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Abstract—Performing range queries is prohibitively expensive
as the dimensionality of the data increases. Indexing data struc-
tures reduce the time complexity of these searches by eliminating
superfluous distance calculations. The state-of-the-art utilizes the
GPU due to its high distance calculation throughput as compared
to multi-core CPUs. Previous state-of-the-art indexes fall into
two categories: metric- and coordinate-based indexes, both of
which partition the space using different approaches. The indexes
partition the space to generate a set of candidate points for a given
query which are later refined by distance calculations. Popular
metric-based indexes partition the data based on distances to
reference points, where the placement of the reference points
determines the partitioning of the data space but the effectiveness
depends on the distribution of the data. In high-dimensions,
coordinate-based indexes typically partition the data based on
a subset of the coordinate dimensions. Regardless of the index
type there is a tradeoff between index search overhead and the
number of distance calculations, where increasing the number
of partitions will increase the search overhead but will decrease
the number of distance calculations computed. In this paper,
we propose Multi-Space Tree with Incremental Construction
(MISTIC), a blended approach which uses both metric-based
and coordinate-based partitioning strategies coupled with incre-
mental index construction. We evaluate MISTIC on 5 real-world
datasets and compare performance to both a state-of-the-art
metric-based index, COSS, and a state-of-the-art coordinate-
based index, GDS-JOIN. We find that MISTIC outperforms the
state-of-the-art methods with an average speedup of 2.53× over
COSS and 2.73× over GDS-JOIN.

I. INTRODUCTION

Advances in science and technology are producing quanti-
ties of data that have surpassed our analysis capabilities [1].
Range queries are an important tool that data scientists use to
process large volumes of data, as they answer a fundamental
question: Which objects in a dataset are similar to my query
object(s)? However, range queries are computationally expen-
sive [2], [3], and so reducing the cost of this operation is key
for extracting information from large datasets.
Indexing Multi-dimensional Data Points: Indexes are data
structures that store the dataset (D) and partition the data
space. The index is then searched which produces a candidate
set of points that may be within the search distance (ϵ), this
candidate set is then refined using distance calculations. This
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is the search-and-refine strategy and is used for efficiently
querying large datasets [4]–[6].

Increasing data dimensionality necessitates a corresponding
increase in the search distance because the data space grows
exponentially with dimensionality [7]. For a uniformly dis-
tributed dataset of a fixed size, an increase in the dimension-
ality will result in an exponentially larger separation between
points, thus the search distance must be increased to find
nearby points. This problem with high-dimensional spaces has
been termed the Curse of Dimensionality [8], where an index
may be completely ineffective at pruning searches and degrade
into a brute force search (i.e., all of D will need to be examined
for a given search).
Coordinate- vs. Metric-based Indexes: Coordinate-based
indexes directly use the coordinates of each point in a dataset
for partitioning (e.g., a canonical index is a kd-tree [9]). Using
the kd-tree as an example, as the search distance increases,
an increasing number of partitions in the tree will need to be
examined, and in the extreme case, the entire kd-tree will need
to be searched, thus degrading into a brute force search. To
address this problem, a metric-based indexing strategy should
be used instead [4], [5], [10].

A metric-based approach uses a contractive mapping func-
tion to embed the dataset into a lower dimensional space [10].
For a metric-based index, the contractive mapping uses dis-
tances from points in a dataset to a set of reference points.
These distances are the new coordinates in the mapped space.
Contractive mapping guarantees that the distances between
points in the dataset only decrease so all points within the
search radius are obtained and there is no accuracy loss.

Metric-based indexes maintain effectiveness as the distance
threshold increases because each coordinate in the mapped
space uses all of the coordinate information in the original
data space. This creates more partitions which still allow
for pruning the search in instances where coordinate-based
methods degrade to brute force.
GPU-Acceleration and Distance Calculations: The total
work computed is proportional to the search distance (ϵ).
Also, increasing the data dimensionality will increase the cost
of each individual distance calculation. Higher cost distance
calculations incentivize more aggressive index partitioning
tailored to each query. To this end, we propose an index with



ϵ-width partitions where the index construction cost is offset
by a substantial increase in performance by decreasing the
number of distance calculations. In terms of peak performance,
GPU hardware has exceeded the capacity of multi-core CPUs.
Range queries are an excellent algorithm for GPU acceleration
for the following reasons: (i) the algorithm is throughput-
oriented, as we are interested in computing a batch of range
queries; (ii) each query point can be computed independently
by one or more threads, although this leads to other issues
regarding the Single Instruction Multiple Thread (SIMT) ar-
chitecture; and, (iii) the GPU has superior distance calculation
throughput compared to the CPU. For these reasons, with the
exception of small workloads, the GPU outperforms multi-core
CPU range query algorithms [11]–[13].
Drawbacks and Contributions: We outline several draw-
backs of prior work in this area (D1-3):
D1 There is a vast quantity of work on the CPU outlining

efficient indexes but many of those structures, particularly
trees, do not perform well on the GPU.

D2 Due to the curse of dimensionality problem outlined
above, some areas of research have instead focused their
attention on approximate range queries [14], [15], which
avoids many of the problems associated with searching
high dimensional datasets. However, they do not return
an exact result, which is often required in scientific and
engineering domains.

D3 Previous indexes have used either a metric- or coordinate-
based approach, leading to indexes tailored to dataset
characteristics which reduce the overall robustness of the
methods.

We address the drawbacks with contributions C1-6:
C1 We propose a novel multi-space index, the Multi-Space

Tree with Incremental Construction (MISTIC), which
combines metric- and coordinate-based approaches which
are more robust than using a single indexing type.

C2 The index uses incremental construction to increase the
pruning efficiency of the index when coupled with a
heuristic for determining the effectiveness of candidate
partitions.

C3 We propose a new reference point placement strategy that
exploits dataset characteristics, yielding good partitioning.

C4 The index exploits several facets of GPU architecture
including good locality and caching behavior and uses
instruction level parallelism (ILP) to hide accesses to
global memory.

