
1

(M ≈ M ′
1) received from the client. Recall that M ′

1 is the corrupted variant of M1

(see Section 6.3.3 for details).

4. If M ̸≈M ′
1, then go to Step 10.

5. If the algorithm continues, then the next seed is generated and the process restarts at

Step 3 above, but S is permuted and then hashed (Sinit is only used on the first iteration).

6. If M ≈M ′
1 then we generate the ciphertext, C.

7. The ciphertext, C, is checked for a match with the ciphertext received by the client

(C ≈ C ′
1). Recall that C

′
1 is the corrupted variant of C1 (see Section 6.3.3 for details).

8. If C ≈ C ′
1 then the seed, Sc, is added to the candidate set and the termination criteria are

checked and if the algorithm continues then go to Step 5 above, otherwise go to Step 10.

9. If C ̸≈ C ′
1 then go to Step 10.

10. The termination criteria are checked (see Section 6.3.4 for details). If the algorithm

terminates, then all the candidate seeds are checked and those with the highest probability

of being correct are selected (see Section 6.3.5 for details). A seed is selected (Ss) and is

salted to create S ′.
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6.3.1 Probabilistic Searches of the PUF Seed Space

The cells of the PUF generate a response when challenged, where each cell’s response is

either a 0 or 1. During enrollment, the cells of the PUF are challenged numerous times and

the responses are recorded to produce a PUF image. In the PUF used in our evaluation,

most cells are stable; Figure 6.3 shows that the PUF has 573 bits that do not change between

consecutive challenges, but some cells have a porbability of yielding either 0 or 1. During

the authentication process, both the server and the client select the same cells (and in the

same order) for their respective seeds based on the handshake that is initiated by the server.

If all of the cells selected are stable, then the client and the server share the same initial

seed. If cells are selected that vary between challenges then there is a probability that the

server’s and client’s seeds will not match. In such a case, a search is performed on the server

to determine which bits have drifted in the client’s PUF relative to the image stored on the

server. The drift of a seed is the number of bits that differ between the client’s seed and the

seed image on the server (this is the Hamming distance between the bits of the client’s seed

and the bits of the seed image).

PUF Noise Level (n) – As described above, the server selects which addresses the client

reads from its PUF. Therefore, the server selects some number of unstable cells (cells having

a non-zero probability of flipping). We denote the number of unstable cells selected to be n

(which is the PUF noise level). For example a PUF noise level of n = 20 indicates that a seed

is generated using 20 cells from the PUF that are not stable and have a chance of producing

a different state compared to the image on the server. Figure 6.4 shows the amount of drift

that occurs with varying PUF noise level values (n) for the PUF used in our evaluation.

For example, for n = 20, there were 240 seeds out of 1000 where there was 3 bits of drift

from the server’s seed recorded in the PUF image (this is a Hamming distance of 3 between

the PUF image and client’s seed). As n increases, the amount of drift increases as well.

Individual seeds with higher drift are less likely to occur, but at each level of drift there are

exponentially more possible seeds, so while the individual seed with that level of drift has
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a low probability of occurring, the set of seeds with that level of drift may be more likely.

This explains why higher noise levels (n > 30) rarely have seeds with low (≤ 1) drift levels.

Accumulating Probability – The probability of each bit flipping in the client’s seed is

determined from the enrollment data on the server. This information is used to determine

the likelihood of an individual seed being generated from the set of selected cells. The single

most likely seed to be correct is the one where no bits have drifted relative to the server’s

image. As the probabilistic search proceeds, the probability of each searched seed is added

to a sum. This sum yields the total probability of the correct seed having been found.

Individual seeds that have more drift, i.e. the number of bits in the client’s seed that have

flipped, are less likely to occur than seeds with low drift.

Search Order – The probabilistic search checks seeds in order of highest to lowest probabil-

ity of matching. This allows the search to prioritize the seeds which have a higher chance of

being correct while disregarding seeds that have an infinitesimally small probability of being

correct (e.g., a seed with 15 bits that drifted would never be searched because the probability

of that occurring is too low to be worth considering). This search order leads to probability

accumulating quickly at the beginning of the search and then to diminishing returns as the

search continues. This search strategy is much more work efficient than prior work that

assumes all bits in a seed have the same probability of flipping [21, 23, 72, 93, 117, 118].

6.3.2 Noisy Transmission

The transmission from the client to the server is vulnerable to corruption by environ-

mental noise. Our protocol allows for the client to still be authenticated despite high en-

vironmental noise which flips bits in both the message digest and ciphertext. The protocol

accepts a transmission bit error rate (TBER) up to a set threshold, t, in both the message

digest and the ciphertext to account for corruption during transmission.
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6.3.3 Match Criteria

A noisy/jammed environment will corrupt the signal from the client to the server resulting

in M ′
1 and C ′

1 which are corrupted variants of the intended transmissions. The Hamming

distance, d, between the corrupted variants and server generated variants is used to determine

their similarity such that dM = dist(M,M ′
1) and dC = dist(C,C ′

1) where the dist() function

is used to compute the Hamming distance between two sets of bits. The match criteria sets

the threshold value, t, so that if d ≤ t, then the match is considered true and the seed,

S which is was used to generate M and C is added to the candidate set. This allows the

RBC Search Engine to account for a given amount of noise during transmission and to still

authenticate the client without having a perfect match, where dM = dC = 0. The server

continues to generate seeds and match them until a termination criterion has been met.

6.3.4 Termination Criteria

There are two factors that determine when the search terminates. First, a probability

threshold of 0.999 is used to terminate the search once the sum of the probabilities of the

searched seeds reaches the threshold. Second, a time limit is used to terminate the search

in cases where the sum of the probabilities has not accumulated to the threshold of 0.999.

