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Abstract

Deriving high-quality light curves for asteroids and other periodic sources from survey data is challenging owing to
many factors, including the sparsely sampled observational record and diurnal aliasing, which is a signature imparted
into the periodic signal of a source that is a function of the observing schedule of ground-based telescopes. In this paper
we examine the utility of combining asteroid observational records from the Zwicky Transient Facility and the
Transiting Exoplanet Survey Satellite, which are the ground- and space-based facilities, respectively, to determine to
what degree the data from the space-based facility can suppress diurnal aliases. Furthermore, we examine several
optimizations that are used to derive the rotation periods of asteroids, which we then compare to the reported rotation
periods in the literature. Through this analysis we find that we can reliably derive the rotation periods for ~85% of our
sample of 222 objects that are also reported in the literature and that the remaining ~15% are difficult to reliably derive,
as many are asteroids that are insufficiently elongated, which produces a light curve with an insufficient amplitude and,
consequently, an incorrect rotation period. We also investigate a binary classification method that biases against
reporting incorrect rotation periods. We conclude the paper by assessing the utility of using other ground- or space-
based facilities as companion telescopes to the forthcoming Rubin Observatory.

Unified Astronomy Thesaurus concepts: Asteroids (72); Astroinformatics (78); Light curves (918); Small Solar

System bodies (1469); Sky surveys (1464)

Materials only available in the online version of record: machine-readable table

1. Introduction

There are several benefits of using either ground- or space-
based telescopic surveys to derive the physical properties of
astrophysical phenomena, and in this paper we examine the
physical properties of asteroids.

It is well-known that when deriving the period for periodic
sources ground-based observatories will impart a periodic signal
as a function of the diurnal cycle (J. T. VanderPlas 2018). These
aliases typically appear in a periodogram at frequencies that are
multiples of 1 day~'. In contrast, space-based observatories do
not suffer from diurnal aliases because they are not prevented
from observing at any time during the day.

The Transiting Exoplanet Survey Satellite (TESS) is a space-
based observatory with a primary mission to detect transiting
exoplanets (G. R. Ricker et al. 2015), where the telescope stares at
a field for a long duration. This telescope has observed intervening
asteroids within its field of view. TESS rarely encounters the same
asteroid between two pointings, which limits the temporal extent
for which a given object is observed. This time window directly
impacts the range of viable rotation periods for an asteroid. In
contrast, ground-based surveys are able to derive the rotation
periods of asteroids with long periods because they may observe
the asteroid numerous times over several years.

In summary, in the context of surveys, ground-based telescopes
are limited by diurnal observing schedules, and space-based
telescopes that stare at a field for long durations are only sensitive
to detecting asteroids with short rotation periods. By combining
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data sets from ground- and space-based observatories, there are
several potential benefits, including (i) decreasing the fraction of
objects that have a period solution at aliases, (ii) improving the
sensitivity to long rotation periods, and (iii) utilizing partial light-
curve data that are of little value on their own but could be used to
augment the observational records of other catalogs.

Based on the above motivation, in this paper we examine
two applications for combining data from ground- and space-
based observatories, which are summarized as follows:

1. To improve the overall fidelity of derived asteroid
rotation period solutions by comparing to the rotation
periods reported in the literature.

2. To examine the use of a companion telescope (either
ground or space based) to the Rubin Observatory to assess
how this companion may improve rotation period fidelity.

In the context of surveys, periodic sources often have light-
curve periods that are difficult to constrain because surveys
produce sparse photometry. The first application above is similar
to other papers in the literature that develop new methods that
either maximize the fraction of correctly assigned light-curve
periods in survey data or examine which methods should be
applied to a particular application (A. J. Drake et al. 2013;
M. J. Graham et al. 2013; M. Siiveges et al. 2015; R. J. Oelkers
et al. 2017; M. W. Coughlin et al. 2021; D. Kramer et al. 2023b).
The second application is motivated by assessing the impact that a
companion telescope to the Rubin Observatory would have on
improving solar system science.

The paper is organized as follows. Section 2 outlines the data
sets used in the paper. Section 3 describes the period-finding
algorithm used in the paper and associated parameters. It also
illustrates the baseline distribution of rotation periods across each
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Figure 1. The distribution of the number of observations for the objects in the (a) SS1, (b) TESSC1, and (¢) SSINTESSC1 data sets, limited to the n = 3168 objects
appearing in both SS1 and TESSC1. The bin width is 10 observations in each histogram.

Table 1
Summary of Data Sets and Properties
Number of
Data Set Name  Description Objects Number of Observations
SS1 The first SNAPS alert broker data release containing light-curve properties of asteroids derived 28,638 2,145,478
from ZTF (D. E. Trilling et al. 2023b).
TESSC1 Light-curve properties of asteroids derived from TESS (A. McNeill et al. 2023). 28,878 5,637,892
SSINTESSC1  The intersection of objects in SS1 and TESSC1. 3168 1,453,748

data set. Section 4 presents the proposed optimizations used to
maximize derived period fidelity as compared to the solutions in
the literature that are reported by the Light Curve Data Base
(LCDB). With a selection of optimizations established, Section 5
applies them to the full sample of objects that are found in both
Zwicky Transient Facility (ZTF) and TESS data sets. Section 6
assesses the utility of using other facilities to augment the
capabilities of the Rubin Observatory. Finally, Section 7
concludes the paper.

2. Data

Table 1 outlines the data sets used in this paper. SS1 and
TESSC1 are from ZTF (E. C. Bellm et al. 2019) and
TESS (G. R. Ricker et al. 2015), respectively. SSINTESSC1
contains only those objects that are found in both SS1 and
TESSCI.

As will be shown, we compare our period solutions to
LCDB (B. D. Warner et al. 2009). However, there are only 222
objects that are in SSINTESSC1 and LCDB (hereafter denoted
as LCDBNSS1NTESSC1). While there are more objects in
SSINTESSC1 (3168), we have no baseline for comparison for
all of these objects, so we use the LCLDBNSS1INTESSC1 data
set for several of our comparisons.

We use a version of LCDB from 2020 that excludes TESS
data deposited by A. Pil et al. (2020) and A. McNeill et al.
(2023) such that when comparing our derived period solutions
to LCDB we do not accidentally compare to some of our own
period solutions as derived by our prior work in A. McNeill
et al. (2023). Otherwise, we may inadvertently increase the
total fraction of correctly derived period solutions.

2.1. Data Sets: SS1 and TESSC1

The SNAPShotl (SS1) data set (D. E. Trilling et al. 2023b)
contains ZTF (E. C. Bellm et al. 2019) observations of small
bodies, with the vast majority being main-belt asteroids. In the
SS1 data release, only those objects with >51 observations have
an assigned derived rotation period. This observation threshold

was selected because a sufficient number of observations are
needed to reliably derive a rotation period. Of those objects with
>51 observations, there are a total of 2,145,478 observations
across 28,638 objects. A real/bogus score (D. A. Duev et al.
2019) was used to discard observations with high uncertainties
(e.g., nonpoint sources and observations with poor subtractions
were removed using this method). For more information on data
processing see D. E. Trilling et al. (2023b).

TESSC1 contains 28,878 objects with a total of 5,637,892
observations, where the data were o clipped to remove outliers in
the observational record for each object (for more details on data
processing see A. McNeill et al. 2023). Unlike the ZTF data in
SS1, light curves were derived for all objects regardless of the
number of observations (A. McNeill et al. 2023). Instead of using
a threshold of 51 observations for SS1, A. McNeill et al. (2023)
assigned a confidence score to each object that described the
probability that the derived rotation period is correct.

Figures 1(a) and (b) report the distribution of the number of
observations for each object in the SS1 and TESSC1 data sets,
respectively, limited to those objects that are common to both
data sets. Because the goal of this paper is to combine the two
data sets together, we do not enforce a lower limit number of
observations required of each object in the TESSC1 data set, as
even a few observations in TESSC1 for an object may help
supplement the observational record for SS1. However, as
shown in Figure 1(b), the mean number of observations per
object in TESSC1 is p=2382.8, and so there are a small
fraction of objects that have a few observations.

2.2. Combining SS1 and TESSCI

We combine the two data records for SS1 and TESSC1 by
taking the intersection of the objects in both data sets. This yields a
total of n=3168 objects, and as described above, we denote this
data set as SSINTESSC1. We calculate H magnitude for each
observation in SS1 by correcting for phase and distance. The same
procedure is conducted for TESSC1. To combine the two data sets
for each object, we compute the mean of the magnitudes in
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Figure 2. The period distribution for the n = 3168 objects in SSINTESSC1. The bottom to top panels show the period distribution using only the observations in
TESSC1, the period distribution using only the observations in SS1, and the period distribution when combining the observational records of both data sets,
respectively. Although we search for solutions up to 10,000 hr, we only show solutions up to 100 hr because there are so few solutions >100 hr.

TESSC1 and then use this to offset the corresponding observational
record in the SS1 data set. We elected to normalize to TESSC1
because there are more observations on average in the TESSC1
data set than in the SS1 data set. The photometric errors are
unchanged when combining the magnitudes from both data sets.
The observational records for each object often contain several
apparitions. The apparitions vary between objects, where SS1 and
TESSC1 apparitions can be temporally disjoint, or there can be
overlap where SS1 observations occur during the same apparition
as the TESSC1 observations. Several examples of unphased
photometry will illustrate this in Section 5.4. Figure 1(c) plots the
distribution of objects in the combined SSINTESSC1 data set
where the mean number of observations per object is ;= 458.9.
As we will show later in Section 4.2.1, we also examine o
clipping the SSINTESSC1 data set at the 20 and 30 levels.
The o-clipped variants of this data set contain a total of
1,384,659 and 1,449,961 observations, respectively.

3. Rotation Period Derivation

To derive the rotation periods of asteroids, we use the Lomb—
Scargle periodogram (LSP;N. R. Lomb 1976; J. D. Scargle
1982). We employ the GPU implementation outlined in
M. Gowanlock et al. (2021), which uses the generalized variant
of LSP that uses the floating mean method and considers
photometric error when fitting the light curve.

While the periods derived for TESSC1 that are outlined
by A. McNeill et al. (2023) also used the generalized LSP
algorithm with the photometric error, the rotation periods reported
in D. E. Trilling et al. (2023b) ignored the photometric error.
Consequently, to ensure consistency between the methods used to
derive the rotation periods across all data sets, we rederived the
rotation periods for each object in SS1 using the same approach.