C5 We compare MISTIC to one metric- and one coordinate-
based GPU reference implementation on five real-world
datasets. We show that MISTIC is robust to different
dataset characteristics and consistently outperforms the
state-of-the-art methods COSS and GDS-JOIN with a
speedup of 2.53× and 2.73×, respectively.

C6 Contrary to other work, we find that minimizing distance
calculations does not necessarily lead to the best perfor-
mance, rather load balancing may be more important.

This paper is organized as follows: Section II outlines
the problem statement and related work. Section III presents

MISTIC and associated optimizations. Section IV presents the
experimental evaluation. Lastly, Section V concludes the work.

II. BACKGROUND

A. Problem Statement

We define a dataset, D, which contains |D| points (or
feature vectors), where each point has n dimensions. Each
point is denoted as xi ∈ D where i = 1, 2, . . . , |D|. Each
point, xi, is defined by a set of coordinate values in n
dimensions denoted as {x1

i , x
2
i , . . . , x

n
i }. A range query search

finds all of the xi ∈ D which are within a distance threshold,
ϵ, of a query point.

In a self-join operation all of the data points in D are
compared to each other. The operation returns {q1, q2, . . . , qi},
where qi contains the points in D which are within ϵ of xi.
The total number of returned points, |Q| = ∑|D|

i=1 |qi|, is most
often greater than |D| such that the memory required to store
the results from a self-join query exceeds the memory capacity
of a GPU, requiring batched computations where intermittent
results are transferred back to the host. In the case that D
also exceeds the memory capacity of a GPU, the batched
computations will only transfer a partition of D which is
required for that batch of computations. This enables the self-
join to be computed on the GPU regardless of |Q| and |D|
and the global memory capacity of a particular GPU model.

We define the Euclidean distance between two points, a and
b as dist(a, b) =

√∑n
j=1(a

j − bj)2 and we add a result to the
result set when dist(a, b) ≤ ϵ. We use the Euclidean distance
because it is the standard distance metric that is employed in
the literature [11]–[13], [16].

B. Index Supported Range Queries

A distance similarity self-join is straightforward to im-
plement using a nested loop, and when including the di-
mensionality of the data, n, it has a time complexity of
O(n · |D|2). For even moderately sized datasets, the quadratic
time complexity becomes an intractable problem, particularly
in high dimensions [8]. To improve performance, indexing
methods have been developed to reduce the number of distance
calculations needed at the cost of preprocessing overhead [17].
These methods prune the search space so that points only
calculate the distance to a subset of other points that are nearby
in the data space. This allows range queries to be performed
on larger datasets by reducing the total computational cost.

Most indexes use either a grid or a tree structure to store
the partitions of the index [8], [12], [18]. Trees create a
hierarchical structure where nodes in the tree are decomposed
into smaller subsequent nodes. In contrast, a grid typically
partitions data using axis-aligned regions [6], [19], [20]. Both
trees and grids can be data-agnostic, where the index is
constructed statically without using information about the data
points (i.e., only using the bounding volume), or they can be
data-aware and use the data points during index construction,
as exemplified by a kd-tree [9].
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Fig. 1. (a) An example of a metric-based index (similar to COSS [12])
partitioning a two-dimensional space with two reference points R1, and R2.
(b) An example of partitioning with a grid (similar to GDS-JOIN [19]) in
two dimensions where each of the dimensions are used for indexing. Both
methods use the triangle inequality to exclude points in non-adjacent ϵ-width
partitions from the search.

As shown in Figure 1(a), metric-based indexes (also referred
to as distance-space, pivot-point, or coordinate-oblivious in-
dexes), use a set of points in the same space as the data as ref-
erences for partitioning the dataset [5], [18], [21]. These meth-
ods tend to have better performance than coordinate-based
indexes in high-dimensional spaces because they incorporate
every coordinate into a single mapped dimension. Metric-
based indexes create indexing structures on a transformed
space [8]. Pruning the search occurs in this transformed space
but the distance calculations occur in the original data space.
While metric-based indexes have proven to be effective in
high-dimensional spaces, their additional complexity leads
to higher overheads that make them less attractive for low
dimensional searches [12].

The time complexity of range queries using an index (such
as an R*-tree, kd-tree, or MiSTIC) is an open problem. The
number of distance calculations for the self-join operation has
an upper bound of O(|D|2) and a lower bound of O(|D|).
Because the time complexity is a function of the search radius,
ϵ, and is unconstrained, it is possible that all points will need
to be compared to each other. There has been some discussion
in the literature regarding practical values of the search radius
and the lack of a more robust complexity analysis [22], [23].

C. State-of-the-art & Reference Implementations

We outline the range query algorithms from the literature
that we will compare with MISTIC in Section IV. As de-
scribed in Section I, recent advances in GPU hardware have
surpassed the capabilities of multi-core CPUs and so range
queries are best carried out on the GPU. Consequently, we
do not compare to any multi-core CPU algorithms, as they
are typically only advantageous on small workloads for which
GPU acceleration is unwarranted as illustrated by previous
work [13].

We compare our work to COSS [12] and GDS-JOIN [24]
which are GPU-accelerated range query algorithms that use
metric- and coordinate-based indexes, respectively. We sum-
marize the algorithms as follows and note that the authors
have made their code publicly available such that we can

make a comparison to their work1. We also compare to a
highly optimized brute force implementation, BRUTE, which
is a baseline for comparison.
GDS-JOIN performs range queries using the GPU [11], [19],
[24]. It constructs a compact coordinate-based grid index on
the data as shown in Figure 1(b). The algorithm includes
several optimizations, such as reordering the sequence in
which query points are processed to limit load imbalance
within warps2. It indexes the data in r < n dimensions to reach
a trade-off between index search overhead and the number
of points that need to be refined using distance calculations.
The distance calculation kernel takes advantage of the GPU’s
instruction level parallelism to hide global memory access
latency [25]. We compare MISTIC to GDS-JOIN as it is a
state-of-the-art coordinate-based index and is therefore suitable
for different dataset properties than metric-based indexes.
COSS or Coordinate-Oblivious Index for Similarity Searches,
is a metric-based index, designed for GPU acceleration and
partitions the space as shown in Figure 1(a). The index design
was motivated by the drawbacks of coordinate-based grid
indexes to be better for high-dimensional range queries [12].
BRUTE is a brute-force implementation we created for com-
parison which is highly optimized to use coalesced memory
access patterns, good locality to increase cache hits, and re-
orders the dimensions of the data based on variance to increase
the efficiency of short circuiting the distance calculations
(which has a substantial impact on brute-force algorithms).
BRUTE lacks index construction overhead allowing it to out-
perform indexing methods on small datasets.