After the termination criteria has been met, the server then selects the best seed from the

candidate set.

6.3.5 Candidate Seed Refinement

When the server accepts a high level of noise during transmission a large number of seeds

are added to the candidate set. To choose the correct seed, S, from all of the candidates

the server selects the seed with the lowest overall transmission error, dtotal = dM + dC .

The probabilistic search only examines a small fraction of the total possible seeds and so

the probability of an incorrect seed on the server creating both a message digest (M) and

ciphertext (C) that is corrupted during transmission to be closer to the client’s M ′
1 and C ′

1
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Table 6.1: Parameter values used in the evaluation. Varied refers to whether the parameter
is varied in the evaluation.

Parameter Value Varied
Probability Threshold (t) 0.999
Time Limit 5 s
TBER 10-44% ✓
PUF Noise Level (n) 20-45 bits (7.81-17.6% BER) ✓

Table 6.2: Average execution times and authentication rates for PUF noise levels
n = 20− 45, TBER levels 10 – 40% and time limit of 5s.

PUF Noise (n) 20 Bits 25 Bits 30 Bits 35 Bits 40 Bits 45 Bits
TBER (%) 10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40
Time (s) 0.37 0.36 0.37 0.37 1.60 1.60 1.62 1.61 4.56 4.56 4.56 4.56 4.56 4.56 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00
Succ. 0.99 0.99 0.99 0.88 0.99 0.99 0.99 0.77 0.98 0.98 0.98 0.67 0.84 0.84 0.84 0.57 0.58 0.58 0.58 0.39 0.28 0.28 0.28 0.00

than the correct seed’s M and C is negligible. Requiring C ′
1 and lengthening M ′

1 and C ′
1

increases the probability of identifying the correct seed in high TBER scenarios.

6.4 Experimental Evaluation

6.4.1 Experimental Methodology

All experiments are conducted on a platform containing 2× AMD EPYC 7542 CPUs (64

total physical cores) clocked at 2.9 GHz with 512 GiB of main memory. All code is written

in C/C++. All executions of the program are parallelized using OpenMP and employ 64

threads/cores as we found this to achieve the best performance on our platform.

PUF Used in the Evaluation – We use the SRAM PUF with characteristics outlined

in Figures 6.3 and 6.4. In the protocol we select up to n = 45 unstable bits out of a 256

bit seed, where the remaining bits are stable. Note that while there are numerous PUF

technologies, the SRAM PUF employed here has very high levels of noise. For instance, a

Magnetic RAM PUF yielded a 7.7% BER [86], which is lower than the 17.6% BER here (or

n = 45 of 256 bits). Also, a Resistive RAM (ReRAM) PUF has been reported to have a

BER of 0.001 (only 1 in 1000 bits are unstable) [22]. Thus, our PUF is representative of

having a substantial BER which is the worst case scenario for the protocol. Consequently
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the results are applicable to PUFs with similar or lower levels of noise.

Fixed Parameters for Experimentation – A number of parameters are fixed for exper-

imentation to allow for a detailed examination of parameters that significantly change the

authentication rate of the protocol. The threshold, t, of transmission noise acceptance is

fixed to 50% to account for TBER ≤ 44% (see Section 6.3.2). Lower threshold values do not

improve authentication rates (nor do they degrade it as long as they are ≥ 5% above the

TBER) while higher threshold values (t ≥ 50%) result in a lower authentication rate. A fixed

time limit of 5 seconds and an accumulated probability of 0.999 is used as the termination

criteria (see Section 6.3.4). A ciphertext of 1024-bits is used as it was experimentally found

to have the best results on our platform. Additionally, SHA3-512 is used instead of SHA3-256

because the longer message digest increased the authentication rate in our experiments.

Monte Carlo Parameter Sampling – We employ a Monte Carlo approach where each

combination of parameters given in Table 6.1 is trialed 1000 times. Each trial uses the

trial number (1 to 1000) to set the seed for the random number generator. The random

number generator determines which cells are selected for the seed and which bits flip during

transmission (based on the selected TBER). The number of bits that flip during transmission

follows a binomial distribution centered on the average number of bits that flip due to the

TBER. This is modeled as Additive White Gaussian Noise (AWGN) resulting in a maximum

TBER of 50%, which is Shannon’s Limit [104].

6.4.2 Experimental Results

We simulate different PUF seeds with the Monte Carlo approach described above and

report the results in Table 6.2. The results show that, up to a TBER of 30%, the determining

factor for a successful authentication is the amount of PUF noise (n). Noise levels n = 20−30

bits with TBER ≤ 30% successfully authenticate ≥ 98% of the time. As the n value increases

to 35, 40 and 45 bits the fraction of successful authentications with TBER of 30% drops

from 0.98 to 0.84, 0.58, and 0.28, respectively. Additionally, the average time to complete
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Figure 6.5: The heatmap plots the success rate of authentication for each PUF bit error
rate (n) and drift with a TBER of 30%. Blank values in the heatmap indicate that there
were no trials that had that combination of n and drift (see Figure 6.4). A success rate of
1.00 indicates that it always succeeded to authenticate with the given parameters, while a

success rate of 0.00 indicates that it never succeeded to authenticate.

the search increases as a function of n. The time limit only impacts the success rate of the

searches when n ≥ 35. Recall from Figure 6.4 that the higher the PUF BER (n), the higher

the average drift. The increase in drift requires more computation to find the correct seed.