Across all data sets, for each object we execute LSP and search
a uniformly spaced frequency grid of n,= 10° frequencies. For
the SS1 and SS1INTESSC1 data sets, we search in the
frequency range [fii,onu)s Where fo.. = 0.0048day ' and
Jnax = 24.0 day ', respectively. This corresponds to rotation

periods of ~2-10,000hr, where the rotation period of an
asteroid is twice the light-curve period derived by LSP (one light-
curve period would only capture half of an asteroid’s rotation).

For each of the ny= 10° frequencies searched for each object,
LSP outputs a power value. In this paper, the frequency with the
highest power in the periodogram corresponds to the light-curve
period, which is doubled to compute the rotation period. In all that
follows, when we refer to the period of an asteroid, we are
referring to the rotation period and not the light-curve period. This
quantity will be reported in hours throughout the paper.

3.1. Period Distribution of SS1NTESSCI

Using the LSP, we derive the rotation periods of all n =3168
asteroids in SSINTESSC1 by selecting the period corresponding
to the frequency with the greatest power in the periodogram.

Figure 2 shows the distribution of rotation periods, and we
observe that the period distribution for SS1 (middle panel) has a
large spike at 48 hr, which is clearly an alias generated by the
diurnal signature described in Section 1. Contrasting this with
TESSC1 (bottom panel), we observe that there are no spikes at
typical aliases, which is to be expected, as the space-based
observatory is not impacted by a diurnal observing schedule.
When we combine the observational records together to obtain
SS1INTESSC1, we find that there is an overabundance of objects
having a 48 hr period and a smaller overabundance at 24 hr. This
is surprising, as we would expect that TESSC1 may eliminate a
large fraction of period solutions that are derived at the
abovementioned aliases. While the number of aliases has
decreased when comparing the middle panel to the top panel of
Figure 2, the overabundance of period solutions at aliases in
SS1INTESSCL clearly indicates that the ground-based ZTF data
(SS1) negatively impact the derived rotation period solutions.

4. Comparison to LCDB and Improving Derived Period
Fidelity

In this section, we compare the fidelity of our period
solutions to those in the literature. We begin by comparing the
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Table 2
The Fraction of Objects in Three Data Sets, TESSC1, SS1, and SSINTESSC1, That Match the Period Solutions in LCDB

Data Set Name n Match Fraction (Exact) Number (Exact) Match Fraction (Incl. Aliased) Number (Incl. Aliased)
SS1 222 0.599 133 0.608 135
TESSC1 222 0.739 164 0.806 179
SS1INTESSC1 222 0.784 174 0.829 184
Upper bound 222 0.820 182 0.878 195

Note. There are n = 222 objects in LCDBNSS1NTESSC1. The upper bound refers to whether one of the TESSC1, SS1, or SSINTESSC1 data sets contains the
correct period solution. We report exact matches to LCDB and aliased matches that are within a factor 0.5x £ 3% or 2x £ 3% of the LCDB period solution.

period solutions in the literature with those derived from the
SSINTESSC1 data set, which is our baseline approach
(Section 3.1). Then, we apply several optimizations to improve
the confidence in our period solutions and determine to what
extent we can improve derived period fidelity over the baseline.

4.1. Baseline Approach

The LCDB contains asteroid rotation periods reported in the
literature and a confidence level (U). In this paper we only
consider objects with a quality score of U =3, which are
unambiguous rotation period solutions where there is full
sampling of the light curve (B. D. Warner et al. 2009). Taking
the intersection of the n = 3168 objects in SSINTESSC1 with
the objects in LCDB, we are left with a total of 222 objects. This
sample of 222 objects in LCDB is used to determine whether we
obtain correct rotation periods, and we refer to this sample of
objects as LCDBNSS1INTESSCL.

We define an exact match to LCDB when an object has a
rotation period within 3% of the LCDB period. Often there will be
several power spikes in the periodogram where two or more
spikes will yield nearly identical power values. Often these occur
at periods that are a factor of half or double the true rotation period
defined by LCDB; therefore, we also report when our periods are a
factor of 0.5 X £3% or 2 X £ 3% of the LCDB period solution.
We refer to these as aliased matches, although they should not be
confused with aliases that are a function of the diurnal observing
schedule of a ground-based telescope (Section 1).

Table 2 reports the fraction of matches to LCDB for SS1,
TESSC1, and SSINTESSC1. We find that the ZTF data set (SS1)
has an exact match percentage of ~60%, whereas TESSC1 has an
exact match percentage of ~74%. This is to be expected, as there
are more observations per object in TESSC1 compared to SS1
(Figures 1(a) and (b)), which helps improve the overall match
fraction. Furthermore, as described in Section 1, the TESSC1 data
set is not susceptible to aliases that are common in SS1. We find
that combining SS1 with TESSC1 (SS1NTESSC1) yields the
greatest exact match percentage of ~78%.

As described in Section 3, we rederived the rotation periods for
the SS1 data set outlined in D. E. Trilling et al. (2023b) to include
the photometric error and use the generalized variant of LSP. We
found a =~60% match percentage to LCDB. This match
percentage is consistent with D. E. Trilling et al. (2023b), which
found that for an LCDB quality code U=3—or better they
achieve a match percentage with LCDB of 67%, where they define
an exact match to LCDB as a derived rotation period being within
10% of the LCDB rotation period. Given that we use a 3%
threshold in this paper and that the samples are different (we only
examine those objects in SS1INTESSCL), our 60% match
percentage is roughly consistent with the 67% match percentage
reported by D. E. Trilling et al. (2023b).

Table 2 also reports the upper-bound match fraction. We define
the upper bound as whether one of the three data sets (SS1,
TESSC1, or SSINTESSC1) obtains the correct period solution
for an object. We find that the upper-bound exact match fraction is
82%, implying that for 18% of the objects none of the three data
sets are able to derive the correct period solution. As we will show
in future sections, the 18% of objects for which we do not derive
the correct period solution are largely low-amplitude objects.

Regarding exact matches, our combined SSINTESSC1 data
set is within ~4.4% of the upper bound, and when we include
the aliased period solutions that are a factor 0.5x +3% or
2x £ 3% of the LCDB period solution, our results are within
~5.6% of the upper bound.

Figure 3 shows histograms limited to objects with the exact
correct rotation period as summarized in Table 2 as a function of
rotation period. By plotting the histogram as a function of rotation
period, we can observe whether any of the data sets yield period
solutions that are deficient at a particular period range. Plotted in
the top panel is the true period distribution from LCDB, and this
histogram is plotted behind the three other histograms in the
bottom three panels. This makes it straightforward to observe at
what rotation periods the three data sets are deficient at finding the
correct rotation period, which is denoted by an excess orange
outlined bar compared to the blue bar at a given period.

Opverall, we find that none of the data sets are able to detect the
periods in the smallest bin at 2hr and that the data sets are
generally unable to recover many of the periods at 2 hr < p < 4 hr.
This is consistent with A. McNeill et al. (2023), who found that
TESS rotation periods were unreliable at <3 hr, and D. E. Trilling
et al. (2023b), who found a similar result. Deriving the periods
for fast-rotating asteroids is difficult with TESS because of the
30-minute cadence of TESS full-frame images. In the case of
ZTF, sparse photometry makes it challenging to constrain asteroid
rotation periods when they are rapidly rotating, and it is for this
reason that D. E. Trilling et al. (2023b) did not search for rotation
periods <2 hr. At rotation periods =4 hr, we find no discernible
trends; however, because there are only 222 objects in the sample,
it is possible that there are trends beyond =>4 hr, but these cannot
be recovered owing to small number statistics.

4.2. Improving Confidence in Period Solutions

As shown in Section 4.1, the baseline approach using
SSINTESSCI achieves a match percentage of 78.4%-82.9%.
We highlight that obtaining a period match rate of ~80% is
outstanding; therefore, improving the match rate much beyond
this level will only recover periods at the margins in a few cases.
Thus, in what follows, we attempt to recover periods in these
marginal cases, while simultaneously improving the match
fraction such that we have greater confidence in the derived
period solutions. The results are summarized in Table 3.
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Figure 3. The distribution of correct rotation periods as a function of period for the 222 objects in LCDBNSS1NTESSC1 across the four data sets is shown. Each
rotation period bin is 1 hr, and the bins are centered on integer period values. The top panel shows the LCDB period distribution, where each object has been assigned
an unambiguously correct rotation period. The three lower panels from top to bottom are as follows: SSINTESSC1, SS1, and TESSC1, where the (correct) LCDB
distribution is plotted behind the period distribution shown for each of these three data sets. Only those objects whose periods exactly match the LCDB period are
plotted.

Table 3
Comparison of the Fraction and Number of Matches of the Objects in LCDBNSS1NTESSC1 as a Function of Optimizations (1)—(7)
Exact Exact Incl. Aliased  Incl. Aliased
Method Sections  npcpp Pmin Namp ~ Match Frac.  Number ~ Match Frac. Number Utility
Baseline: SSINTESSC1 (Table 2) 222 >2hr 222 0.784 174 0.829 184
(1) 20 clipping 4.2.1 222 >2hr 222 0.797 177 0.842 187 v
(2) 30 clipping 4.2.1 222 >2hr 222 0.788 175 0.833 185 X
(3) Periodogram masking: aliases (0.1 hr mask width) 422 222 >2hr 222 0.788 175 0.833 185 v
(4) Periodogram masking: p < 0.9(fyindow) hr 423 222 >2hr 222 0.784 174 0.829 184 X
(5) Replace with TESSC1 period at high confidence 4.2.4 222 >2hr 222 0.793 176 0.838 186 v
level

(6) Replace with SS1 period at high confidence level 4.2.5 222 >2hr 222 0.779 173 0.824 183 X
(7) Excluding amplitudes <0.075 4.2.6 222 >2hr 203 0.793 161 0.823 167 v
{1, 3,5, 7} Combined 4.2.7 222 >2hr 196 0.827 162 0.852 167 X
{1, 3, 5, 7} Combined 4.2.7 206 >3hr 182 0.868 158 0.890 162 v
{1, 3,5, 7} Combined 4.2.7 173 >4hr 151 0.881 133 0.907 137 X

Note. ny cpg refers to the number of objects in LCDBNSS1NTESSC1 after discarding objects with periods below the period cutoff (pin), and n,m, refers to the
number of objects in the sample after discarding those with light-curve amplitudes below the threshold using method (7). When nycpp and nayp, are equivalent, this
implies that no amplitude threshold was utilized. The match fraction is the total number of objects with a correct rotation period as a ratio of n,mp. The utility column
refers to whether the optimization should be used (v') or not (X).