D. Limitations of the State-of-the-Art

We show in Section III that MISTIC addresses several
limitations of the state-of-the-art methods, which include:
• COSS and GDS-JOIN search the index to find non-empty

partitions on the GPU using binary searches instead of using
tree traversals. A drawback of this is that a single binary
search has to perform log2(|G|) accesses to global memory,
where |G| is the number of non-empty partitions in the index
(empty space is not indexed to limit global memory usage).
In contrast, a tree traversal aborts early when children do
not exist, which typically results in fewer accesses to global
memory compared to binary searches.

• The reference point placement in COSS and the dimen-
sion selection in GDS-JOIN determines how the partitions
are generated; however, the strategies are static. MISTIC
addresses this limitation by using incremental index con-
struction to examine several sets of candidate partitions that
when combined together produce an efficient index structure
that prunes the search better than a static method.

• Metric- and coordinate-based indexes have fundamentally
different approaches with performance dependent on dif-

1https://github.com/bwd29/Coordinate-Oblivious-Similarity-Search/ and
https://github.com/mgowanlock/gpu self join/.

2Warps are groups of 32 threads on the GPU that execute the same
instruction in lockstep. Throughout this paper, we use CUDA terminology,
but the concepts are the same across GPUs from different vendors.



ferent dataset characteristics [24]. This necessitates the
selection of an indexing method based on dataset char-
acteristics, like intrinsic dimensionality, which are non-
trivial to discover. MISTIC merges the two approaches to
yield an algorithm which dynamically adapts to the dataset
without foreknowledge of dataset characteristics. This leads
to performance gains over both metric- and coordinate-based
indexing methods regardless of the dataset.

III. MISTIC

As described in Section II-D there are three goals for
MISTIC, firstly to replace a potently expensive binary search
with a tree traversal, secondly to allow for incremental con-
struction, and finally to combine both metric- and coordinate-
based partitioning strategies.

Our tree is constructed using a combination of the inter-
sections of ϵ-width shells centered on each reference point
(the metric-based method) and a grid of ϵ-width axis-aligned
cells (the coordinate-based method) which create partitions.
Each query requires a search over the index to identify nearby
partitions containing data points. There are two methods for
searching the partitions; (i) a binary search or (ii) a depth
first tree traversals.

A binary search (which is used in the reference implemen-
tations) can be used on the last layer of the tree and requires
log2(|G|) memory accesses [12], where |G| is the number of
non-empty index locations (also the size of the last layer of the
tree). The worst case for a binary search is if the searched-for
partition is empty and therefore not in the array of non-empty
partitions, as this requires a full search of the array.

A depth first tree traversal will have a maximum of r
memory accesses into the data structure, where r is the
number of layers of the tree representing partitions which are
either metric- or coordinate-based. The best case for a tree
traversal is if the searched-for partition is empty because the
search terminates when a branch of the tree has no partitions.
This is the opposite of the binary search and results in the
tree traversals performing fewer memory access when there
are more empty partitions than non-empty. Additionally, tree
traversals require fewer memory accesses as compared to a
binary search when log2(|G|) > r which occurs when the
index partitions the data effectively (i.e., the data is separated
into numerous partitions which yields good pruning). The
number of non-empty partitions of ϵ-width is dependent on
the ϵ used in the search, so large ϵ values result in fewer
partitions and may therefore be more efficient using binary
searches.

In Figure 1, an example of how MISTIC partitions a
two-dimensional coordinate space is shown. The non-empty
partitions that are created by the overlapping shells from the
reference points or the non-empty cells in the grid become
leaves on the tree. In high dimensional space the number
of partitions will increase to such a level that it becomes
intractable to store each partition, therefore only the non-empty
partitions are used in the last layer of the tree (as shown by
Lr in Figure 2). The non-terminal layers of the tree keep track

of the empty shells generated by that layer’s reference point,
but those nodes on the tree do not have any children nodes,
which allows for depth first searches to terminate early.

As ϵ increases, the width of the shells and cells also
increase resulting in fewer and larger partitions. While a high
dimensional space will have more partitions for a given ϵ, in
order to have a practical query the ϵ value will have to increase
as the dimensionality increases. This leads to a small subset
of partitions which contain the majority of the dataset. This is
offset by effective partitioning of the data using a combination
of metric- and coordinate-based partitioning strategies.

A. Tree Structure

We outline the tree structure of MISTIC which contains
both metric-based partitions created with reference points and
coordinate-based partitions created by partitioning dimensions
in the coordinate space (see Figure 1). The tree construction
is performed on the CPU while the final data structure is
transferred to the GPU for searching and distance calculations.
First Layer – Figure 2 shows the structure of an example tree
with r reference points/indexed dimensions. The tree has one
layer, L, for every reference point or indexed dimension. The
first layer of the tree, L1, is constructed by first calculating the
maximum distance from the first reference point to all of the
points or the maximum coordinate value of all of the points
in the data. This maximum value is used to find the total
number of possible partitions for that layer, b1, by dividing
the maximum value by the distance threshold ϵ used in the
search. An array of size b1 is then allocated. The layer L1

is then populated with an incrementing counter and zeroes
to represent non-empty and empty partitions, respectively. A
partition is non-empty if the distance from a point to the
reference point associated with L1 falls within the range of a
partition or if the coordinate values of a point for an indexed
dimension falls within that range. For the first layer, the index
of a partition in the array is the distance from the reference
point or the coordinate value divided by ϵ. This is not true for
all subsequent layers. b′1 is the number of non-empty partitions
in L1, and is the sum of the array L1 and b′1 ≤ b1 since there
cannot be more non-empty partitions than the total number of
potential partitions.