This is reflected in the average execution time values in Table 6.2. In the scenarios where

the search is terminated by the time limit, the probability of finding the correct seed is lower

because an insufficient number of seeds are searched.

In Figure 6.5 the success rate is plotted for each n and corresponding drift value. Every

seed with a drift of 2 or lower is found while every seed with a drift of 12 or higher is not

found. Additionally, the higher n values fail to find the correct seed at drift levels where

lower n values succeed. This is due to the probabilistic search having to search through more

possibilities at each drift value. From Table 6.2 we observe that this results in the time limit
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Figure 6.6: The fraction of successful authentications are plotted vs. the TBER (the
chance of each transmitted bit flipping in the message digest or ciphertext) for a PUF noise

level (n) of 30%.

of 5 seconds being reached, and the search terminating before the correct seed is identified.

While a TBER below 30% does not impact the authentication rate for a given n value, as

the TBER increases past 30% it begins to be the limiting factor in authentication as opposed

to n. Recall from Section 6.3.5 that the seed which is selected from the candidate set is the one

with the lowest transmission error. In Figure 6.6 we observe that as the TBER approaches

44% the success rate rapidly decreases. We found that this is because we cannot identify and

select the correct seed from the candidate set because of the high transmission error. High

TBER compounds the issue with high n, resulting in poor authentication rates for seeds

generated with a high n coupled with a high noise environment. The protocol mitigates this

by selecting PUF cells that generate seeds with lower noise levels (n) in environments with

high transmission bit error rates.

Leveraging Compute Power for Security – The two factors contributing to the success

rate of npRBC are the PUF Noise and the TBER. Increasing the compute power available

increases the number of seeds searched which increases authentication rates at higher n
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values. This has the added affect of increasing the overall security because a higher n

value (corresponding to a noisier PUF) is harder to attack. Increasing the time limit also

allows more seeds to be searched but gives attackers additional opportunity to compromise

the system and adds latency to time sensitive communications. The more compute power

available on the server, the more secure npRBC becomes. We reiterate that because the

server has secret information regarding the client (the PUF image), compared to the number

of seeds searched by the server, the search space for an attacker is intractable (2256 seeds).

6.5 Discussion & Conclusion

npRBC enables rapid device authentication in congested electromagnetic environments

that have been previously found to be too noisy for canonical (zero-noise tolerance) crypto-

graphic protocols [21, 23, 72, 74, 93, 117, 118]. We evaluated npRBC using a range of PUF

noise levels n = 20−45 and transmission bit error rates (TBER) of 10–44%. Recall that the

44% limit refers to where each bit in the transmission of the message digest or ciphertext

has a 44% chance of flipping. We evaluated the protocol by using a Monte Carlo approach

that varied which bits are selected from the PUF and which bits flip in the transmitted data

(message digest and ciphertext). With low PUF noise (n ≤ 30), the protocol is successful

in almost every trial. Non-probabilistic search methods are unable to authenticate in as

noisy an environment as npRBC because they search too many seeds which increases the

difficulty of distinguishing the correct seed from all of the candidate seeds. Additionally,

non-probabilistic searches are intractable for seeds with higher drift values as shown in pre-

vious work [74]. npRBC successfully authenticates with a drift of up to 11-bits which for

previous works requires more than 6.2 × 1018 seeds to be searched and would require >20

years to authenticate on a modern multi-GPU server node.
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Chapter 7

GPU-Accelerated Authentication in High Noise Environments

The previous chapter introduced a protocol for RBC which uses probabilistic searching

in a high noise environment. One of the benefits of npRBC-CPU is that increasing the

compute power available on the secure server can increase both the level of security and

ability to authenticate in noisy environments. This chapter examines using hardware accel-

erators to increase the performance of npRBC-GPU and assesses the impacts this has on

authentication rates and security.

The contents of this chapter are currently submitted for publication.

7.1 Abstract

The use of parallel processing, and in particular, General Purpose Computing on Graphics

Processing Units (GPGPU) can be exploited to expand the design space of security protocols.

Higher computational throughput allows for the design of protocols that require significant

computing power and are thus intractable for low-powered client devices that are susceptible

to attacks by opponents. In this paper, we accelerate the Response-Based Cryptography

protocol that authenticates low-powered client devices in environments with high levels of

noise. Our approach offers (i) faster authentication, (ii) authentication that is robust to

high levels of noise in the environment, and (iii) increased levels of security.
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7.2 Introduction & Background

The field of computer security has yet to realize many of the benefits of general purpose

computing on graphics processing units (GPGPU). The parallel processing capabilities of the

GPU can be used to improve the performance of particular operations, where reduced latency

yields greater levels of security. A recent successful example is the GPU parallelization

of post-quantum cryptography algorithms [60, 72, 105, 112] which are well-known to be

computationally expensive.

In this paper, we examine exploiting the GPU to reduce the latency of the response-based

cryptography (RBC) protocol [117], and as we will show, while the major computational

task that the protocol carries out is a probabilistic search using Hamming distance, the

probabilistic nature of the search makes several aspects of the algorithm challenging to

efficiently design for GPU architectures.

7.2.1 Response-Based Cryptography (RBC)

We present a high-level description of the probabilistic RBC protocol but do not provide

in-depth detail because the aspect most relevant to this paper is the search that corrects error.

See Donnelly & Gowanlock [36] for more information, which conducted the probabilistic RBC

search on multi-core CPUs.