4.2.1. Sigma Clipping SSINTESSC1, new outliers in the combined observational
The 551 data set reported in D. E. Trilling et al. (2023b) has record may be introduced. Consequently, we investigate removing
been filtered upstream from tl.16 ' SNAPS br(;ker by the outliers by removing observations with magnitudes that exceed 20

ANTARES broker (A. Saha et al. 2016; T. Matheson et al. ?;nigoimirz igtrronedlgl r;agl;lggﬂ:m\;\/ ztdzl thzl(s)ltgs)mistl}cerg—chp
2021). In this process, observations with low real-bogus scores py 1% = ' ’ py-

. . : stats.sigma_clip, with a single iteration.
are removed from consideration. Therefore, the observational We compare the match fraction to LCDB for both 20 and 3¢
records for each object are largely free from contamination by

! X X levels. Table 3 shows that 3¢ clipping (the standard level) is
poor observations. The TESSC1 data set reported in A. McNeill able to recover the correct period for an additional object over

et al. (2023) has been o clipped to remove outliers in the the baseline for both exact and aliased period solutions.
observational records for each object. Furthermore, 20 is able to recover the correct period for three

While each of the SS1 and TESSC1 data sets has individually additional objects over the baseline for both exact and aliased
had outliers removed from the observational records for each period solutions. This demonstrates that new outliers were
object, when combining the data sets together to create introduced when combining the data sets and that o clipping
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can improve the total match fraction. We caution that o
clipping below the 20 level will remove observations from
objects that have a high light-curve amplitude, so we do not
investigate removing outliers below the 2o level.

4.2.2. Periodogram Masking: Aliases

The diurnal observing schedule of ground-based telescopes
imparts a periodic signal into the periodogram. Excluding
periods at aliases such as p € {16, 24, 48} hr is straightforward
—if the peak power in the periodogram is at one of these
aliases, then a secondary peak is selected. The drawback of this
method is that a true period at these aliases is rejected despite
the fact that asteroids may truly have these rotation periods
(e.g., see Figure 2, bottom panel or Figure 3, top panel).

Recently, N. Erasmus et al. (2021) used masking to detect
slowly rotating asteroids. M. W. Coughlin et al. (2021) used the
masking method when examining variable stars in ZTF DR2.’
D. Kramer et al. (2023b) compared several methods that
remove aliases and found that masking is both the simplest and
most effective method on the Legacy Survey of Space and
Time (LSST) Solar System Products Data Base (SSPDB;
M. Juric et al. 2021), which is used to simulate the LSST
observational records and was competitive with the Monte
Carlo method on the SS1 data set. Consequently, we examine
the use of the masking method here.

Figure 4 shows the match fraction to LCDB as a function of
the mask width around the {16, 24, 48} hr aliases. Here the
mask widths are centered on the abovementioned aliases and
are reported as + the mask width as shown on the horizontal
axis. We find that masking does not significantly improve the
overall match fraction. In addition, as the mask width increases,
the total match fraction decreases. This is expected, as we
increasingly eliminate larger fractions of the frequency range
that may contain the true period of an object.

This result is consistent with that of D. Kramer et al. (2023b),
which showed that masking only improved the match percentage
from 64.8% to 65.8% on the SS1 data set. The reason this occurs
is that the secondary peak selected outside of the masked region of
the periodogram is often incorrect. Despite this result on the SS1
data set, D. Kramer et al. (2023b) showed that on the SSPDB data
set masking improved the match percentage from 57.9% to
74.5%, demonstrating that the method is expected to work well
for the forthcoming LSST catalog.

We reiterate that masking is irrelevant for the TESSC1 data
set, as it does not suffer from a diurnal observing schedule, so
when we combine the SS1 and TESSC1 data sets, TESSC1
may eliminate aliases, which diminishes the utility of the
masking method. Despite this, we expect that recovering the
periods for a few additional (marginal) objects is worthwhile
even if the number of objects is not statistically significant here.
Thus, when we combine optimizations, we use this method and
apply masks at {16, 24, 48} + 0.1 hr.

4.2.3. Periodogram Masking: p = 0.9(t,indow)

Ground-based observatories, such as ZTF and the forth-
coming Rubin Observatory, will have a long observational
baseline for each object. This will allow deriving long rotation
periods for a small fraction of asteroids. In contrast, TESSC1 has
a much shorter observational baseline for each object. The
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width of 0.1 around the 16 hr alias refers to masking the range 15.9-16.1 hr.
The mask width of O refers to the match fraction without any masking. For
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telescope stares at a sector and then transitions to the next sector,
where it is unlikely that an asteroid is captured in more than one
sector. As a result, the maximum rotation period that can be
detected with TESSC1 is roughly 816 hr (see A. McNeill et al.
2023 for more information). Let #yindow = fend — fstary Where fypart
and f.,q refer to the first and last times that the object has been
observed, respectively. Then, if p > tyingow fOr an object, this
implies that the light curve will be poorly sampled, as only a
partial light curve will be produced. Consequently, we mask all
periods for an object where p > 0.9(fyindow) Such that we reject
periods that are within 10% of the observing window, as periods
derived within the last 10% of the observing window are well-
known to be unreliable (A. McNeill et al. 2023).

From Table 3 we find that this method has no impact on the
total match fraction. In this set of 222 objects, there were
no instances where p > 0.9(fyingow). While this filter was
important for deriving asteroid periods for TESSC1, when the
data record is combined with SS1, each object is assigned a
much larger fyingow- Thus, this method is unnecessary when
applied to the SSINTESSC1 data set.

4.2.4. Period Replacement with High-confidence TESSCI1 Solutions

A. McNeill et al. (2023) showed that objects having a sufficient
number of observations and LSP power are more likely to produce
the correct period solution than objects having few observations
and low LSP power. This is intuitive, as the greater the number of
observations, the more likely that a good model fit is obtained, and
furthermore, greater LSP power typically indicates that the
periodogram has a high signal-to-noise ratio and that the light
curve has a reasonably high amplitude. A. McNeill et al. (2023)
showed that, without assigning a threshold for the LSP power, they
achieved a match fraction to LCDB of 0.65. In contrast, for those
objects observed >200 times and having an LSP power >0.2, the
match fraction increases to 0.85, and this further increases to 0.91
if aliased periods are also considered.

Given the above, if a period in the TESSC1 data set has a
high confidence of being correct (=200 observations and an
LSP power >0.2), then we simply select this period instead of
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using the period derived from SS1INTESSC1. This approach
also has the benefit of potentially validating solutions at the
{16, 24, 48} hr aliases. From Table 3 we find that this method
is able to recover two additional objects relative to the baseline.

4.2.5. Period Replacement with High-confidence SS1 Solutions

Similarly to period replacement with high-confidence
TESSC1 solutions, we also examine replacement using SS1.
Figure 5 shows a similar heatmap to that outlined in A. McNeill
et al. (2023), which plots a cumulative heatmap of period
matches to LCDB as a function of the observation threshold and
LSP power threshold. With unconstrained observational and
LSP power thresholds we obtain an exact match fraction of
0.597, but this increases to 0.85 when there are =100
observations and an LSP power of 0.7.

If a period in the SS1 data set has a high confidence of being
correct (=105 observations and an LSP power >0.7), then we
select this period instead of using the period derived from
SS1INTESSCL. From Table 3 we find that this method does not
recover any additional correct rotation periods relative to the
baseline. Furthermore, based on Figure 5(b), this only captures a
small fraction of the objects in the sample because the number of
observations and number of LSP power thresholds need to be very
high, which limits its utility for period replacement. Consequently,
when we combine optimizations later, we do not use this method.

Note that future SNAPS data releases will contain significantly
more ZTF observations per object, which will likely increase the
utility of this approach.

4.2.6. Excluding Low-amplitude Objects

We now examine the light-curve amplitude distribution of the
objects in the data sets. Amplitudes are derived using the
sinusoidal fit of the light curve for each object using the peak
and trough of the curve. On average, this will underestimate
the amplitudes of asteroids, as a sinusoid will often not capture
the peak and trough within a light curve. However, this is
preferable to alternative methods, such as taking the difference
between the minimum and maximum magnitudes in a light
curve, which may dramatically overestimate the amplitude owing
to outlying measurements with low and/or high magnitudes.

Figure 6(a) plots the amplitude distribution of the 3168
objects in the SSINTESSC1 data set, which shows that there is
a deficit of amplitudes <0.1 mag. This is due to bias in period
finding, where asteroids with a spherical morphology will have
a light-curve amplitude of ~0 mag, and thus it is not possible to
derive rotation periods for these objects. Furthermore, light
curves that are fit with a poor period may produce a low signal-
to-noise periodogram, which often generates a relatively flat
(low-amplitude) fit to the time series. In addition, asteroids with
a pole-on orientation of any shape can produce a flat light
curve. Consequently, the deficit of amplitudes <0.1 mag is
largely unphysical, and it is difficult to know the true
distribution of objects with amplitudes <0.1 mag.

Comparing Figure 6(b) on the LCDBNSS1NTESSCI data set to
Figure 6(a), we find that there are a greater fraction of amplitudes
<0.1 mag. This is expected, as the LCDBNSS1NTESSC1 sample
contains objects vetted from LCDB, and hence the sample should
be a closer match to the real amplitude distribution, which cannot
be determined owing to the abovementioned presence of asteroids
that are roughly spherical in shape. Figure 6(c) shows the
amplitude distribution of the LCDBNSS1NTESSC1 data set that is
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Figure 5. Cumulative heatmaps showing the rotation period match fraction
(and number) of objects in SS1 as a function of both the number of
observations and the LSP power. In the sample, there are a total of 1810 objects,
which are those that are found in LCDB (U =3) and SS1. (a) The exact
rotation period match; (b) the number of objects in the bins shown in panel (a).

limited only to the 174 objects that are an exact match to LCDB.
Because all objects have been assigned the correct period, we plot
this as a sanity check to demonstrate that a similar deficit of
amplitudes <0.1 mag is present as shown in Figures 6(a)—(b). If
this deficit was not shown in this plot, then this would indicate that
spherical objects and poor light-curve fits are not the cause of the
deficit described above.