The values in layers L1 through Lr−1 represent the current
non-empty partition count such that the value in Lx−1 at a
non-empty index will point into the next layer Lx, where x
is the layer number. The value does not directly correspond
to the index in the next layer but is rather a multiple of the
range of partitions for the reference point/indexed dimension
associated with the next layer.
Middle Layers – Subsequent layers after L1 are generated
using the previous layer’s values for bx and b′x. Lx allocates
b′x−1 · bx partitions. The idea is to have a section of Lx which
has bx partitions for each non-empty partition in the previous
layer Lx−1. To populate Lx, each point is compared to the
reference point associated with Lx, and this will yield the
partition number that will be non-empty based on the previous
layer’s partition for that point. A point in partition y in the
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Fig. 2. Tree indexing example, where L is the tree structure with r layers/reference points. bx is the maximum partition range in that layer, b′x is the number
of non-empty partitions where x is the layer number. P is the point array and |D| is the number of points in the dataset.

previous layer Lx−1 and in partition z of layer Lx will be
in the index y · bx + z. This index will be switched to the
current non-empty partition count from zero if no other point
was found in that partition previously, otherwise the partition
will have already been set, and no update is required.
Final Layer – The last layer of the tree, Lr, is unique as it
contains the counts of how many points are in each partition
of the final layer. The layer is constructed similarly to the
previous layer but instead of only noting if the partition is
non-empty, a count is incremented in that partition every time
a point is located there, and all subsequent partitions are also
incremented. This creates a mapping from Lr to P where each
value in Lr points to a starting location in P which contains
the first point in that non-empty partition. The points in P
which belong to that partition are found by accessing the next
starting location in Lr which denotes where the next partition
begins. The final partition in layer Lr will have a maximum
range |D| which corresponds to the size of the dataset D, and
will be the maximum index of array P .

1) Partitioning Strategy: The placement of the reference
points (metric-based layers) and the selected dimensions for
indexing (coordinate-based layers) has a significant impact
on the performance of the algorithm. However, finding the
optimal reference point placement or selection of dimensions
to index that minimize the total number of distance calcula-
tions, is intractable. Many attempts have been made to try to
model reference point placement strategies [5], [26]–[28] and
determine which dimensions to index [24] but because of the
complexity of the problem and the dependency on the data
distribution there is no single best solution. MISTIC chooses
metric- or coordinate-partitions using a partitioning strategy
and evaluates them using a heuristic. Selecting reference points
and indexed dimensions to consider for tree construction is
carried out with three different partitioning strategies (PS):
PS1: We give the intuition of an approach that examines

the variance of points within partitions. Consider that the
greater the variance, the better pruning a reference point should
have in general because the points will be separated into
more partitions which reduces the total number of distance
calculations. To this end, we select initial reference points from
a random distribution of values to create a reference point
set, R′, containing q reference points R1, R2, . . . , Rq . The
initial set of randomly generated reference points R′ are then
evaluated using a sample of the data set to find the variance
in the distances between R′ and a subset of data points, C

or δ = S2 =

∑a=|C|
a=1 (dist(R′

a, Ca)−X)2

|C| − 1
, where X is the

mean of distances between R′
a and all points in C.

PS2: The reference points are generated using the strategy
outlined in previous work [12] which places the reference
points around the outside of the data. This is effective at
reducing partitions that are adjacent in the index but are
spatially distant in the original coordinate-space.

PS3: We select the dimension to index for the coordinate-
based partitions based on the variance of each dimension.
Previous work has shown that the dimensions with the highest
variance are the best dimensions to construct an index [11],
[19]. We only evaluate the r = 6 highest variance dimensions
for each layer to reduce the amount of work needed for index
construction. This corresponds to the dimensions used for
indexing in the reference implementation, GDS-JOIN.

Regardless of the strategy used, in the best case the points
will be evenly spread throughout the partitions associated with
R′

x and in the worst case they will be distributed into only a
few partitions. The variance of R′

x with respect to C is a
good indication of how clustered the points will be into the
partitions, with higher variance correlated with more evenly
distributed points.



Algorithm 1 Incremental tree construction.
1: procedure TREECONSTRUCTION(D, ϵ, R′, r)
2: for i ∈ {1, 2, . . . , r − 1, r} do
3: for j ∈ {1, 2, . . . , |R′| − 1, |R′|} do
4: M ← ParV alue(R′

j , D)
5: bi ← ⌈(max(M)/ϵ)⌉ · b′i−1
6: for k ∈ {1, 2, . . . , |D| − 1, |D|} do
7: ParNum[j, k] ← ⌊(M [j, k]/ϵ)⌋
8: Ofs ← (Par[i, ParOfs[i− 1, k]]− 1) · bi
9: ParOfs[i, k] ← Ofs+ ParNumbers[j, k]

10: if ParCnts[i, ParOfs[j, k]] = 0 then
11: b′i ← b′i + 1

12: ParCnts[i, ParOfs] ← ParCnts[i, ParOfs] + 1

13: Heuristic[j] ← CalcHeuristic(ParCnts)

14: Ri ← R′[minimum(Heuristic)]
15: Count ← 0
16: for j ∈ {1, 2, . . . , bi − 1, bi} do
17: if ParCnts[i, j] ̸= 0 then
18: Count ← Count+ 1
19: Li[j] ← Count
20: else
21: Li[j] ← 0

22: Sum ← 0
23: for i ∈ {1, 2, . . . , br − 1, br} do
24: Sum ← Sum+ Lr[i]
25: Lr[i] ← Sum

26: Return L

B. Incremental Tree Construction

To construct the tree index incrementally as described by
Algorithm 1, the procedure takes as input the dataset (D), the
distance threshold (ϵ), an array of reference points or dimen-
sions to index R′ (generated as described in Section III-A1)
and the number of layers of the tree (r), as shown on line 1.
The algorithm constructs each layer of the tree on the CPU
starting with layer L1 and proceeding to layer Lr in a loop
starting on line 2. For each layer of the tree, each potential
reference point or indexed dimension in R′ needs to generate
a layer Li (line 3). To generate a layer for a given reference
point in R′ first the distance to all the points in D is used to
generate a distance vector M with the function ParV alue()
on line 4. To generate a layer for an indexed dimension in R′,
ParV alue() will return the coordinate value for each point
which matches the dimension being indexed. The total number
of partitions for that layer bi for a given reference point R′

j

are calculated by finding the maximum value in M , dividing
it by ϵ, and multiplying it by the previous layer’s non-empty
bins, b′i−1 (line 5).