The RBC protocol authenticates client devices using a secure server. The protocol de-

parts from many other cryptographic protocols by generating the inputs (hereafter referred

to as seeds) of cryptographic methods using Physically Unclonable Functions (PUFs) [54]

which are hardware devices that are embedded in client devices (e.g., phones, drones, UAVs,

laptops, among others). In contrast, most cryptography algorithms store private keys in

non-volatile memory, and so they are susceptible to being appropriated by an attacker. This

is the benefit of PUFs — they enable a wider range of protocols that can be designed for

use cases where client devices are at risk of being acquired by an opponent.

Before a PUF is integrated into a client device, an image of it is produced, which contains
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Figure 7.1: Probabilistic RBC search engine executed on the GPU used to authenticate
Client 1. The major task for the search engine is hashing a seed using SHA3 to create a
message digest (M) and comparing it to the client’s message digest (M ′

1) and if these are
equivalent, a second check is performed using AES256. Client 1’s encrypted payload that

was received by the server will vary due to drift in the client’s PUF and/or due to
transmission error. Tasks computed on the GPU are outlined by the green lines.

Terminating the search using a T = 5 s time limit occurs on both the host and GPU.

a representation of each of its memory cells. PUFs exploit small manufacturing variations in

memory cells to uniquely identify each PUF device. PUFs have been developed using many

memory technologies including SRAM [32], ReRAM [69], and MRAM [86].

Regardless of the PUF technology employed, the RBC protocol requires that a client

device generate encrypted data using a seed generated by the PUF. This encrypted data

could be ciphertext (e.g., using AES [39]), a public key (e.g., using CRYSTALS-Kyber [16]),

and/or a hash/message digest (e.g., using SHA3 [38]). In this paper, we use a message

digest generated with SHA3, and ciphertext generated by AES, but we refer to this simply

as the “encrypted payload”. Then, to authenticate a client device, the encrypted payload is

transmitted to a secure server that authenticates the client by reading the client’s associated

PUF image to produce a PUF seed, which it then uses to generate the same information
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contained in the encrypted payload. Next, the server determines if the encrypted data are

the same, which would indicate that the client is to be authenticated. However, PUFs are

susceptible to variation and a given bit in a memory cell has a probability that it will flip (a

zero becomes a one and vice versa). This is the major challenge of RBC, as the server must

perform a similarity search on a Hamming distance space to find the correct seed. Also, the

RBC search is used to correct noise during transmission between the client and server in

challenging electromagnetic environments.

The probability of each bit flipping can be exploited to perform a targeted search [36]

instead of a brute-force search that assumes all bits have the same probability of flipping [72,

74, 117]. However, a targeted search requires partitioning the search space (the total space

is 2256 seeds) and we outline the challenges of GPU algorithm optimization in this context.

7.2.2 Drawbacks and Opportunities

We outline two drawbacks (D1-D2) of accelerating the probabilistic RBC search using

the GPU which stem from its throughput-oriented architecture.

D1 The targeted search attempts to search seeds that are likely to be correct based on the

probability that a bit stored at a PUF memory address is likely to flip. Thus, the search

space is partitioned based on these probabilities. These targeted searches produce

a range of workloads that cannot be processed by a single (or few) long duration

kernel invocation(s). Thus, while the GPU excels at throughput-oriented workloads

(i.e., kernels with significant work), the targeted search generates work that varies in

terms of the number of seeds searched, where small workloads risk underutilizing GPU

resources.

D2 As described above, the total search space is practically infinite, so search time limits

are imposed, and in this paper, we set a time limit of T=5 s, consistent with prior

work [36, 73]. The search time limit means that the search terminates early if the seed
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is not found, and so the algorithm needs to actively monitor the time limit on the

host and GPU. To efficiently terminate the search early, it is best to have fine-grained

workloads on the GPU, such that a long kernel invocation does not delay termination.

Consequently, fine-grained workloads are preferred, but these may underutilize GPU

resources.

To address D1-D2, this paper proposes Noisy Probabilistic Response-Based Cryptography

on the GPU (npRBC-GPU) and makes the following contributions (C1-C2).

C1 We optimize npRBC-GPU for the spectrum of workload sizes described above. Op-

timizations are as follows: (i) Using a large number of CUDA streams1 to increase

workload granularity and to allow for concurrent execution of host (CPU/main mem-

ory) and GPU tasks. (ii) We employ unified memory for synchronizing between the

host and GPU to signal when the search should be terminated early. (iii) We exploit

constant and shared memory in the algorithms to reuse data and thread state.

C2 We demonstrate that despite the challenges above, our algorithm outperforms prior

work that used multi-core CPUs, by increasing the amount of error that is corrected

and decreasing authentication latency.

The paper is organized as follows. Section 7.3 outlines the proposed algorithm and

associated optimizations. Section 7.4 presents the experimental evaluation. And lastly,

Section 7.5 concludes the work and discusses future research directions.

7.3 npRBC-GPU: Accelerating Probabilistic Response Based Cryp-

tography

Figure 7.1 shows the search process that occurs on a secure server that authenticates a

client device. We highlight here that we are not proposing a new security protocol ; rather,

1We use CUDA terminology throughout this paper.
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we are accelerating the search process using the GPU as outlined by the steps with the green

outlines in Figure 7.1. The main computation is hashing permuted seeds with SHA3, and

a subset of the seeds that pass this filter (M ≈ M ′
1) will be encrypted using ciphertext.

Of those, some will be added to the candidate set. We refer to Figure 7.1 when describing

npRBC-GPU below and provide brief summarizes of our optimizations. A single GPU

kernel executes the components in Sections 7.3.1–7.3.3 below.

7.3.1 Hashing with SHA3-512

While hashing with SHA3-256 is secure for our purposes here, we use SHA3-512 be-

cause the increased length of the output (512 vs. 256 bits) increases robustness to higher

transmission noise levels at minor expense to the response time.