An additional challenge when fitting light curves is
photometric error. We find that many of the observations in
the TESSC1 data set have a photometric error >0.1 mag (the
photometric error with SS1 is lower), and so if we assume that
the average error is roughly 0.1 mag, then we would not expect
to be sensitive to objects with amplitudes <0.1 mag.

Figure 7 shows two plausible scenarios for the amplitude
distribution at <0.1 mag. We describe two hypotheses as follows:

1. “Sphere-Abundant Hypothesis”: The first scenario (red
dashed curve) shows the case where the amplitude histogram
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Figure 6. Light-curve amplitude distributions in 0.1 mag bins. (a) Amplitudes
of the 3168 objects in the SSINTESSC1 data set. (b) Amplitudes of the 222
objects in the LCDBNSS1NTESSCI data set. (c) Same as panel (b), except
limited to the 174 exact matches to the LCDB, and so panels (b) and (c) are
plotted on the same scale for comparison purposes.

should increase monotonically with decreasing amplitude. If
this hypothesis is correct, this implies that there are numerous
asteroids that are spherical in morphology and that the
amplitude distribution will be difficult to accurately constrain.
2. “Sphere-Limited Hypothesis”: The second scenario
(black dotted curve) is where there are fewer objects
with amplitudes <0.1 mag than at 0.1-0.2 mag, implying
that the vast majority of asteroids are likely to be at least
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slightly elongated.® If this hypothesis is correct, then the
amplitude distributions with a deficit at <0.1 mag shown
in Figure 6 are indicative of the true distribution.

In the context of the above, we describe implications for
rotation period derivation. If we assume that the “Sphere-
Abundant Hypothesis™ is correct, then this implies that we are
unable to correctly assign ~25% of the objects their correct
amplitude; thus, it is likely that the derived rotation period for a
significant fraction of these objects is also incorrect. One
important caveat to note is that it is possible to derive the
correct rotation period for an asteroid but still derive a poor
amplitude (i.e., asteroid light curves may not always be best fit
by LSP sinusoids); therefore, we would not expect that 25% of
the rotation periods are incorrect based on an analysis of light-
curve amplitudes alone. If the “Sphere-Limited Hypothesis” is
correct, then this implies that light-curve amplitudes cannot be
the dominant reason that we obtain incorrect period solutions.

Recall that the baseline finds that there is a 0.784 exact match
fraction of rotation periods (Table 3). Thus, up to ~25% of rotation
periods may be incorrect, which is consistent with the fraction of
asteroids missing from the distribution having an amplitude
<0.1 mag (assuming that the “Sphere-Abundant Hypothesis” is
correct). We conclude that a substantial fraction of asteroids that
have an unreliable derived rotation period may be due to spherical
asteroids with rotation periods that are intractable to constrain.

Figure 8(a) plots the fraction of objects that match LCDB as a
function of the amplitude cutoff. Unlike the other optimizations
presented in this section, by making a cut on the amplitude, we
lose some number of objects that have been assigned a correct
rotation period, and so we also plot the number of objects
recovered in Figure 8(b). Consequently, we aim to select an
amplitude cutoff that reaches a trade-off of yielding a high match
fraction without eliminating too many objects from the sample
with a correct rotation period. For instance, in an extreme case, we
could achieve a ~90% match fraction by removing objects having
an amplitude <0.3 mag, but we would only recover 65 asteroids.

Figure 8(a) reveals an interesting trend regarding exact
versus aliased matches where we find that the match fractions
for both exact and aliased matches converge when we exclude
objects with amplitudes <0.175 mag. This implies that the LSP
period-finding algorithm produces an ambiguous solution
(within a factor 0.5x £ 3% or 2x £ 3% of the LCDB period
solution) when there is a low amplitude, and this is to be
expected since low-amplitude period solutions also produce
low-power periodograms, which implies that the peak power in
the periodogram is not significantly differentiated from powers
at other candidate frequencies. But when the amplitude is high,
the ambiguity seems to be reduced or eliminated.

Based on the above, we select an amplitude threshold that
removes all objects from the sample at <0.075 mag, which allows
for some of the objects in the 0-0.1 mag bin to be included in the
sample. This reaches a trade-off between maximizing the match
fraction and maximizing the number of objects that have been
assigned a correct rotation period. With this amplitude threshold,
we find that there are a total of 203 objects (thus 19 objects are
excluded), and this yields an exact (aliased) match fraction of
0.793 (0.823) corresponding to 161 (167) objects, respectively.

 While not directly applicable to main-belt asteroids, this hypothesis was

proposed for trans-Neptunian objects (P. H. Bernardinelli et al. 2023).
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Figure 7. The same histogram as in Figure 6(a), except where two example
models are shown that hypothesize the distribution of asteroids with amplitudes
<0.1 mag. The red dashed curve shows the scenario where spherical-like objects
are the most abundant. Using a [J-distribution, the black dotted curve shows the
scenario where there are fewer objects at <0.1 mag than at 0.1-0.2 mag.

4.2.7. Summary: Combining Optimizations and Quantifying Period
Confidence

The methods described above are used to recover the
rotation periods of asteroids at the margins where simply
combining the SS1 and TESSC1 data sets are unable to
produce the correct period. If we select and combine the
methods that were deemed to have utility above, which are (1),
(3), (5), and (7) in Table 3, then we obtain an exact match
fraction of 0.827, which increases to 0.852 when aliased
solutions are considered correct.

Recall that the minimum rotation period search range is
Dumin = 2 hr. However, A. McNeill et al. (2023) demonstrated
that periods derived with TESSC1 are unreliable at p < 3 hr.
Consequently, we examine the fraction of correctly derived
rotation periods when we exclude objects in LCDB having
p <3 hr, which yields a total of 206 objects in the sample.
Of those 206 objects, 182 had a light-curve amplitude
>0.075 mag. We find that the exact and aliased match fractions
are 0.868 and 0.890, respectively, which corresponds to
recovering the rotation periods of 158 and 162 asteroids. Thus,
we are able to further increase the match fraction using
Dmin = 3 hr compared to p, ;. = 2 hr. We also examined setting
Dumin = 4 hr, but this yields a dramatic loss in the number of
correct asteroid rotation periods recovered (see Table 3).

Based on this analysis, we use the combined optimizations
with p.. =3 hr because it yields a trade-off between
maximizing the match fraction and maximizing the number
of correct periods recovered.

To reiterate, we are able to recover the rotation periods with a
0.890 confidence when aliased solutions are included. However,
the optimizations do not completely explain which properties of a
light curve may indicate that it has a high probability of being
correct. To this end, Figure 9(a) plots the exact match fraction
using the set of optimizations and p,;, = 3 hr, as a function of
the number of times an object has been observed and the LSP
power, where a higher LSP power typically implies that there is a
high signal-to-noise ratio when selecting the maximum power in
the periodogram for each object. The heatmap is cumulative, so
the upper left corner contains all of the objects that are correct
(158) without any cut on the number of observations or LSP
power, and the number of objects in each bin decreases as the
threshold on the number of observations or LSP power increases.
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Figure 8. (a) The fraction of rotation period matches (exact and including
aliased) with LCDB as a function of the amplitude threshold. (b) The number of
objects corresponding to panel (a). The dashed blue horizontal line demarcates
amplitudes at 0.1 mag as described in the text accompanying Figure 6.

We find that we can obtain a 100% match to LCDB when we
have at least 375 observations and an LSP power of 0.7.
Figure 9(b) shows the number of objects in the bins, indicating
that there are 50 objects with correct rotation periods that have
been observed at least 375 times and have an LSP power >0.7.
While this is a very high observational threshold to obtain a perfect
match fraction, a 0.90 match fraction can be obtained using more
reasonable constraints: >150 observations with an LSP power
>0.3. Figures 9(b) and (d) are the same as Figures 9(a) and (c),
except that they include aliased matches as well.

The heatmaps above showed the cumulative match fraction
and number of matches for each grid cell where there are fewer
objects in the bins as the observation threshold and LSP power
increase. To investigate which is more critical—the number of
observations or LSP power—and to better understand the
impact of these parameters on rotation period discovery, we
now examine differential heatmaps, where each grid cell only
includes objects with a range of observations and LSP powers
that are minimum and maximum values that define each grid
cell. Thus, compared to the cumulative heatmaps, the number
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Figure 9. Cumulative heatmaps showing the rotation period match fraction (and number) of objects in LCDBNSSINTESSCI as a function of both the number of
observations and the LSP power. The heatmap uses the data from the combined optimizations outlined in Table 3 with p .. = 3 hr. Panels (a) and (c) show the exact
rotation period match and number, respectively. Panels (b) and (d) are the same as panels (a) and (c) but include the aliased rotation periods as well.

of objects in each bin will not monotonically decrease as the
number of observations and LSP power increases.

Figure 10 shows a differential version of the heatmap shown in
Figure 9. This allows us to observe which bins obtain a match
fraction below the average across all of the bins (i.e., 0.868 without
any observational or LSP power cutoff). There are only 182 objects
in the sample, and so the differential heatmap is poorly sampled—
thus, to draw any meaningful conclusions, we increased the bin size
compared to Figure 9. Considering exact matches, we find that
when there are at least 400 observations and an LSP power >>0.666
we achieve a perfect match to LCDB. The three bins shown in
Figure 10(a) at an LSP power <(0.333 are poorly sampled as shown
in Figure 10(c), and so while we would expect that the match
fraction would increase as we increase the number of observations,
we observe the opposite. In this LSP power range, there are only 7,
9, and 0 objects in the bins, respectively, and so small number
statistics limits our ability to interpret this result. Lastly, comparing
Figures 10(a) and (b), we find that the bin with 800-1200
observations and an LSP power of 0.333-0.666 has a 0.500 match
fraction, whereas it has a 0.875 match fraction when aliased

10

matches are included. This shows that the three objects in this bin
were assigned a period that was a factor 0.5x = 3% or 2x 4 3% of
the LCDB period solution, and so the 0.500 match fraction is
misleading in Figure 10(a), as objects with >>800 observations and
an LSP power >0.333 should be considered reliable.

