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Abstract

Ground-based, all-sky astronomical surveys are imposed with an inevitable day-night cadence that can introduce aliases
in period-finding methods. We examined four different methods — three from the literature and a new one that we
developed — that remove aliases to improve the accuracy of period-finding algorithms. We investigate the effectiveness
of these methods in decreasing the fraction of aliased period solutions by applying them to the Zwicky Transient Facility
(ZTF) and the LSST Solar System Products Data Base (SSPDB) asteroid datasets. We find that the VanderPlas method
had the worst accuracy for each survey. The mask and our newly proposed window method yields the highest accuracy
when averaged across both datasets. However, the Monte Carlo method had the highest accuracy for the ZTF dataset,
while for SSPDB, it had lower accuracy than the baseline where none of these methods are applied. Where possible,
detailed de-aliasing studies should be carried out for every survey with a unique cadence.
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1. Introduction

Determining periodic behavior among astrophysical
sources is useful for describing their physical properties.
For example, the internal strength of an asteroid can be
determined using, among other observed properties, its ro-
tation period (McNeill et al., 2018) and light curves have
been used to categorize different stellar types (Barbara
et al., 2022).

Ground-based telescopic surveys that produce sparse
data inevitably have signals in the object’s periodogram—
typically at or near 12 h, 24 h, 48 h, and 96 h — related to
the day-night cycle of the Earth. These cadences cause
aliasing, an effect where there are peaks in a periodogram
that are not at the real period of an observed object.

If the output of a period-finding method and its corre-
sponding light curve is visually examined, an astronomer
can potentially make a judgment if a derived period is an
alias or not. With large-scale surveys, like the Legacy Sur-
vey of Space and Time (LSST), too many objects will be
observed for humans to manually confirm each derived pe-
riod. This requires automating both deriving the periods
and determining if the period is correct.

The problem of period-finding at scale will become
more acute when LSST is producing data, as more than
100 million periodic sources are expected in the LSST cat-
alog (LSST Science Collaboration et al., 2009). If, for ex-
ample, 20% of period solutions are aliases, then 20 million
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sources would have incorrectly derived periods. The incor-
rect periods would either (1) be naively included in a cata-
log, (2) have solutions at common alias periods discarded,
or (3) have to be examined with some verification algo-
rithm. Any method that reduces the total number of alias
results improves the three outcomes by (1) reducing the
number of bad solutions, improving the overall accuracy,
(2) increasing the overall number of correct solutions, or
(3) decreasing the amount of computation to verify/score
the periods.

While this is an important problem for ongoing and
upcoming surveys, there has been little progress on de-
aliasing methods for sparse data. For instance, Carbonell
et al. (1992) has examined the de-aliasing properties of
past methods, notably CLEAN (Roberts et al., 1987). How-
ever, those methods only work on time series data with
uniform observations during the night. Since modern ground-
based surveys generate sparse data that is not uniform,
these methods are unsuitable for these surveys. Recently,
several papers have used some de-aliasing techniques us-
ing large scale survey data (Erasmus et al., 2021; Coughlin
et al., 2021; Heinze et al., 2018), but none tested the im-
provement their method had over no de-aliasing.

In this paper, we analyze the performance of four ap-
proaches to de-aliasing, with performance and period-finding
accuracy in mind.

The paper is organized as follows: Section 2 discusses
the Lomb-Scargle periodogram, Section 3 gives an overview
of the datasets used, Section 4 gives an overview of the four
methods that were tested, Section 5 discusses the results of
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the four methods, Section 6 provides our discussion of the
results of the paper, and Section 7 presents our conclusions
and some future work on this and related problems.

2. Period Finding Algorithms

For testing the accuracy of the different de-aliasing
methods, a period finding algorithm is needed. In this sec-
tion, we will discuss four different methods, Lomb-Scargle
(L-S, Lomb 1976; Scargle 1982), SuperSmoother (Fried-
man, 1984), Conditional Entropy (Graham et al., 2013),
and Bootstrap χ2 (Ďurech et al., 2022), and why L-S is
used as the method for this analysis.