GPU Optimization Summary: We optimize SHA3-512 on the GPU by storing the state

needed by each thread (1600 bits) in shared memory, which improves performance because

it limits access to global memory. While shared memory usage may seem like it might limit

occupancy (the maximum number of active warps on a streaming multiprocessor), we find

that the number of registers needed per thread limits occupancy rather than shared memory

usage.

7.3.2 Encryption with AES256

We design an AES256 implementation that is efficient for encrypting small rather than

large amounts of data (the latter is the typical use case for AES256). We use a Cipher

Block Chaining (CBC) method for ciphertexts which are over 128 bits in length. We use

a fixed ciphertext of 1024 bits which is 8 blocks in AES256. Each 128 bit block must be

encrypted sequentially for CBC which is well-suited for our algorithm because we are using

individual threads to encrypt a large number of ciphertexts rather than the more common

use of encrypting a single large ciphertext with multiple threads.

GPU Optimization Summary: We use constant memory tables on the GPU that are
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designed for short encryptions (few blocks) rather than for large encryptions (many blocks).

Also, we use Instruction Level Parallelism (ILP) to improve AES256 performance. This is

critical for reducing the number of registers required per thread, which can limit occupancy.

7.3.3 Fast Seed Permutation

We use Algorithm 515 [18] to permute the server’s initial PUF image seed (Sinit) and

subsequent seeds (S).

GPU Optimization Summary: To prevent redundant calculations across threads, a

lookup table for Algorithm 515 is used and stored in global memory. This reduces the

computation needed to create each seed permutation.

7.3.4 Monolithic to Fine-grained Workloads & Kernels

In our initial algorithm design, we executed a small number of kernels as a function of the

maximum anticipated PUF bit error rate (BER). The BER refers to the number of bits in

a 256 bit seed that have flipped relative to the baseline in the PUF image (Sinit). However,

we find two major drawbacks of this approach: (i) The host sets a flag in GPU global

memory to signal the GPU threads to return. This implies that even if threads launch and

then immediately return, we still have to execute numerous (nearly) no-op CUDA blocks,

which delays the kernel returning to the host. (ii) The monolithic kernels require a lot of

accompanying information be sent to the device that outlines what each thread computes

which caused significant register pressure.

GPU Optimization Summary: We decompose large kernels into several kernels with

smaller CUDA grid sizes where the diversity of workloads assigned to the threads in a kernel

are minimized. This decreased the amount of data that needs to be sent to each kernel and

reduces register pressure.
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Table 7.1: Parameter values and notation (Not.), where we outline if the parameter is
varied or static.

Parameter Not. Value Static Varied
Probability Threshold t 0.999 ✓
Time Limit T 5 seconds ✓
Transmission Bit Error Rate (TBER) m 10-44% ✓
PUF Noise Level n 20-45 bits ✓
Resulting PUF Drift d d ∝ n N/A N/A

7.3.5 Concurrent Streams for Imbalanced Workloads

Fine-grained workloads are largely imbalanced, where some kernels execute for longer

durations than others.

GPU Optimization Summary: We execute numerous (asynchronous) kernels across

CUDA streams which allows for: (i) the concurrent execution of kernels; and, (ii) host-

side tasks to overlap with host-GPU communication and computation.

7.4 Experimental Evaluation

7.4.1 Experimental Methodology

Platform & Software – Experiments are conducted on a platform with 2×AMD EPYC 7542

CPUs (64 physical cores total) clocked at 2.9 GHz with 512 GiB of main memory equipped

with an Nvidia A100 GPU. The host code uses C/C++ and is parallelized with OpenMP

with 64 threads and the GPU code is parallelized using CUDA v.12.4.

PUF Image – We select up to n=45 unstable bits out of a 256 bit seed, or a maximum bit

error rate (BER) of 17.6% from a SRAM PUF image (the remaining ≥211 bits are stable

and have zero chance of flipping). The SRAM PUF has a very high level of noise compared

to other PUF technologies, such as a ReRAM PUF that has a 0.1% BER (1 in 1000 bits are

unstable) [22]. Thus, the results are applicable to PUFs with similar or lower levels of noise

and represent a worst-case scenario where significant error needs to be corrected.
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Monte Carlo Sampling & Parameters – We outline the parameters used in the eval-

uation in Table 7.1. Due to the probabilistic nature of bits that flip in the PUF, we use

Monte Carlo sampling of bits in the PUF for a selected transmission bit error rate (the

number of bits that flip in the encrypted payload when sending the data from the client to

the server). We select n bits that have a non-zero chance of flipping, where some number

d ≤ n will flip, which is referred to as the PUF drift. The transmission bit error rate (m) is

reported as a percentage of the number of flipped bits in the encrypted payload due to noise

in the transmission environment, where the maximum possible noise level is 50% according

to Shannon’s limit [104]. We examine a TBER up to m=44% as authentication is unreliable

beyond this threshold.

Termination of the Search – Each seed searched is assigned a probability that it will

authenticate the client. We accumulate these probabilities and abort the search if the total

accumulated probability exceeds t=0.999. We also abort if the search time exceeds T=5 s.

We highlight that a timeout this does not imply that the search fails; rather, the seed found

with the highest probability of being correct is selected which often authenticates the client.

7.4.2 Implementation Configurations

7.4.2.1 npRBC-CPU

Prior work using the CPU parallelized using OpenMP with 64 threads/physical cores [36].