4.3. A Conservative Approach to Biasing against Incorrect
Rotation Periods

Sections 4.1-4.2 reported the rotation period match fraction
as compared to LCDB. The combination of methods summar-
ized in Table 3 aims to maximize the number of objects with
correct periods. However, it does not consider biasing against
incorrect rotation periods. We address this drawback by
proposing a metric that reports a null result if there is a
sufficiently high probability that a period is incorrect.

To include biasing against incorrect rotation periods, we
reframe the analysis as a binary classification problem. Each
object has three properties that determine whether the period is
likely to be correct (light-curve amplitude, LSP power, and
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Figure 10. The same as Figure 9, but showing the differential heatmap. Because there are only 182 objects in the sample, the differential heatmap is poorly sampled
and is thus very sparse. Consequently, we plot the heatmap using large bins such that we may obtain a significant number of objects in each bin. Caution is warranted,
as the number of objects in the bins remains low (e.g., there are no objects with 800 hr < p < 1200 hr and an LSP power 0-0.333).

number of observations), and based on these properties we assign
each object a predicted label of either “incorrect period” or
“correct period.” Then, we compare the period solutions to LCDB
to determine whether the labels are correct, where we aim to
minimize the number of objects assigned a correct label that are
incorrect (a false positive). The metrics described below are those
used in supervised machine learning for assessing the quality of a
model’s ability to predict binary class labels (G. Cabrera-Vives
et al. 2017). For clarity, we note that we are not training a machine
learning model; rather, we are incorporating metrics from the field
of machine learning that are useful for our purposes.

We outline four possibilities regarding the outcome of binary
classification as follows:

1. True Positive (TP): An object was assigned a correct
label, and the rotation period is correct.

2. False Positive (FP): An object was assigned a correct
label, but the rotation period is incorrect.

3. True Negative (TN): An object was assigned an incorrect
label, and the rotation period is incorrect.
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4. False Negative (FN): An object was assigned an incorrect
label, but the rotation period is correct.

Using the TP, FP, TN, and FN rates, the following metrics can
be computed, where 1.0 is the best (maximum) value for each:

1. Accuracy: (TP+TN)/(TP+FP+TN+FN).
2. Precision: TP/(TP+FP).
3. Recall: TP/(TP+FN).

Observe that the accuracy metric is very similar to the results
reported in Sections 4.1-4.2 that examine the match fraction to
LCDB, and so we are largely uninterested in this metric here. The
recall metric does not consider false positives, and so it is not very
useful in this context. The precision metric is the most appropriate,
as it biases against reporting false positives. In other words, if we
have a precision value close to 1.0, this suggests that the number
of false positives (objects assigned a correct label but with an
incorrect rotation period) has been minimized.

Observing Figures 8-10, which show the relationship
between match fraction and light-curve amplitude, LSP power,
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and number of observations, it is clear that perfect precision can
be obtained with sufficiently high thresholds for these three
properties, as there are several instances that yield a 1.0 match
fraction and therefore do not have any false positives.

For an object to be assigned a correct label, it must have a
sufficiently high amplitude, number of observations, and LSP
power, which are the properties examined in Section 4.2. We
use the periods derived by optimizations “{1, 3, 5, 7}
Combined” from Table 3 with p .. =3 hr (a total of 182
objects). In the analysis, we only consider exact matches and
exclude aliased matches.

We perform a grid search over the parameter space to select
thresholds for the following parameters: light-curve amplitude,
LSP power, and number of observations. We then use these
thresholds to determine whether the object is assigned a predicted
correct or incorrect class label. The range of amplitudes searched
is [0.075, 0.5] with a step size of 0.025 mag, the range of number
of observations searched is [50, 400] with a step size of 10
observations, and the range of LSP power values searched is [0,
0.5] with a step size of 0.05. Each object is assigned a correct label
only if it meets all three thresholds.

To summarize, we searched 18 amplitude, 36 observation, and
11 LSP power values, yielding a total of 7128 configurations. Each
of these configurations assigns all objects a class label, which are
used to derive accuracy, precision, and recall statistics. Figure 11
plots the relationship between accuracy and precision for each of
the configurations searched, where we are interested in maximiz-
ing the precision since it minimizes false negatives. We make the
following observations regarding Figure 11:

1. Higher accuracy is obtained at the expense of lower
precision. There are several configurations where perfect
(1.0) precision is obtained; however, low accuracy
implies that there are many false negatives, which would
have the effect of recovering far fewer objects than at
higher accuracy thresholds. So perfect precision is not
ideal unless one is only interested in correctly deriving
the periods of a few objects.

2. There are several configurations that achieve very high
precision and reasonably high accuracy, and one of the
configurations is denoted by the dotted red lines in the
figure. This example configuration has a precision of 0.957
and an accuracy of 0.714, which is achieved with the
following thresholds: an amplitude of 0.125 mag, 120
observations, and an LSP power of 0.5. This configuration
has a true-positive rate of 111 and an false positive rate of 5.

Using the above thresholds, we confidently assign incorrect and
correct labels to objects that minimize false negatives while
simultaneously recovering a large fraction of the periods of objects.
In Section 5, we examine both the match fraction to LCDB and this
conservative approach that biases against incorrect periods when
applied to all objects on the combined data set (SSINTESSCL).

4.4. Summary: Comparison of Methods and the Utility of ZTF
and TESS Observational Data

In this section, we demonstrated several methods that can be
applied to improve the fraction of matches to LCDB, and these
methods included o clipping, using periodogram masking,
replacing the derived period in LCDBNSS1INTESSC1 with the
TESSC1 period when there is a high probability that the TESSC1
period is correct, and using a light-curve amplitude threshold. The
fraction of matches to LCDB using the heatmap analysis
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Figure 11. The precision as a function of accuracy for the grid search described
in the text. There are a total of 7128 configurations that were searched to find
those that optimize the precision metric. Many of the configurations yield the
same pair of precision and accuracy values, and so the markers on the plot are
translucent such that those with greater intensity denote duplicate configura-
tions. The red dashed lines show an example configuration with a precision of
0.957 and an accuracy of 0.714.

(Figures 9-10) describes when a derived rotation period is likely
to be correct; however, it does not bias against assigning an
incorrect rotation period to an object. In contrast, the conservative
binary classification method biases against assigning an object an
incorrect rotation period (a false positive), and so when the
classifier reports that an object’s classification is incorrect, this
should be considered a null result and the period cannot be trusted.
The benefit of using the binary classifier over simply using the
fraction of matches to LCDB is that there is a higher probability that
the classifier will identify correct periods. The drawback of this
method is that it favors precision over accuracy, and so several
correct rotation periods will be labeled as incorrect (false
negatives). In summary, to employ these methods on large
catalogs, rather than only reporting a single confidence metric, it is
preferable to report the total match fraction, the match fraction as a
function of LSP power and number of observations (Figures 9-10),
and the conservative binary classification approach that reports
correct rotation periods with very high probability.

Recall from Section 4.1 that the match fraction by simply
combining SSINTESSCI is 78.4% and 82.9% for exact and
aliased matches, respectively. Therefore, the optimizations
summarized in Section 4.2.7 are only able to improve the overall
match fraction in a small number of remaining cases, as the ~80%
match fraction is remarkable given the drawbacks of the data sets.
The baseline approach shows that the match fraction increases
substantially when comparing SS1 and SS1INTESSC1, whereas
the match fraction has a smaller increase when comparing
TESSC1 and SSINTESSC1 (Table 2). Therefore, the benefits of
using TESSC1 are clear, but it is not abundantly clear what the
benefits are to adding SS1 to TESSCI.

We discuss why incorporating SS1 is important. Recall from
Section 4.1 that TESSC1 is not sensitive to p <4 hr periods
because of the 30-minute cadence of the full-frame TESS
images. Using the LCDBNSSINTESSC1 data set with
optimizations “{1, 3, 5, 7} Combined” with p,;, = 3 hr (182
total objects), there are a total of 31 objects in LCDB with
3—4 hr rotation periods. Of these 31 objects, TESSC1 correctly
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Figure 12. Rotation period distribution of SSINTESSC1 comparing the baseline approach to the set of optimizations “{1, 3, 5, 7} Combined” with p > 3 hr from

Table 3.
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Figure 13. The same as Figure 12, but where low-confidence solutions have been removed.

derives 19 of the rotation periods (considering only exact
matches), but there are 6 additional objects that SSITNTESSC1
derives correctly but TESSC1 derives incorrectly. This shows
that incorporating SS1 significantly improves period derivation
in this period range.

This trend can be observed in Figure 3, where SS1 recovers
more rotation periods within the second bin than TESSC1. It is
noteworthy that the true asteroid rotation period distribution
has a high fraction of objects with periods in this range, and
therefore sensitivity to p < 4 hr is of great importance. This is a
concrete example of where SS1 is better than and can
complement TESSC1, and in Section 5.4 we show an example
light curve for an object that is derived correctly with SS1 but
not with TESSC1 with a period of 10.215 hr. To summarize,
based on our analysis, SS1 has great utility at p ~2-4hr
whereas TESSC1 does not, SS1 is sensitive to long period
asteroids whereas TESSC1 is not because of its small
observing window, and SS1 has moderate utility for
intermediate rotation periods compared to TESSC1.

5. Period Derivation on the Combined ZTF and TESS
Data Set

Now that we have examined maximizing the rotation period
match fraction by comparing our solutions to those reported in
LCDB, we apply the combined methods in Section 4.2.7 to the
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Table 4
The Number of Aliases for the Baseline Approach (No Filtering) and Using the
Combined Methods “{1, 3, 5, 7} Combined” with p,;,> 3 hr in Table 3 and
the Combined Method with Low-confidence Period Removal

Combined and Low-

Baseline Combined confidence Removal
Alias (hr) (n=3168) (n = 3008) (n =1623)
16 +0.1 57 (0.018) 36 (0.012) 19 (0.012)
24 +0.1 120 (0.038) 36 (0.012) 9 (0.006)
48 + 0.1 344 (0.109) 243 (0.081) 77 (0.047)

Note. The fractions in parentheses refer to the fraction of the sample at the
reported alias.

3168 objects that are included in the SSINTESSC1 data set. In
particular, we use configuration “{1, 3, 5, 7} Combined” from
Table 3 with p_;, = 3 hr.