Each potential layer needs to iterate through every point in
D to find: (i) the partition number, ParNum, from the floor
of the distance from Dk to R′

j divided by ϵ (line 7); (ii) the
offsets, Ofs (line 8), of the point from the beginning of Li

which is found from the point’s previous partition in Li−1

multiplied by the bi value calculated on line 5; (iii) the offset
into the layer for each partition, ParOfs, is the previously
calculated Ofs added to the ParNum on line 9; (iv) the
partition counters, ParCnts, which tracks how many points
are in each partition for a given layer Li. If a partition goes
from empty to non-empty (line 10), b′i is incremented to track
the non-empty partitions for Li (line 11).

Algorithm 2 Searching the tree.
1: procedure TREESEARCH(A, B, r, I)
2: if I[A[0]] = 0 then
3: return False
4: BTotal ← B[0]
5: Loc ← A[1] +B[0] + (I[A[0]]− 1)
6: for i ∈ {1, 2, . . . , r − 1} do
7: if I[Loc] = 0 then
8: return False
9: BTotal ← BTotal +B[i]

10: Loc ← BTotal + (I[Loc]− 1) +A[i+ 1]

11: if I[Loc] = I[Loc− 1] then
12: return False
13: return (I[Loc− 1], I[Loc])

After each point has been assigned a partition, a heuristic for
that potential layer is calculated using ParCnts on line 13.
The best layer for Li is selected based on which potential
reference points or indexed dimension in R′ generated the
lowest heuristic value (line 14). Once Ri has been selected,
layer Li is constructed as outlined in Section III-A (lines 15 –
21). The final layer, Lr is a special case and needs to have a
running total to track the number of points in each partition
which are found by keeping a running total of the values in
the partitions of Li when i = r. This replaces the values in
the array with the running total as shown on lines 22 – 25.

Parallel Incremental Construction – Constructing the tree
incrementally (see Algorithm 1) requires that each layer be
constructed |R′| times. While this increases the amount of
work needed to construct the tree, each layer of the tree
is dependent on the previous layer and the amount of par-
allelization is limited when statically constructing the tree.
When constructing the tree incrementally, each layer must
be evaluated for each potential reference point or indexed
dimension. This allows for parallelization such that a thread
is assigned to generate each potential layer on line 3. The
overhead from evaluating potential layers of the tree is mostly
hidden with concurrent construction, resulting in a negligible
increase in the overall construction time.

Heuristic for Incremental Construction – When construct-
ing the tree incrementally there needs to be a heuristic to
determine which potential layer will lead to the best perfor-
mance. Without a good heuristic, the tree may select a given
layer which may be effective on an individual basis, but not
when considering overlapping partitions with the other layers.
This would increase both the construction overhead and search
time while failing to offset these costs with increased distance
calculation pruning. We define STDDEV as the standard devia-

tion which is calculated as follows:
√∑br

i=0 |Lr[i]−X|2/|D|,
where X is the average number of points in each partition of
the layer, Lr. We select the layer that has the lowest standard
deviation to minimize the difference in the number of points
between partitions. We examined several heuristics but found
that STDDEV outperformed them, so we omit describing them.



C. Searching the Tree

While tree construction occurs on the CPU, searching the
tree occurs on the GPU. The search requires four inputs (line 1
in Algorithm 2). A, B, r, and I refer to an array indicating a
partition to find, an array of the size of each layer of the
tree, the number of layers, and an array that stores all of
the tree layers in adjacent memory as L1, L2, . . . , Lr−1, Lr,
respectively. A, has r values each representing an index in I
which corresponds to a partition adjacent to the partition of
the point that is initiating the search. For each layer of the
tree as depicted in Figure 2, the search finds if the value of
I corresponding to partition indicated by A that matches the
layer to be searched is zero, which indicates an empty partition
and terminates the search.

In Algorithm 2, the search starts at the first layer on
line 2 which evaluates if the adjacent partition is empty and
terminates the search if true. If not, then the location of the
adjacent partition for the next layer is calculated on line 5.
The algorithm also starts a counter for the total partition sizes
BTotal on line 4 which will be used for determining the offset
into array I .

On line 6 the algorithm enters into a loop to evaluate if
the adjacent partition continues to be non-empty (line 7) then
calculates the offset (line 9) and location (line 10) for the
next layer of the tree. If the adjacent partition is found to be
empty for any layer (including the last on line 11 which is
an exception because Lr stores the location of points in P ,
so an empty partition is indicated by no change in the value
compared to the previous index) then the search terminates,
otherwise it returns the lower and upper bound of points within
the adjacent partition on line 13. These bounds correspond
to points in the array P (as shown in Figure 2) and define
the candidates for the query point for that particular adjacent
partition indicated by A.
Binary Searches – Instead of using tree traversals, MISTIC
can be configured to use a binary search to locate non-
empty partitions in the final layer of the tree. Since the last
layer of the tree is sorted we represent it with a linear (one
dimensional) ID which a binary search uses to find a specific
non-empty partition. As stated in Section II-D, binary searches
have drawbacks compared to tree traversals, especially while
searching a large number of non-empty partitions. We inves-
tigate MISTIC with both search methods and evaluate their
impact on performance.