7.4.2.2 npRBC-GPU

Our proposed algorithm executed on the GPU. GPU kernels are configured to launch

with 32 threads per block and each thread is assigned 1000 seeds to search. Both of these

parameters were selected as they were found to achieve the best performance on our platform.

As we will discuss in Section 7.4.5, by default we use 64 CUDA streams to maximize GPU

resource utilization.

Selection of the Candidate Seed – We determine the best candidate seed by evaluating
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their Hamming distance to the encrypted payload received by the server. Both the SHA3-

512 output (M) and AES256 output (C) generated by the seed, S, are compared with those

received from the client. Unlike npRBC-CPU, GPU memory limitations necessitate selec-

tively saving each potential candidate, Sc. To address this, we evaluate each candidate seed

when it is generated and only save those that generate outputs that have the smallest Ham-

ming distance to the encrypted payload. To select the candidate seed we use a semaphore

on the GPU which was added to the libcuc++ library with CUDA v.11.0 [31].

Probability Accumulation & Kernel Invocation Search Order – As outlined in Sec-

tion 7.2 compared to a brute-force search that assumes all bits in the PUF have an identical

probability of flipping, the probabilistic search outlined here is a targeted search, and we

exploit the information provided by each of the n bits selected from the PUF that have

a non-zero probability of flipping. Thus, the search method proceeds by searching seeds

with a high probability of generating the correct information in the encrypted payload. The

probabilities of each individual seed being correct and authenticating the client are ordered

from most to least probable, prioritizing seeds with a high chance of being correct. We batch

the computation across numerous kernel invocations where each kernel invocation contains

seeds to be evaluated that have a similar probability of authenticating the client.

7.4.3 Determining PUF & Transmission Noise Limits

From Section 7.4.1, there are two parameters that are varied to examine the robustness of

the system, which are the number of bits selected in the PUF with a non-zero probability of

flipping (n) and the percentage of bits that flip due to transmission error in the environment

(m). We examine at what PUF noise level (n) and transmission bit error rate (m) that

communication becomes intractable with the T=5 s termination criterion using npRBC-

CPU and npRBC-GPU.

Experimental Parameters: We use the cross product of n and m parameters where

n ∈ {20, 25, . . . , 45} and m ∈ {10, 20, 30, 40, 42, 44}%, yielding a total of 36 parameter
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Figure 7.2: Limitations of mean search success rates between prior work (npRBC-CPU)
and our work, npRBC-GPU. There are a total of 36k trials shown, see text for details. (a)
Mean success rate as a function of n. (b) Mean success rate as a function of m (%), where

the theoretical limit is m = 50%.

combinations for n and m, and for each we carry out 1,000 Monte Carlo trials (36k trials

total). We sample the n bits from the PUF, each of which has a non-zero probability of

flipping, and sample differing bits that flip in the encrypted payload due to transmission

error. For clarity, we selected m ∈ {42, 44} to identify where the success rate of npRBC-

CPU is ≈0%.

Figure 7.2 shows the results of the experiment, where Figure 7.2(a) shows the search

success rate as a function of n and Figure 7.2(b) shows the search success rate as a function

of m. npRBC-GPU outperforms the multi-core CPU implementation npRBC-CPU across

all values of n and m. This is noteworthy as unlike npRBC-CPU, npRBC-GPU processes

workloads that are not well-suited for GPU execution, particularly small workloads (low n

and m) where GPU acceleration may be unwarranted. We elaborate on this in Section 7.4.5.
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Figure 7.3: npRBC-GPU mean search success rate where we select n ∈ {20, 25, . . . , 40}
and m ∈ {10, 20, . . . , 40}. There are a total of 20 parameter combinations of n and m

where each has 1,000 trials yielding a total of 20k trials. Each trial randomly samples PUF
cells where there are n bits with a non-zero probability of flipping and m% of the bits are
randomly selected to flip based on transmission error. (a) Search success rate as a function

of PUF noise level (n) and the resulting PUF drift (d). (b) Search success rate as a
function of TBER (m) and PUF drift (d).

Figure 7.2 also shows that npRBC-GPU does not have a 100% success rate for any value

of n or m. This is somewhat misleading, because if we use Figure 7.2(a) as an example, at

the data point for n=20 there are trials in the sample where m>40, which has a very low

success rate as shown in Figure 7.2(b). Thus, if the values of n and m are restricted to more

reasonable parameters, such as n≤40 and m≤40% then the success rate increases to ≈100%

for many values of n and m for npRBC-GPU, but not for npRBC-CPU.

The PUF bit error rate (n) is controllable by the protocol and the maximum value for

m=50%. Therefore, in all that follows, we examine n≤40 and m≤40%.

7.4.4 GPU Search Success Rate as a Function of PUF and Transmission Error

The two parameters that are varied are n and m (Section 7.4.3). Some fraction of n PUF

bits will have flipped, which is the resulting PUF drift, d; therefore, d ∝ n. PUF drift is an
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important statistic — high PUF drift implies there are more seeds to search compared to

low PUF drift and intuitively, high PUF drift results in a lower authentication rate.

Figure 7.3(a) plots the success rate as a function of PUF noise level (n) and the resulting

PUF drift (d). For each value of n, there are 4k total Monte Carlo trials. Observe from the

plot that there are several cells that do not have any trials because d ∝ n. For example,

consider (n, d) = (20, 13) which does not contain any trials. This is because it would be very

improbable that of those 20 bits that have a non-zero probability of flipping, 13 flipped (see

Figure 3 in Donnelly & Gowanlock [36] for the PUF probability histogram).

From Figure 7.3(a) we observe that npRBC-GPU has a reduced success rate when both

the drift, d, and the noise, n, are high. This is owing to the increased number of seeds

that need to be searched and the T = 5 s time limit being insufficient to find the seed.