2.1. Lomb-Scargle

L-S is a period-finding method first developed by Lomb
(1976) and later improved by Scargle (1982). It is one of
the most popular period-finding algorithms used in astron-
omy. The general approach is to calculate the periodogram
power, essentially a measure of the goodness of the solu-
tion, through Equation 1 as follows.

P (f) =
1

2


(∑

n gn cos(2πf [tn − τ ])
)2

∑
n cos2(2πf [tn − τ ])

+

(∑
n gn sin(2πf [tn − τ ])

)2
∑
n sin2(2πf [tn − τ ])


(1)

τ =
1

4πf
tan−1

(∑
n sin(4πftn)∑
n cos(4πftn)

)

Here, P (f) is the power for an angular frequency f ,
gn is the observed telescopic magnitude of observation n
and tn is the time of observation n. Higher powers indi-
cate a greater likelihood that f is the angular frequency
of the observed object. Note that the Lomb-Scargle Peri-
odogram (LSP) has a time complexity of O(nm), where n
is the number of observations used and m is the number
of frequencies examined.

A periodogram is typically computed by calculating
powers for a range of frequencies (or periods) in [fmin, fmax]
that are sampled over a uniform frequency space. Ide-
ally, there would only be a peak in the periodogram at
the angular frequency f that corresponds to the object’s
physical rotation state, with all other values of P (f) hav-
ing a value of zero. In reality, because of uncertainties in
the measurements, a non-uniform cadence, and aliasing,
the periodogram is often noisy with multiple peaks, so de-
termining the correct peak is not always straightforward.
Figure 1 shows how a periodogram generated with a uni-
formly sampled sine wave with a small ∆t compares to
a randomly sampled sine wave’s periodogram. The ran-
domly sampled sine wave’s periodogram is noisy around
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(a) Uniformly sampled sine wave.
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(b) Randomly sampled sine wave.

Figure 1: The periodograms for a uniformly sampled sine wave and
a random sample of it. The x-axis is the angular frequency and the
y-axis is the normalized power. The sine wave was given an angular
frequency of 2π/7 (period of 7) and an amplitude of 0.3. The pure
sine wave used 1000 points and the sampled sine wave used 0.5% of
those points, for about 50 total points used.

P (f) = 0 while the uniformly sampled sine wave only has
a peak at the sine curve’s frequency.

2.2. Other Algorithms

Other period finding algorithms exist, like SuperSmoother
(Friedman, 1984), Conditional Entropy (Graham et al.,
2013), Bootstrap χ2 (Ďurech et al., 2022), among others.
With all of these algorithms, there is a trade-off between
accuracy, speed, space, and light-curve shape flexibility.
We summarize the three algorithms above as follows:

• SuperSmoother is especially useful for periodic sig-
nals that are not sinusoidal (Becker et al., 2011; Hu-
ber et al., 2005), has a time complexity and space
complexity of O(nm), and it is susceptible to alias-
ing (Gowanlock et al., 2022).

• Conditional Entropy also has time complexity ofO(nm),
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is less accurate than L-S for fast periods, and is sus-
ceptible to aliasing (Coughlin et al., 2021).

• Bootstrap χ2 is the slowest, with a time complexity
of O(snm), where s is the number of bootstrap sam-
ples, but it is the most accurate, with aliasing having
the smallest effect on this method compared to the
others described above (Ďurech et al., 2022).

L-S has the same time complexity as SuperSmoother
and Conditional Entropy, all three being smaller than Boot-
strap χ2. As SuperSmoother has a space complexity of
O(nm) while L-S and Conditional Entropy have a space
complexity of O(n+m) ≈ O(m), SuperSmoother was not
used. Finally, since L-S and Conditional Entropy are simi-
lar, and L-S is the the standard algorithm used for deriving
the periods in astronomy, we elect to use L-S in this pa-
per. However, any period finding algorithm that produces
a periodogram is capable of implementing the methods de-
scribed in Section 4.