D. Other Optimizations

While the main contribution of this paper is our efficient
index, MISTIC, we outline several other optimizations that
are needed to ensure that we do not overflow the result set
buffer on the GPU, and perform efficient distance calculations.

1) Batching the Computations: The distance calculation
kernels need to be batched because of GPU memory limita-
tions. Most result sets, Q, from a self-join operation on a large
dataset will need more memory than is available on the GPU
to store |Q| pairs of points. The number of batches needed
depends on the number of points in the dataset and ϵ, with

a larger number of points (or ϵ) requiring a larger number of
batches to compute. The limiting factor for how many points
are computed in each batch is the global memory needed to
store the result set for each batch. Between each batch/kernel
invocation, the result set (Q) is sorted and transferred to the
host, freeing space for the next batch. The global memory on
the GPU is allocated once and data is transferred to the host
using a pre-pinned memory buffer to reduce the overhead due
to data transfers over PCIe.

2) Instruction Level Parallelism and Short Circuiting: The
kernel utilizes instruction level parallelism (ILP) for higher
computation throughput by hiding accesses to global memory.
This is done by unrolling iterations of the loop which com-
putes the distances between points. The number of iterations
unrolled limits the amount of ILP that is possible. We experi-
mentally determined that unrolling by four loop iterations had
the best performance with MISTIC on the platform and so
the parameter is fixed to four in the experimental evaluation.

In addition to using ILP for computing distance calculations,
we also allow for the distance calculations to short circuit
and abort early. We use a variable to keep a running total
of the distance accumulated, and with ILP this total gets
updated every four dimensions. At each update we terminate
the distance computation if it has exceeded ϵ. This reduces
the amount of work needed to compute distance calculations
between points that are far away from each other.

IV. EXPERIMENTAL EVALUATION

A. Evaluation Platform

Experiments are executed on a platform with
2× AMD EPYC 7542 CPUs (64 total physical cores)
clocked at 2.9 GHz with 512 GiB of main memory and a
40 GiB NVIDIA A100 GPU. The code uses CUDA v.11 and
is compiled with the O3 optimization flag. Multi-threaded
CPU code is parallelized using the OpenMP library.

B. Implementation Configurations

In the results, we report the response time and variant
metrics, such as speedup. The total response time (or end-
to-end time) excludes loading the dataset into main memory
as this is the same for all experiments, and includes all data
transfers to/from the GPU, and host-side overheads such as
storing and organizing the final result set in main memory.
Each method uses batching on the GPU to allow for result
sets that exceed the GPU’s memory capacity, which is a
necessity for moderately large datasets. All indexing methods
are configured to use r = 6 reference points/indexed dimen-
sions. While this will not always be the optimal configuration
across all datasets, it allows for a fair comparison across all
methods. Similarly, prior work showed that indexing in r = 6
dimensions (for coordinate-based indexes) and using r = 6
reference points (for metric-based indexes) was found to yield
good performance on a range of workloads [12], [19], [24].
MISTIC: We use a kernel block size of 256 with 1024
blocks per kernel for 262,144 threads per kernel invocation.
MISTIC uses r = 6 layers, with 38 potential layers (16



TABLE I
THE FIVE REAL-WORLD DATASETS (NORMALIZED TO THE RANGE [0, 1])

THAT WE USE IN OUR EVALUATION WHERE THE DATA DIMENSIONALITY n,
INTRINSIC DIMENSIONALITY i (ROUNDED) AND DATASET SIZE |D| ARE

SHOWN ALONG WITH THE VALUES OF ϵ THAT CORRESPOND TO THE THREE
TARGET SELECTIVITY VALUES.

Dataset n i |D| Ss Sm Sl

Wave [29] 49 15 287,999 0.0054 0.00702 0.008358
MSD [30] 90 29 515,345 0.0076 0.00913 0.011334

Bigcross [31] 57 3 11,620,300 0.0131 0.01994 0.0281
SuSy [32] 18 9 5,000,000 0.01703 0.02078 0.025555

Higgs [32] 28 19 11,000,000 0.049186 0.05558 0.063117

reference points using PS1, 16 reference points using PS2

and 6 indexed dimensions using PS3) per layer as discussed
in Section III-A1. The code repository used for evaluation is
available to the public 3.
COSS: We experimentally found that a kernel block size of
1024 with 128 blocks per kernel launch (131,072 threads total)
with 2 concurrent GPU streams has the best performance.
GDS-JOIN: A kernel block size of 32 with a dynamic number
of blocks per launch with 3 concurrent GPU streams was found
to have the best performance on our platform.
BRUTE: We configured BRUTE to run with a kernel block
size of 256 with 512 blocks per kernel launch for a total of
131,072 threads per launch, which was found to have the best
performance on our platform.

C. Selection of the Search Distance ϵ

We will show how performance scales as a function of
the search distance (ϵ). To compare the performance between
datasets having different sizes and dimensions (|D| and n),
the typical convention is to use search distances that span
the same range of selectivity values across all datasets. The
selectivity, S, refers to the mean number of points found by all
searches carried out on a dataset. For the self-join this refers
to |D| searches, and so the selectivity S = (|Q| − |D|)/|D|,
where |Q| is the total number of results returned. In this paper,
we select three target (small, medium, and large) selectivity
values, corresponding to Ss = 28, Sm = 210, and Sl = 212,
respectively. These selectivity values span several orders of
magnitude and so they allow us to examine how the algorithms
scale with increasing search distance and thus workload.

Note that there is not an analytical method to calculate what
the search distance, ϵ, should be to yield the abovementioned
selectivity values because the real-world datasets do not fol-
low known data distributions (e.g., uniform, exponential, or
normal) and so we perform a search on all datasets to first
determine the ϵ values that correspond to each of the selectivity
values above. All of the ϵ values yield a selectivity that is
within 1% of the target selectivity values (Ss, Sm, and Sl)
and are given in Table I.