Note that the number of seeds that need to be searched increases proportional to n because

the probability space is larger and therefore it is more challenging to find the correct seed

even at lower drift, d. Similarly, seeds with high drift at low n are also challenging to find

because the likelihood of such a high drift at low n is above the search probability threshold

of t=0.999.

Figure 7.3(b) shows the search success rate is shown as a function of TBER (m). We

observe that we achieve a ∼90% success rate when the PUF drift d≤6. Comparing Fig-

ure 7.3(b) to (a) it is clear that most of the drift values d≥7 are when the PUF noise n≳35.

This is a major achievement as it demonstrates that high levels of noise (high n and m)

can be corrected using GPU hardware within reasonable time constraints.

7.4.5 GPU vs. CPU Seed Search Throughput

The GPU has immense potential to improve the seed search throughput compared to

the CPU. However, as described in Sections 7.2-7.3, the search requires numerous GPU op-

timizations to address the varying workloads associated with probabilistic searches. Several

smaller kernels are needed to reduce the challenges associated with monolithic kernel invoca-
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Figure 7.4: Seed search throughput (average number of seeds searched per second) plotted
on a log scale for the experiment conducted in Section 7.4.4. The GPU curve shows search
throughput vs. the number of CUDA streams. npRBC-CPU with 64 CPU threads/cores

is shown for comparison.

tions; e.g., register pressure and reduced occupancy, load imbalance due to uneven workloads

between threads, and higher overhead when terminating the search. Thus, we execute many

smaller GPU kernels that compute fewer seeds per invocation using multiple asynchronous

CUDA streams.

Figure 7.4 plots GPU seed search throughput as averaged across all 20k trials used in Fig-

ure 7.3. We find that one CUDA stream yields a throughput of ≲105 seeds/s, whereas when

using ≥16 streams, we achieve a throughput exceeding 107 seeds/s, which is an improvement

of over two orders of magnitude. This enormous performance gain is counterintuitive, but it

occurs for several reasons described as follows.

1 The GPU kernels require a wide range of CUDA grid sizes and many of the kernels

have small grid sizes and can execute concurrently on the GPU. Thus, using several CUDA

streams allows for greater GPU resource utilization. 2 The order that the kernels are

executed are prioritized based on the likelihood that a given kernel contains the seed that

will authenticate the client. Also, the search terminates after T=5 s. Thus, with only one

stream the GPU may not get the opportunity to process very many kernels that yield high

seed search throughput (kernels with larger CUDA grid sizes). In contrast, with numerous

streams, the GPU processes more kernels, several of which compute significant work that

increases the search throughput. 3 The optimizations that cache data in constant or shared
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memory (Sections 7.3.1–7.3.3) have a minimal impact on performance when a kernel has a

small grid size. In contrast, when more streams are used it allows for processing more kernels

with large grid sizes that benefit from data reuse across threads.

Figure 7.4 also compares the CPU and GPU. The search throughput using npRBC-CPU

using 64 physical cores/threads are shown. The GPU with 64 streams achieves a throughput

of 35.87× over the multi-core CPU implementation, indicating that despite uneven work-

loads, the GPU significantly outperforms the CPU in terms of raw search throughput.

7.4.6 Comparison of GPU and CPU Success Rates

Section 7.4.5 compared the CPU and GPU throughput, which provides an incomplete

picture of the implications on search success rates. To address this, we execute the same

experiment as that in Section 7.4.4 (summarized in Figure 7.3) but using npRBC-CPU.

To highlight the differences in the success rates between the CPU and GPU, we subtract

the GPU from the CPU success rate to create difference heatmaps as shown in Figure 7.5.

Difference values GPU−CPU>0 imply that npRBC-GPU has a higher success rate than

npRBC-CPU, whereas GPU−CPU<0 implies the opposite. We illustrate three trends

from Figure 7.5 as follows.

1 The major parameter ranges where the CPU yields a greater average success rate than

the GPU occur when n = 20−25, d≤5, and m≤30. As described in Section 7.4.2.2, due to

GPU memory limitations for storing candidate seeds, the algorithm makes a local rather than

global decision as to whether a given seed should be added to the candidate set. Because

all possible candidate seeds are not in the set, the GPU algorithm is sometimes unable to

arrive at a global optimum — i.e., the correct seed is discarded when it should have been

retained and the wrong seed is selected instead. 2 The GPU has a much higher success rate

at higher levels of PUF noise (n) and drift (d) than the CPU which is at n=30−40 and d≥7

(the upper right triangle in Figure 7.5(a)). This to due to the high search throughput of the

GPU which is needed to find the correct seed within T=5 s. 3 The GPU authenticates at
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Figure 7.5: The same as that shown Figure 7.3, except that we show the difference in
successful search rates between npRBC-CPU and npRBC-GPU. Positive values indicate

that npRBC-GPU has a higher success rate than npRBC-CPU and negative values
indicate the opposite.

much higher levels of transmission error (m) as shown when d≥8 or m=40% in Figure 7.5(b).

Again, this is owing to the throughput advantage that the GPU has on searches with higher

workloads. Specifically, when d≥8, the GPU has a 85.43× greater search throughput than

the CPU.

Based on these results, it is clear that npRBC-GPU is superior to npRBC-CPU in

cases where there is greater PUF noise and/or transmission error.