3. Data Used

The upcoming LSST — to be carried out with the Vera
C. Rubin Observatory that is presently under construction
in Chile — will revolutionize many fields of astronomy
(Ivezić et al., 2019). LSST will generate sparse photome-
try on the around 500–1000 measurements over ten years
for some 40 billion astronomical sources. The vast major-
ity of these will be sidereal objects (stationary on the sky);
around 5 million of them will be moving objects. Many of
these LSST-observed sources will be variable, with regular
periods, so it is of interest to develop and implement ac-
curate period-finding algorithms that can operate at the
vast LSST scale.

The ongoing all-sky survey being carried out by the
Zwicky Transient Facility (ZTF; Bellm et al. 2018) acts as
a kind of LSST precursor. ZTF is carrying out a public
survey that is very LSST-like in terms of cadence, data
type, and data accessibility, but at something like one-
tenth the LSST scale.

The work presented here has its origin in Solar Sys-
tem science and asteroid period finding but is relevant for
period-searching for any kind of astrophysical source in ei-
ther ZTF or LSST data. For ZTF, we used asteroid data
from SNAPShot1 (Trilling et al., 2023), which used ZTF
observations from 2018–07–19 to 2020–05–19, using only
numbered asteroids with more than 50 observations with
Real-Bogus scores ≥ 0.55 (Duev et al., 2019); the Real-
Bogus cut eliminated about 9% of all observations.

There is no actual LSST data yet as science opera-
tions will commence in 2024, so we used the LSST Solar
System Products Data Base (SSPDB; Juric et al. 2021),
a complete simulation of asteroid observations over the
10 year nominal lifetime of LSST, as our LSST testbed.
However, the objects in this synthetic database are all
assumed to be spherical and thus, unlike almost all real

asteroids, do not show shape-induced periodic variability
in the lightcurves. We therefore assigned lightcurve am-
plitudes and rotation periods to each SSPDB object, as
described in Appendix A.

4. Methods

In this section, we present our de-aliasing analysis on
the ZTF and SSPDB asteroid data sets. We use three
methods from the literature — masking; Monte Carlo (MC);
and VanderPlas (VP)— and present our new approach, the
window method. Broadly speaking, the MC method tries
to remove aliasing through subsampling (with multiple tri-
als), whereas the other methods attempt to remove signals
at the expected alias periods.

One method that will not be tested is the False Alarm
Probability (Baluev, 2008). False Alarm Probability is
sometimes incorrectly used as a proxy for the goodness of
a L-S solution. However, False Alarm Probability is a way
of calculating the probability p = (power|noise): the prob-
ability that a given periodogram power is part of the noise
of the periodogram (Baluev, 2008; VanderPlas, 2018). If
there is an alias peak with a larger P (f) than the real
peak, then it would have a lower False Alarm Probabil-
ity. Because False Alarm Probability is not testing for the
authenticity of a signal related to the physical period in
the system being monitored, it is not a useful method for
determining if a peak is a real period or an alias.

4.1. Masking

Masking is the most straightforward approach presented
in this paper: solutions near the known alias solutions
are simply rejected. The alias periods or a small range
around the alias can be removed (masked out) from the pe-
riodogram so the real period’s peak would therefore have
the largest remaining P (f). Usually, there are multiple
aliases, so several masks are needed to remove them.

This method was used in Erasmus et al. (2021), which
presented asteroid photometry from Asteroid Terrestrial-
impact Last Alert System and ZTF where they masked out
periods of {8, 12, 16, 24, 48} hours. The remaining peri-
odogram peaks with the largest power were then found to
be those representing super-slow rotation periods. Eras-
mus et al. (2021) showed that the masking method is a
viable way of removing alias period solutions so we incor-
porate this method into our analysis. This method was
also used in Coughlin et al. (2021), which used a simi-
lar method to derive the mask ranges as described below.
The Coughlin et al. (2021) mask ranges, in rotation pe-
riod space, are [(0.5, 0.5), (0.51, 0.51), (0.52, 0.52), (5.93,
6.08), (7.87, 8.14), (11.71, 12.31), (22.86, 25.26), (46.15,
50.0), (600.0, 800.0)] hours.