D. MISTIC Performance Analysis

MISTIC: Tree Construction – We examine the fraction
of time spent on tree construction for each selectivity level

3Code available at https://github.com/bwd29/self-join-MiSTIC

Ss Sm Sl
Selectivity Level

0

0.15

0.3

0.45

0.6

0.75

F
ra

ct
io

n
of

T
ot

al
T

im
e

Wave

MSD

Bigcross

SuSy

Higgs

Fig. 3. The fraction of the total response time spent constructing the tree
for each of the selectivity values Ss, Sm, and Sl across the five real-world
datasets for r = 6.

TABLE II
THE PARTITIONING STRATEGY (1-3) DYNAMICALLY SELECTED FOR EACH

LAYER OF MISTIC AS DESCRIBED IN SECTION III-A1 FOR THE FIVE
REAL-WORLD DATASETS AND EACH SELECTIVITY LEVEL.

Dataset Ss Sm Sl

L1 L2 L3 L4 L5 L6 L1 L2 L3 L4 L5 L6 L1 L2 L3 L4 L5 L6

Wave 2 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1
MSD 2 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1
Bigcross 3 2 1 1 1 1 3 2 1 1 1 1 3 2 1 1 1 1
SuSy 3 1 1 1 1 1 3 1 1 1 1 1 3 2 1 1 1 1
Higgs 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

in Figure 3. Tree construction overhead has a large impact
on performance on the smaller datasets and lower selectivity
levels which are correlated with lower total response times.
As the number of distance calculations increase with higher
selectivity levels and larger datasets, the tree construction time
fraction becomes negligible. Tree construction accounts for up
to 65% of the total time; however, we will show that MISTIC
maintains a competitive performance level despite the tree
construction overhead. Reference implementations COSS and
GDS-JOIN have negligible index construction overhead.

The partitioning strategies (PS) used for each layer of the
tree are given in Table II. Only L1 and L2 did not always select
our novel partitioning strategy, PS1. L1 uses the reference
point placement strategy also used by COSS (PS2) for Wave
and MSD while MISTIC uses PS3 (the PS used by GDS-
JOIN) on Bigcross and SuSy for L1. Additionally, there are 4
cases where PS2 is used for L2 and Higgs always uses PS1.
The partitioning of the first few layers has a larger impact on
overall performance than subsequent layers because of how
the heuristics select subsequent layers. Even though PS2 and
PS3 are rarely selected, they substantially improve MISTIC’s
performance. Forcing MISTIC to use a single PS reduces
performance regardless of which PS is used.
Heuristic Comparison for Construction – MISTIC is
evaluated using two different heuristics for incremental con-
struction to reduce total distance calculations as discussed
in Section III-B. The incremental construction evaluates 32
reference points for each layer as well as the 6 highest
variance dimensions and then selects which reference point
or dimension to use for that index layer based on which had
the minimum heuristic value. It should be noted that MISTIC
is a greedy algorithm and so the heuristics are not guaranteed
to find the global minima.



TABLE III
SPEEDUP OF USING THE STDDEV HEURISTIC OVER THE SUMSQRS

HEURISTIC, WHERE THE SPEEDUP IS THE TOTAL RESPONSE TIME OF
SUMSQRS OVER STDDEV.

Dataset Ss Sm Sl

Wave 0.96 1.08 1.10
MSD 0.86 1.05 1.86
Bigcross 19.64 13.10 9.34
SuSy 3.65 2.66 2.13
Higgs 1.02 0.96 0.98
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Fig. 4. The fraction of |D|2 distance calculations vs. selectivity values across
the five real-world datasets for r = 6.

In Figure 4, the fraction of |D|2 distance calculations (the
number of distance calculations required of a brute force
approach) needed by both heuristics is plotted for each dataset
and selectivity level. The number of distance calculations is
an estimate for the amount of work that will be performed on
the GPU; therefore, a lower number of distance calculations is
correlated with higher overall performance. For all selectivity
levels of the Wave dataset and the first two selectivity levels
of the MSD dataset, the SUMSQRS heuristic leads to fewer
distance calculations. For every other dataset and selectivity
level, the STDDEV heuristic results in fewer calculations. The
SUMSQRS method fails to create a large number of partitions
which yields poor performance particularly on the Bigcross
and SuSy datasets. This is supported by Table III where the
speedup of STDDEV over SUMSQRS is up to 19.64×.

The overall performance of MISTIC with each heuristic
is not solely based on the number of distance calculations
however, as observed in Table III where the speedup of
STDDEV over SUMSQRS exceeds 1 even while performing
more distance calculations on Sm and Sl of Wave and Sm

of MSD. This is due to the STDDEV heuristic resulting in
partitions which have similar number of points and therefore
yielding similar workloads for the GPU threads that will search
and refine the points in these partitions. On the GPU, if
the amount of work between threads is unbalanced then the
throughput of the device will be reduced due to the SIMT
architecture. This makes it imperative to have a balanced
workload and therefore an even distribution of points in the
partitions is ideal for achieving the best performance on the
GPU. STDDEV is a better heuristic than SUMSQRS because it
creates more partitions resulting in fewer distance calculations
and it distributes the points evenly across partitions resulting
in better load balancing.

TABLE IV
THE AVERAGE SPEEDUP ACROSS SELECTIVITY LEVELS OF PERFORMING

TREE TRAVERSALS SEARCHES OVER BINARY SEARCHES FOR EACH
DATASET, WHERE SPEEDUP IS THE RATIO OF THE RESPONSE TIME FOR

BINARY SEARCHES OVER TREE TRAVERSALS. THE AVERAGE NUMBER OF
NON-EMPTY PARTITIONS IS INCLUDED FOR ANALYSIS.

Dataset Speedup Partitions
Wave 1.05 2,152
MSD 1.02 5,537
Bigcross 1.04 21,057
SuSy 1.36 27,284
Higgs 0.96 902

TABLE V
THE AVERAGE SPEEDUP ACROSS SELECTIVITY LEVELS FOR MISTIC

OVER THE REFERENCE IMPLEMENTATIONS, WHERE SPEEDUP IS THE RATIO
OF RESPONSE TIME OF THE REFERENCE IMPLEMENTATION OVER MISTIC.