5.1. Rotation Period Distribution

In this section, we examine the following three perspectives
on period recovery: (i) using the combined optimizations
summarized in Table 3, (ii) using the LSP power in the
differential heatmap (Figure 10) to determine which periods are
considered reliable, and (iii) using the conservative binary
classification approach outlined in Section 4.3.
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Table 5
SS1INTESSC1 Rotation Periods and Amplitudes for n = 1623 Objects with High Confidence (~85%)

MPC Desig. Rot. Per. Amplitude Rot. Per. TESSC1 Rot. Per. SS1 TESSC1 Replacement Class Rot. Per. LCDB
(hr) (mag)

100052 4.682 0.482 34.946 4.682 N C

10026 9.977 0.199 33.726 8.257 N I

10041 47.834 0.255 816.327 47.963 N C 2.564

10065 20.050 0.535 20.047 20.050 N C ar

100683 18.261 0.499 232.480 18.259 N C

100727 3.175 0.368 36.920 3.175 N I

10080 7.051 0.177 7.052 6.146 N C

10117 6.880 0.467 6.881 6.880 N C

10128 9.573 0.142 9.571 7.978 N C

101632 121.458 1.702 121.458 684.825 Y C

Note. We also show the rotation periods for SS1, TESSC1, and LCDB (if applicable) and whether the rotation period was the result of a direct replacement using
TESSC1. Column “Class” refers to the result of the conservative binary classifier, where “I” and “C” refer to incorrect and correct class labels, respectively.

(This table is available in its entirety in machine-readable form in the online article.)

Figure 12 plots a histogram of the rotation periods
comparing the baseline approach of combining TESSC1 and
SS1 (SS1INTESSC1) to the distribution after applying the
optimizations “{1, 3, 5, 7} Combined” with p >3 hr from
Table 3. We observe that we have reduced solutions at the
aliases: the 16 hr alias is no longer visible, the 24 hr alias is
visible but much reduced, and the 48hr alias is still
pronounced. Table 4 summarizes the number of solutions at
aliases in Figure 12.

Recall that there are only ny cpg = 206 objects in LCDB that
overlap with our sample (Table 3). Thus, if the n=3168
objects in SSINTESSC1 were drawn from the same distribu-
tion as the ny cpg = 206 objects in LCDBNSS1NTESSC1, then
the match fraction values in the cumulative heatmap (Figure 9)
would be directly applicable to the objects in SSINTESSCL.
However, we know from the histogram shown in Figure 12 that
our period distribution is not the same, which is clearly
indicated by the overabundance of aliased solutions. Thus, the
differential heatmap (Figure 10) is a better statistical tool for
determining whether we should be confident in a given solution
despite the abovementioned challenges regarding small number
statistics.

Consider from Figure 10(b) that objects with an LSP power
<0.333 are unreliable and objects with an LSP power >0.333
have a minimum confidence level of 0.848. Figure 13 shows
the same histogram as Figure 12, where all periods with an LSP
power <0.333 are removed from the sample. This yields a total
of n = 1623 objects, indicating that 1545 period solutions were
removed because they have a low LSP power. For these
n = 1623 objects, the minimum confidence that we assign is
0.848. Comparing Figure 12 to Figure 13 shows that many of
the 1545 (removed) objects with an LSP power <0.333 are
those that were located in the 48 hr bin (11% of the 1545
removed objects). We find that combining the optimizations
and removing low-confidence solutions is unable to completely
eliminate aliased period solutions at 48 hr, but it is much
improved over both the baseline and the optimization set
“{1, 3, 5, 7} Combined” that did not remove low-confidence
period solutions from the sample.

Section 4.3 used a binary classification approach to label the
rotation periods as either incorrect or correct based on
amplitude, number of observations, and LSP power. We find
that there are a total of 897 asteroids assigned a correct label
and 2271 assigned an incorrect label. The asteroids assigned a
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correct label are plotted in Figure 14. We find that, compared to
Figures 12 and 13, there is only a slight overabundance of
periods at 48 hr, indicating that the binary classifier filters out
many of the aliased solutions. Recall that this conservative
approach trades precision for accuracy by penalizing false
positives, and so the total number of objects recovered is much
lower than in Figure 13, as these objects have a higher
probability of being assigned correct rotation periods.

Table 5 reports the rotation periods of the n = 1623 asteroids
defined where all periods with an LSP power <0.333 were
removed (Figure 13). For each of these objects we also report
the binary classification prediction, where 897 were labeled as
correct and 726 were labeled as incorrect.

5.2. Rotation Period Comparison with TESSCI1 and SS1

We examine the rotation period distributions of SS1 as a
function of the SS1INTESSC1 rotation period in the left panel of
Figure 15. While a substantial fraction of periods are in
agreement, we clearly observe the aliased solutions at 48 hr in
SS1 that are not in agreement with SSINTESSC1. Examining
the SSINTESSC1 amplitudes of these objects, we find that they
are generally fairly low at 48 hr, as most are <0.25 mag. We also
observe the effect of pseudo-aliases (J. T. VanderPlas 2018),
which appear as the curved triangle shape in the left panel. These
are due to interactions between an object’s real period and the
strongest alias in the periodogram (J. Durech et al. 2022;
D. E. Trilling et al. 2023b).

The right panel of Figure 15 plots the rotation periods of
TESSC1 as a function of SSINTESSC1. Here the maximum
rotation period for TESSC1 is ~816 hr, which is why none of
the periods in TESSC1 exceed this value. We find that there are
an overabundance of aliases clearly observed at 48 hr in
SS1INTESSC1, which is unsurprising since we showed this in
Figure 13 and in Table 4. However, of great interest is the
observation that the pseudo-aliases are no longer visible when
comparing TESSC1 to SSINTESSCI1. This is because
TESSC1 does not have aliases, and so the pseudo-aliases are
eliminated.

5.3. Light-curve Amplitude Distribution

Figure 16 plots the amplitudes of the n = 1623 sample of
objects in SSINTESSC1. The figure is consistent with
Figure 6(a), except that there are a smaller fraction of objects
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Figure 14. The same as Figure 12, but where we only show those classified as correct with the conservative binary classifier described in Section 4.3. The thresholds
are as follows: an amplitude of 0.125 mag, 120 observations, and an LSP power of 0.5.
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Figure 15. Comparison of rotation period distributions as scatterplots for SS1 and TESSC1 as a function of SSINTESSC1, plotted in the left and right panels,
respectively. The SSINTESSC1 rotation periods and color-coded amplitudes are from the n = 1623 sample that has all optimizations applied and low-confidence
solutions removed. In contrast to prior figures, such as Figure 12, the plot is shown on a log scale such that the entire period range can be shown. Consistent periods

between the two data sets appear on the diagonal line.

with low amplitudes, as we discarded many of them to
maximize the fraction of matches in the sample. The shape of
an asteroid can be constrained through Amag = —2.5log b,
where b and a are the minor- and major-axis lengths of the
ellipsoidal asteroid shape, respectively. There are few objects
with S > 0.9, and a single asteroid cannot be this elongated;
therefore, these asteroids are likely to be binary systems.

5.4. Example Light Curves and Implications

In all prior sections we described facets of light-curve
generation and fidelity without showing any example light
curves. In this section we show a selection of interesting light
curves from the n = 1623 sample of objects in SSINTESSCL.
In the plots, we show the derived light curve of SSINTESSC1
without TESSC1 replacement (if applicable), such that we can
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observe the light curves generated by the combined data set in
each instance.

Object 339: Figure 17 shows the light curves for object 339
for SSINTESSCL (p =2349.795 hr), TESSC1 (p =5.967 hr),
and SS1 (p =47.957 hr) and the unphased SS1INTESSC1 data
with error bars ordered from top to bottom, respectively. The
light curve for SSINTESSC1 (top panel) has a rotation period
of p=2349.795 hr, but TESSC1 is not sensitive to rotation
periods 2816 hr, and so the light curve is poorly sampled after
~600 hr (i.e., fwindow for this object). The derived rotation
period is a poor solution for this object. The second panel
shows the data for TESSC1, and we observe an excellent fit to
the data. Here the rotation period is p =5.967 hr and LCDB
reports p =5.974 hr, so the rotation periods are in agreement.
The third panel shows the light curve generated with SS1, and
we observe a very poor fit to the data. This light curve has a
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Figure 16. The amplitudes of the n = 1623 sample of objects in
SSINTESSC1 that have all optimizations applied and low-confidence

solutions removed. The top horizontal axis shows the ’;’ ratio, which is
calculated directly from the amplitude (Amag) where Amag = —2.5log fll

rotation period of 47.957hr and is an example of a
quintessential alias where the only signal that can be detected
by LSP is a function of the diurnal observing schedule. Using
the optimizations described in the prior sections, the
SSINTESSC1 period of p=2349.795hr was replaced by
the TESSC1 p =5.967 hr, which is the correct period. The
bottom panel shows the unphased SSINTESSC1 data, where
we observe that some of the SS1 observations temporally
overlap the TESSC1 data, but most of the SS1 data are in a
separate apparition.

Object 18975: Figure 18 reports the light curves for object
18975. This object is not reported in LCDB. The rotation
periods are p = 404.538 hr, p =413.212 hr, and p = 404.608 hr
for SSINTESSC1, TESSC1, and SS1, respectively. All of the
rotation periods are in agreement, and the object appears to be a
slowly rotating asteroid. This set of light curves is interesting
because if we consider the TESSC1 (middle panel) and SS1
(bottom panel) light curves on their own, one may be skeptical
that the derived rotation periods are accurate because the light
curves are poorly sampled (i.e., there are large gaps in the
folded light curve where no observations are present).
However, the light curve is more robustly sampled in
SSINTESSC1 (top panel), and so this is an example where
combining the two data sets allows us to have greater
confidence in the solution. In our sample of n = 1623 objects
there are numerous examples of this, including the case where
the three period solutions disagree owing to poor sampling of
the folded TESSC1 and SS1 light curves, but the
SSINTESSC1 light curve is more compelling owing to better
sampling.