7.5 Conclusion

We have presented Noisy Probabilistic Response-Based Cryptography on the GPU

(npRBC-GPU) which optimized the search process to correct error in PUF-generated seeds

and transmission noise. Despite several aspects of the algorithm being poorly suited for

GPU acceleration (e.g., register pressure/reduced occupancy, load imbalance due to uneven

workloads, and overhead from search termination), we show that on average npRBC-GPU
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enables much higher search success rates and enables communication at noise levels that are

completely intractable for the multi-core CPU. A broader implication of this work is that the

use of GPUs can expand the design space and use cases for security protocols; thus, future

work includes investigating other security protocols that can benefit from GPU acceleration.
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Chapter 8

Conclusion

This dissertation examines the challenges and innovations surrounding high-dimensional

searches, focusing on both Euclidean and Hamming spaces. As data continues to grow in

volume and complexity, traditional sequential search methods become increasingly inefficient

due to the curse of dimensionality. To address this, we propose multiple novel indexing

methods, computational optimizations, and parallel computing strategies to improve search

performance in high-dimensional spaces.

Two of the primary contributions of this research is the development of the Coordi-

nate Oblivious Similarity Search (COSS) and Multi-Space Tree with Incremen-

tal Construction (MiSTIC) methods. COSS introduced a metric-based indexing ap-

proach that reduces the reliance on coordinate values, making it particularly well-suited for

high-dimensional Euclidean spaces where traditional coordinate-based tree and grid-based

methods may perform poorly. MiSTIC further advanced this concept by combining metric-

based and coordinate-based indexing strategies, leading to increased efficiency and robustness

across different dataset characteristics. The experimental results demonstrate that these ap-

proaches significantly outperform existing state-of-the-art methods, particularly in scenarios

where high-dimensionality renders traditional indexing techniques ineffective.

Combination generation is an intrinsic component of searching for both similarity searches

and RBC. In our survey of combination generating methods we examine pioneering works

and adapt them for modern multi- and many-core hardware platforms. We select the best
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combination generating method for RBC and employ it in the works summarized in Chapters

6 and 7.

In addition to high-dimensional Euclidean searches and combination generation, this

dissertation also explores probabilistic searches in Hamming space, specifically for

applications in secure authentication and cryptographic key retrieval. Noisy Probabilis-

tic Response-Based Cryptography (npRBC-CPU) is introduced as an approach to

efficiently search for cryptographic keys in the presence of transmission errors and PUF

(Physical Unclonable Function) noise. Given the growing importance of security in the digi-

tal age, this work contributes to the development of more robust and efficient authentication

mechanisms that leverage probabilistic search strategies.

A major theme throughout this dissertation has been the role of parallel and GPU

computing in enhancing search efficiency. Modern GPUs provide immense computational

power, but their unique architecture requires careful algorithmic design to fully exploit their

capabilities. In this dissertation, we demonstrate how parallelism is leveraged not only for

accelerating similarity searches but also for cryptographic applications, where fast and effi-

cient key retrieval is critical. By optimizing the algorithm, including memory usage, reducing

computational overhead, and carefully managing GPU kernel executions, we achieved signifi-

cant speedups compared to CPU-based implementations in addition to other state-of-the-art

GPU methods.

The contributions of this dissertation have several implications for future research and

practical applications:

• Scalability for Large-Scale Data: As data continues to grow in both size and

dimensionality, the need for efficient search methods will only increase. The proposed

methods provide a scalable foundation for indexing and searching high-dimensional

data.

• Hybrid Indexing Strategies: The combination of metric-based and coordinate-

based indexing, as demonstrated in MiSTIC, presents a promising direction for im-
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proving search performance. Future work may explore dynamic indexing structures

that adapt to specific dataset characteristics, optimizing both search efficiency and

memory usage.

• Combination Generation for High-Throughput Applications: The categoriza-

tion and comparison of combination generating methods enable the selection of meth-

ods which match application scenarios. This increases the efficiency and throughput

across a wide range of applications which are reliant on combination generation.

• Security and Cryptographic Applications: The integration of high-speed search

algorithms with cryptographic authentication highlights new possibilities for securing

data in high-noise environments. Future research can explore ways to enhance security

while maintaining computational efficiency, particularly in the era of post-quantum

cryptography.

In conclusion, this dissertation contributes to the field of high-dimensional search algo-

rithms by proposing novel indexing techniques, optimizing for parallel architectures, and

paving the way for more efficient and secure search methodologies. By addressing key chal-

lenges in both Euclidean and Hamming space searches, this research provides a foundation

for future advancements in similarity searches and cybersecurity.
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[56] Maximilian Hofer and Christoph Böhm. Error Correction Coding for Physical Unclon-

able Functions. In Austrochip, Workshop on Microelectronics, 2010.

156



[57] Yun-Wu Huang, Ning Jing, Elke A Rundensteiner, et al. Spatial Joins using R-Trees:

Breadth-First Traversal with Global Optimizations. In VLDB, volume 97, pages 25–29.

Citeseer, 1997.

[58] Edwin H Jacox and Hanan Samet. Spatial Join Techniques. ACM Transactions on

Database Systems (TODS), 32(1):7, 2007.

[59] Hosagrahar V Jagadish, Beng Chin Ooi, Kian-Lee Tan, Cui Yu, and Rui Zhang. iDis-

tance: An Adaptive B+-tree Based Indexing Method for Nearest Neighbor Search.

ACM Transactions on Database Systems (TODS), 30(2):364–397, 2005.

[60] Xinyi Ji, Jiankuo Dong, Tonggui Deng, Pinchang Zhang, Jiafeng Hua, and Fu Xiao.

HI-Kyber: A Novel High-Performance Implementation Scheme of Kyber Based on

GPU. IEEE Transactions on Parallel and Distributed Systems, 2024.
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