Dataset COSS GDS-JOIN BRUTE
Wave 1.17 1.43 1.02
MSD 1.17 1.70 1.36
Bigcross 2.65 1.84 5.74
SuSy 5.15 6.89 5.26
Higgs 2.52 1.78 2.36

MISTIC: Binary Search vs. Tree Traversal – In Sec-
tion III-C we describe the two possible methods for search-
ing the tree; tree traversals or binary searches. The average
speedup across the selectivity levels of the self-join using
MISTIC which uses the tree traversal described by Algo-
rithm 2 as compared to a binary search is described in
Table IV. The tree traversals are more efficient than the binary
searches when the number of non-empty partitions in the index
is higher due to the increased costs of binary searches as the
size of the array being searched increases. A secondary factor
in the efficiency of the searches is the ability of the tree traver-
sal to short-circuit and terminate before checking each layer
of the tree. This happens in datasets with over-dense regions
where there is a higher chance of adjacent partitions being
empty, as opposed to a more uniformly distributed dataset
where the non-empty partitions are more likely adjacent to
other non-empty partitions. We observe from Table IV that
SuSy has the greatest speedup using tree traversals while also
having the largest number of non-empty partitions on average
across the selectivity levels. Only Higgs is faster with binary
searches because it has few non-empty partitions.

E. Comparison to the Reference Implementations

Now that we have demonstrated key facets of the perfor-
mance of MISTIC we compare it to the reference implemen-
tations (COSS, GDS-JOIN, and BRUTE). Figure 5 shows the
total response time (s) vs. selectivity level across five real-
world datasets. The average speedup for Ss, Sm, and Sl for
MISTIC over the other implementations is given in Table V.
We observe that MISTIC has the lowest response time in
every instance except for Figure 5(a) where BRUTE has a
lower response time due to the index construction overhead
shown in Figure 3.
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Fig. 5. Response time as a function of the three selectivity values across the five real-world datasets for each reference implementation.
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the five real-world datasets for r = 6.
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selectivity values for the five real-world datasets.

Measuring Distance Calculations – In Figure 6, we plot the
fraction of |D|2 distance calculations that are performed for
MISTIC, COSS and GDS-JOIN (BRUTE is omitted because it
performs |D|2 calculations). The fraction of |D|2 calculations
represents the reduction of distance calculations due to the in-
dex as compared to BRUTE. Measuring the number of distance
calculations needed is a good representation of the amount
of work that each algorithm performs but does not directly
correspond to the response time. In Figure 6, we observe
that MISTIC performs more distance calculations than either
COSS or GDS-JOIN for the Wave and MSD datasets but
has a lower response time (Figure 5). This behavior is also
observed for the SuSy dataset at Sl where MISTIC performs
more calculations than GDS-JOIN but yields a speedup of
17.07× over GDS-JOIN.

We also observe in Figure 6 that the number of distance
calculations needed for the highest selectivity level on the

Higgs dataset approaches |D|2. This is the effect of the curse
of dimensionality, which is difficult to mitigate for these
selectivity levels, even for the metric-based index COSS.

Workload Balancing – The GPU uses a Single Instruction
Multiple Thread (SIMT) execution model which requires all
threads within a warp to execute operations in lockstep.
MISTIC assigns one thread to each point in the dataset;
therefore, threads belonging to separate partitions that are
assigned to the same warp may have load imbalance due to
differing numbers of comparisons between candidate points.
Therefore having a similar number of points assigned to each
partition improves workload balancing, and reduces the time
it takes for all threads in a warp to complete their distance
calculations. We hypothesize that one reason MISTIC is faster
than COSS and GDS-JOIN is because the variance of points
in each partition is lower for MISTIC than these reference
implementations. To examine load balancing, Figure 7 shows
the standard deviation of the number of points in each non-
empty partition. MISTIC has the lowest standard deviation,
and therefore the best load balancing and most even distri-
bution of work among threads. This is in part due to the
STDDEV heuristic used during incremental construction which
prioritizes this distribution of points among the partitions.
COSS has the highest standard deviation in every scenario
but as described in prior work [12], workload imbalance is
partially offset by assigning multiple threads to each point
and batching the computations based on the amount of work.

Selecting Between BRUTE and MISTIC– There are some
cases where MISTIC performs worse than the brute force
approach, BRUTE (Figure 5). This is due to index construction
overhead which requires a large fraction of the total time when
there at low selectivity levels and/or when |D| is small. BRUTE
has a time complexity of O(|D|2) which is penalized less by
smaller datasets. In these scenarios, the response times are low
and occur when GPU acceleration is unwarranted.

Why is MISTIC Faster? – As described above, MISTIC
sometimes performs more distance calculations than COSS
or GDS-JOIN, but is faster than those algorithms across all
datasets and selectivity levels. We summarize why MISTIC
is faster than the other approaches as follows: (i) MISTIC
uses tree traversals instead of binary searches to perform
index searches. (ii) The STDDEV heuristic leads MISTIC to
distribute the points evenly across the partitions, which results



in a more balanced workload and increased performance. (iii)
MISTIC is robust to data characteristics because of the blend-
ing of metric- and coordinate-based partitioning strategies.

V. CONCLUSION

MISTIC demonstrates that a blended approach to parti-
tioning yields a more robust index than either a metric- or
coordinate-based indexing method. Consequently, MISTIC
can be used instead of selecting a metric- or coordinate-
based index based on the dataset characteristics. We show that
MISTIC’s incremental construction substantially improves
performance when coupled with the STDDEV heuristic. Addi-
tionally, the novel reference point placement strategy improves
the pruning efficiency of MISTIC by intelligently placing
reference points to maximize the variance of the points in
the associated partitions. The experimental evaluation shows
that MISTIC is the best GPU index for range queries on large
high-dimensional datasets, with an average speedup over the
state-of-the art reference implementations of 2.53× and 2.73×
for COSS and GDS-JOIN, respectively.
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