Object 363: Figure 19 is interesting for two reasons. First,
SS1 (bottom panel) generates a light curve that is clearly very
poorly sampled; however, we find that TESSC1 (middle panel)
has an excellent fit of p=16.801hr. When we examine
SS1INTESSCL (top panel), we find that for this rotation period
of p=16.811hr the SS1 observations clearly do not contribute
to the goodness of the fit. In other words, using only the
TESSC1 observational record produces a better light curve than
SS1INTESSCL, but the solution provided by SSINTESSC1
yields a good fit despite the noise imparted by the SS1
observations. The second interesting observation is that the
rotation period for TESSC1 (middle panel) is p = 16.801 hr and
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the reported rotation period in LCDB is p = 8.401 hr, which is a
factor 0.5 of our solution. This is considered an aliased match,
where the derived rotation period is a factor of two greater than
the rotation period reported in the literature. We attribute this
discrepancy to the very low amplitude of the object, which is
0.083 mag using the TESSC1 rotation period, and as shown in
Figure 8, low amplitudes may lead to rotation period matches
that are incorrect by a factor 0.5 or 2 of the rotation period
reported by LCDB.

Object 14376: Figure 20 shows that all three light curves are
in agreement, as they all report a rotation period of p ~ 5.85 hr.
Based on a manual inspection of the light curves, it appears that
the rotation period of p ~ 5.85 hr is plausible. However, LCDB
reports p=5.614hr, which is in disagreement with our
solution since we consider that rotation periods are matching
if they are within 3% of each other. Thus, while this fit is
clearly reasonable, it is deemed incorrect in our analysis. This
example shows that while many derived light-curve solutions
are incorrect for obvious reasons, such as poor sampling, even
light curves with good fits may be incorrect. It is possible that
the solution in LCDB is incorrect, or another interesting
possibility is that the rotation period has changed. This further
demonstrates the challenges of reliably deriving rotation
periods from sparse or dense photometry.

Object 3176: In the prior light-curve figures we clearly observe
that on average there are more data points in the observational
records of TESSC1 than in SS1. Additional observations for an
object help constrain the rotation period because it reduces
sampling sparsity. Figure 21 shows an example where
SSINTESSCI and TESSCI are in agreement and yield rotation
periods of p=20.457hr and p=20.433hr, respectively.
However, the SS1 rotation period of p=10.224 hr is an exact
match to that reported in LCDB, which is p=10.215hr (the
SS1INTESSC1 and TESSC1 rotation periods are aliased matches,
as they are a factor 2 greater than the LCDB rotation period). This
demonstrates that while fitting light curves with additional
observations is generally beneficial, there are cases where fewer
observations may yield a better derived rotation period. We also
note that while the p = 10.224 hr rotation period for SS1 (bottom
panel) is clearly a good fit, the p = 20.457 hr rotation period (top
panel) is not a good fit to the SS1 data.

5.5. Discussion

We examined several methods for improving derived period
fidelity when combining observational records from ground-
and space-based facilities. We find that combining the data
records from ZTF and TESS improves the overall match
fraction with LCDB, and we applied the optimizations on the
sample of objects in LCDBNSS1NTESSC1 to the much larger
SS1INTESSC1 sample. In this section, we discuss implications
for forthcoming Rubin Observatory operations, the use of the
binary classification approach on other catalogs, and other
optimizations beyond the scope of this paper.

5.5.1. Rubin Observatory

In the context of preparing for the Rubin Observatory,
several of the optimizations and insights may need to be
reexamined. We outline these as follows:

1. The amplitude optimization should be reexamined, as
Rubin will be more sensitive to amplitudes <0.075 mag.



THE ASTRONOMICAL JOURNAL, 168:181 (21pp), 2024 October

—11.2

Rot. Period: 2349.795

o —11.34

Magnitude
N

b, Amp.: 0.087 mag

—115 .

T
1000
Phase (h)

T
2000

—11.2

Rot. Period: 5.967 b

o —11.34

Magnitude

B

Amp.: 0.065 mag

—11.5 .

oo

Rot. Period: 47.957 h

Magnitude
o .
T

Amp.: 0.196 mag

—11.24

< 113 M!‘L“‘ H‘M l}m H* m“

&
= —11.44

agnitude

B

I

—11.59

T T T
2.4587 2.4588 2.4589

Time (JD) (x10°)

T T
2.4585 2.4586

T
2.4590

Figure 17. Light curves of object 339. Panels from top to bottom are as follows:
SSINTESSCI (p = 2349.795 hr), TESSC1 (p = 5.967 hr), SS1 (p = 47.957 hr),
and the unphased data for SSINTESSCI. Orange and black markers refer to
observations from TESSC1 and SS1, respectively. The bottom panel shows
photometric errors that are plotted using magenta bars, and the markers are plotted

on top of the error bars to prevent them from being obfuscated.

2. There are a number of light curves that we found to be
nonsinusoidal (see, e.g., Figure 19). These light curves
may be better fit by other period-finding algorithms that

are not constrained to sinusoids.

3. We examined period replacement with TESSC1 and SS1
and found that the former was useful but the latter was
not. We found that few objects in SS1 had a sufficient
number of observations and LSP power (Figure 5) to
achieve an 85% match fraction to LCDB. The next SNAPS
data release will provide many more ZTF observations
per object, and so period replacement with this new data
set should be reexamined if augmenting Rubin data with

ZTF data.

4. The binary classification approach will need to be
reexamined to select a configuration that optimizes for

precision and accuracy. For example, Rubin will have
lower photometric error, and so the observation threshold
may be reduced compared to that used in this paper.

Furthermore, there are two implications for the Rubin
Observatory that originate from the analysis of Figure 21 that
we outline as follows.

1. While having a larger number of observations for an
object reduces the sparsity of the folded light curve,
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which improves the fit, another factor that may be of great
importance is having better-quality (lower photometric
uncertainty) observations. D. Kramer et al. (2023a)
showed that for the Rubin Observatory an observing
cadence that favors longer exposures and thus reduces the
total number of observations for each object yields a
higher rotation period match fraction to LCDB compared
to a cadence with shorter exposures and more observa-
tions per object.

. Because we find that a moderate number of observations

(Figure 21 showing SS1) can yield accurate rotation
periods, the Rubin Observatory will produce high-fidelity
light curves within the first few years of operation. Thus,
a major task will be to automate the characterization of
light-curve fidelity to curate light curves that have a high
probability of having correct rotation periods and biasing
against reporting incorrect rotation periods.

In the context of examining ZTF and SSPDB data,

D. Kramer

et al. (2023b) examined several methods for

improving the overall rotation period match rate to LCDB, and
they discuss the prospect of combining optimizations. We find
that combining optimizations is only beneficial for capturing
rotation periods in a small number of instances and instead
combining the two data sets to produce SSINTESSC1 had a
larger overall benefit on period fidelity. One caveat to this
analysis is that the LCDB is not a particularly large catalog,
and so we were only able to compare against 222 objects.
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Figure 19. Light curves of object 363. Panels from top to bottom are as
follows: SS1INTESSC1 (p=16.811hr), TESSC1 (p =16.801hr), SS1
(p = 23.963 hr), and the unphased data for SSINTESSC1. The LCDB rotation
period is reported as 8.401 hr, which is a factor 0.5 of the TESSC1 derived
rotation period solution of 16.801 hr (middle panel). This light curve is also
remarkable because it has extra structure at the peaks instead of simply having
a sinusoidal shape.

Therefore, a larger reference sample would help us better
understand the utility of the optimizations presented here.

It is clear that low-amplitude asteroids are often those where
LSP predicts a period at an alias, and for ZTF these appear at
p € {16, 24, 48} hr. Thus, these asteroids fundamentally cannot
produce a light curve and are simply intractable for period
derivation, which implies that the ~85% match fraction to
LCDB achieved in Table 3 may be close to the upper limit on
derived period fidelity assuming reasonable constraints on the
minimum amplitude and minimum rotation period.

5.5.2. Binary Classification Approach: Application to Other Catalogs

The binary classification approach employed here is used to
bias against reporting incorrect asteroid rotation period
solutions. The method can be applied to other catalogs where
there is a baseline (or fiducial) set of correct rotation period
solutions and another set of solutions of unknown quality. In
this paper, our baseline data set was LCDB.

While we selected binary classification labels using thresh-
olds for the LSP power, light-curve amplitude, and number of
observations, these parameters will need to be reevaluated
based on the input data set of unknown quality. For example,
observations obtained with lower photometric error may
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Figure 20. Light curves of object 14376. Panels from top to bottom are as
follows: SSINTESSC1 (p=5.849hr), TESSCl (p=5.848hr), Ss1
(p = 5.849 hr), and the unphased data for SSINTESSC1.

require lower observation and amplitude thresholds to obtain
similar accuracy and precision levels reported in Section 4.3.
Furthermore, it may be preferable to select accuracy and
precision based on the receiver operator characteristic curves,
which illustrates the relationship between the true-positive and
false-positive rates.

Deriving a generalizable set of parameter thresholds for the
binary classification approach is not possible, as we only
considered two surveys in this paper and so the parameters
were tailored to those surveys. However, a promising future
research direction is to combine data from multiple surveys. If
the surveys span a large range of parameter values, including
mean photometric error and number of observations per object,
it may be possible to extract generalizable parameters that yield
high precision with minimal loss in accuracy. This research
direction may benefit from a supervised machine learning
approach, as the number of parameters needed will exceed the
three parameters investigated here.

5.5.3. Other Optimizations

There may be several other avenues of investigation that may
improve period fidelity. We focused on combining several
well-known methods in Section 4 but also attempted two other
less obvious methods that were not useful, and so we did not
report these results.

We know that LSP is good for fitting the light curves of
asteroids because they are generally sinusoidal in shape. We
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Figure 21. Light curves of object 3176. Panels from top to bottom are as
follows: SSINTESSC1 (p =20.457 hr), TESSC1 (p =20.433hr), SS1
(p = 10.224 hr), and the unphased data for SSINTESSC1.

examined using the SUPERSMOOTHER (J. H. Friedman 1984)
algorithm, which takes advantage of structure in the data that
can be used to disambiguate periods detected near aliases. For
example, M. Gowanlock et al. (2022) found that SUPER-
SMOOTHER was better than LSP for computing the periods of
RR Lyrae stars. However, we found that LSP is better than
SUPERSMOOTHER for computing the rotation periods of
asteroids. Consequently, this method was not presented here.

Another approach to disambiguate aliases is to use Monte
Carlo sampling of the observational record to produce a set of
periodograms for each object. Combining the set of period-
ograms to select the frequency with the greatest combined
power may reduce aliases (D. Kramer et al. 2023b). We
selected a sample of objects for which our methods were unable
to derive the correct rotation period where most of these objects
had aliased period solutions. However, we found that the
Monte Carlo approach was unable to improve period fidelity in
these instances. It is likely that this is because of the low-
amplitude problem that we outlined above—many of these
objects have very low amplitudes for which producing a light
curve is intractable.

6. Prospects for the Rubin Observatory

In the prior sections we examined several approaches to
improve the fidelity of derived asteroid rotation periods using
several optimizations in the context of combining data from
ground- and space-based observatories. In this section, we
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Figure 22. The exact match fraction to LCDB as a function of the number of
TESSC1 observations added to SS1. The top horizontal line refers to the exact
match fraction when all TESSC1 observations are added to SS1, and the
bottom horizontal line refers to when there are no TESSC1 observations added
to SS1. These exact match fractions are 0.784 and 0.599, respectively
(Table 2).

examine a practical aspect of Rubin Observatory operations
that is driven by the following question: to what extent can a
companion (ground- or space-based) observatory significantly
improve light-curve fidelity and derived rotation periods of
regularly varying sources observed with the Rubin Observa-
tory, and how much telescope time is required?

Despite the impressive capabilities of the Rubin Observa-
tory, it will still be limited by the diurnal observing schedule,
which will produce aliases. By employing a companion
telescope to augment the LSST catalog, aliases may be
partially suppressed (as we observed examining the
SSINTESSC1 data set). Because telescopic observations are
expensive, it would be interesting to know how much
observing time on a companion telescope is necessary to
eliminate a substantial fraction of the rotation periods reported
at the aliases generated by the Rubin Observatory’s schedule
and improve the overall yield of correct rotation period
solutions.

6.1. A Future TESS-like Observatory

Here we explore the benefit of including data from a future
TESS-like observatory (which could indeed be TESS in an
extended mission). To assess the above question, we use the
n =222 objects in LCDBNSS1INTESSC1. We use the entire
observational record for each object in SS1 (thus using ZTF
data to simulate the LSST catalog) and then incrementally add
TESSC1 to SS1, where we are simulating using TESS (or a
TESS-like facility) as a companion telescope to the Rubin
Observatory. We do not apply any of the optimizations
outlined in Section 4, as we are simulating incrementally
adding observations to the ground-based observational records.
As such, some of the optimizations would not be possible, such
as knowing which observations to o-clip without the full
observational record for an object (e.g., with a small
observational record for an object, we may inadvertently
remove observations that are useful for fitting the light curve).

The number of observations for each object in TESSC1
varies. Therefore, when we combine the data between SS1 and
TESSC1, we use either the desired number of observations that
we wish to add to SS1 or the total number of observations for
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an object, whichever is smaller. For example, if we want to use
100 TESSC1 observations for an object but the observational
record only contains 90 entries for that object, then we are
limited by the 90 observations and use the full observational
record containing these observations.

Figure 22 plots the exact match fraction to LCDB as a
function of the number of observations added per object from
TESSCI1 to SS1. The upper and lower bound match fractions
are given by the two horizontal lines, which refer to when all
(or none) of the TESSC1 observations are added to SS1. These
fractions are reported in Table 2, where we find match fractions
of 0.784 and 0.599, respectively.

We find that after adding roughly 150 TESSC1 observations
to SS1 we obtain a match fraction approaching the upper
bound of 0.784. Given that TESS uses a 30-minute full-frame
image cadence, 150 observations/full frames would require
roughly 3 days of TESS observations.

As a targeted companion facility that is synchronized to
LSST observations, this is an impractical solution, as LSST
covers most of the available southern sky during a 3-day
period, whereas TESS only covers a single field of view—
around 10% of one hemisphere—during this same time period.
However, over the course of ayear, TESS covers an entire
hemisphere with >3 days of continuous coverage, and LSST
also covers an entire hemisphere of the sky. The TESS-like
data need not be contemporaneous with LSST-like observa-
tions; all that matters is the uninterrupted cadence that
complements the LSST-like observations. Therefore, if TESS
were observing during LSST’s survey, the alias solutions
would be much reduced and the overall match fraction
increased as a natural consequence of combining these data
sets with two different cadences. (If this future TESS uses the
30-minute cadence, then we still have no new power to address
potential periods less than 3 hr.)

The above estimates may have underpredicted the delivered
performance, though. Consider that the SS1 data set derived
from ZTF is roughly 10% of the scale of LSST (D. E. Trilling
et al. 2023b). Thus, if the same experiment were to be carried
out with the Rubin Observatory, we would expect that the
match fraction without any companion telescope data would be
higher than the 78.4% reported here because each object would
be observed more with the Rubin Observatory than ZTF over
the same time period. In addition, recall from Section 4.2.6 that
it is challenging to derive the rotation periods of asteroids with
low light-curve amplitudes. The Rubin Observatory will have
lower photometric error (<0.1 mag; S. Navarro-Meza et al.
2021) than ZTF, and so we expect that it will yield many more
low-amplitude objects with light-curve amplitudes <0.1 mag
that have correct rotation period solutions. Given that we
expect many of the objects for which we cannot derive a
correct rotation period solution to be those with low
amplitudes, we believe that this capability will dramatically
improve derived rotation period fidelity.

We therefore conclude that if TESS is still operational in
2025 and after, combining TESS data with LSST data will be
extremely useful for increasing the fidelity of period solutions.

ESA’s Euclid mission (R. Laureijs et al. 2011; G. D. Racca
et al. 2016) complements both TESS and LSST observations,
and the joint Rubin-Euclid working group has already offered
some recommendations about how the combined data sets may
enhance the science return of both projects (L. P. Guy et al.
2022). The footprint of Euclid’s Wide Survey avoids the
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ecliptic, but there are plenty of asteroids that will still be
detected in Euclid data. The imaging sequence of Euclid will
provide several images over 1 hr (Euclid Collaboration 2022).
Thus, Euclid data may be useful to identify asteroids with short
rotation periods, which neither TESS nor LSST will be very
successful at identifying. However, in general Euclid will not
offer enough complementary data to significantly improve a
large number of LSST period solutions.

6.2. Augmenting LSST Data with Ground-based Data

Additional data from the Rubin Observatory itself might be
useful to resolve degeneracies through data from the Deep
Drilling Fields (DDF). Not all DDF observations have been
defined at this point, but it is likely that at least some of these
DDF campaigns will be a continuous all-night stare at a single
LSST pointing. This is a TESS-like (i.e., continuous) set of
perhaps ~1000 observations obtained over around 10 hr. This
may help resolve degeneracies at the shortest periods, but it is
not likely to address diurnal aliases. In a future investigation we
will model the performance of LSST period solutions in the
presence of both the standard “wide-fast-deep” cadence (which
is ZTF-like) and DDF observations.

It is possible that other ground-based observatories or
networks that have broad longitudinal coverage, such as the
ATLAS network (J. L. Tonry et al. 2018), which currently has
four operational sites (one site in South Africa, one in Chile,
and two in Hawai‘i), could collectively observe the same
objects without a break in day—night observing. This would
help reduce the number of rotation period solutions at aliases
and would be less expensive than pursing a companion space-
based telescope for LSST. However, ATLAS’s limiting
magnitude of perhaps20 is not well matched to LSST’s
limiting magnitude of24.5; the vast majority of sources
observed by LSST will be too faint for ATLAS.

In summary, there are no obvious existing or near-term
ground-based assets that will provide the data necessary to
improve period solutions on a large scale, but both LSST and
ATLAS (and perhaps others) may provide limited capacity to
improve solutions derived only from LSST wide-fast-
deep data.

7. Conclusion

This paper examined improving the derived asteroid rotation
period fidelity when combining data from ground- and space-
based facilities. In particular, we used the SS1 (D. E. Trilling
et al. 2023b) and TESSC1 (A. McNeill et al. 2023) data sets,
which were collected with ZTF and TESS, respectively. We
found that our baseline approach of combining the two data
sets had the greatest benefit on improving our rotation period
match fraction to LCDB. Combining several optimizations
further improved the match fraction in several instances;
however, the impact of the optimizations has diminishing
returns compared to simply combining the two data sets
together. This is because many of the objects that had incorrect
rotation periods were those that are well-known to be
challenging to derive, such as those with low light-curve
amplitudes that often have rotation periods that are reported at
aliases. Consequently, we find that the ~85% match fraction
may be close to the upper limit for this data set because many
of the remaining ~15% of asteroids may have a spherical
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morphology or pole-on orientation that makes light-curve
derivation intractable.

The SS1 data set is limited by 0.1 mag photometric error,
and so we are not sensitive to amplitudes less than this value.
The TESSC1 data set has even greater photometric error than
SS1, so it is even less sensitive to low-amplitude (spherical)
asteroids. The low-amplitude problem described above will
improve when the Rubin Observatory is online, as it will have
lower photometric error than ZTF or TESS.

We also discussed Rubin Observatory operations and the
prospects of augmenting the LSST data stream with data from
space- or ground-based observatories to reduce the fraction of
aliases. While none of the solutions for eliminating aliases are
straightforward (or necessarily likely such as using TESS in
2025 and thereafter), the analysis points to several possible
avenues that can be pursued over the 10 yr life span of Rubin
Observatory operations.

Recall that the =0.1 mag photometric error yielded by ZTF
and TESS yields inaccurate period solutions when light-curve
amplitudes are <0.1 mag. An interesting future work direction
that we will address is testing the “sphere-abundant” and
“sphere-limited” hypotheses illustrated in Figure 7 (R. Strauss
et al. 2024, in preparation). This future work direction will be
conducted as part of the DECam Ecliptic Exploration Project
(DEEP; D. E. Trilling et al. 2023a), which will yield
observations with a mean photometric error of roughly
0.03 mag. This is significantly lower than the ~0.1 mag
photometric error provided by ZTF and will allow us to
determine which of the two hypotheses above are plausible.

Other future work includes incorporating data from other
sources, such as observations of asteroids from Kepler (A. Ser-
geyev et al. 2023) to create a unified observational record for
analysis by our team and the community. Another direction is
to examine accuracy as a function of precision for the binary
classification approach to deriving rotation periods when using
data from numerous sources. This direction may yield insights
into the fundamental parameters needed to correctly derive
(with very high probability) the rotation periods of asteroids
using heterogeneous data sources. We will also incorporate
these analyses into the Solar System Notification Alert
Processing System (SNAPS) alert broker infrastructure to
further enhance our derived data products for the LSST era.
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