Table 1 and Figure 2 show the period ranges that are
masked out for each dataset. The mask ranges were de-
rived through the following steps:

1. Generate a histogram of the derived periods.
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Dataset Mask Ranges
ZTF (4.789, 4.814), (5.989, 6.014), (7.972, 8.014),

(11.947, 12.039), (23.764, 24.164)
SSPDB (4.789, 4.839), (5.939, 6.039), (7.939, 8.039),

(11.889, 12.039), (23.639, 24.239)

Table 1: The period ranges (exclusive) for each of the datasets to be
excluded from the (light-curve) period space. Note that these ranges
are light curve periods, not rotation periods, where an object’s light
curve period is half its rotation period.
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Figure 2: Visualization of the mask ranges from Table 1. The black
bars indicate the masked regions where all solutions are rejected.
ZTF and SSPDB have similar, but not exactly the same, ranges.

2. Create a new mask range by selecting the bin with
the highest number of objects. For example, if the
bin with the most objects is [23.9 h, 24.1 h], then it
would be added as a mask range.

3. Re-derive the periods with this new mask range.

4. Repeat steps 1 through 3 consecutively, adding new
masks. Then select the mask ranges that provide
the maximum match percentage to a database of ac-
curate periods for the objects. For example, Fig-
ure 3 shows percent match against the Light Curve
Database (LCDB; Warner et al. 2021) as a function
of the number of masks for ZTF.

The ranges for both ZTF and SSPDB are similar (Ta-
ble 1 and Figure 2), but not all surveys will have these
same ranges because they will have different cadences and
different observational errors. Despite this, we expect that
all ground-based surveys will have the 24 h alias.

Advantage: The primary advantage of this approach
is that it is the fastest to compute. The time complexity
for the method is O(nm), where n is the number of data
points used and m is the number of frequencies examined.
If the masks are pre-computed, the run time is slightly
faster compared to a normal LSP because, with the same
frequency range and ∆f , fewer frequencies (m) would have
to be examined as the frequencies in the mask ranges would
be excluded.

Disadvantage: This method has the disadvantage that
true periods that are within one of the masked ranges will
never be identified. The LCDB contains a large number of
curated asteroid rotation periods and only about 1%−2%
of objects in the LCDB have rotation periods that are in
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Figure 3: The match percentage for each new mask range. The x-
axis is the number of 0.05 h size mask ranges. The y-axis is the match
percentage.

the masked ranges of Table 1, so only a low number of
objects would be impacted.

4.2. Monte Carlo (MC)

Since aliases are generated by the observing cadence
intervals, randomly subsampling the observations, across
many trials, might suppress the signal from the aliases. An
overall periodogram for each asteroid can then be found
either by finding the most common peak power from each
trial’s periodogram, or by summing over all the periodograms.
Some attention must be paid to ensure that the time base-
line of the subsample (Tsub) is greater than Pmax, the pe-
riod corresponding to the minimum frequency examined,
otherwise, L-S will derive the period of a partial light-
curve, causing an incorrect period to be derived. For large
scale surveys, like ZTF and LSST, that produce sparse
photometry over years, this is not an issue as Tsub will
always be greater than Pmax for any reasonable Pmax.

For the calculations in this paper, we used 100 selection
samples/trials (i) per object with 50 random observations
(n). SSPDB objects had to have at least 200 observa-
tions while ZTF objects only had to have 90 observations
so there would be enough objects to get a large statisti-
cal sample. These parameters were found via an ad hoc
process of changing the minimum number of observations
required, the number of observations per subsample, and
the number of MC trials to find a high match percentage.

Finally, we sum the un-normalized periodograms over
all trials to yield the overall periodogram. The highest
peak from this periodogram is used as the derived period.
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Advantage: This method has the advantage that,
compared to the other methods, it is the most oblivious to
aliases like those in Table 1. Unlike the masking method,
the MC method could derive a correct rotation period that
happens to be an alias.

Disadvantage: This method also requires more obser-
vations than the other methods discussed because in order
to produce a credible periodogram, the number of observa-
tions in each subsample needs to be sufficiently large while
also being significantly smaller than the total number of
data points. This is needed so that pairs of observations
that are, for example, 24 h apart are excluded from the
same subsample.

This method is also the slowest, with a time complexity
of O(nmi), where n is the number of data points used for
each iteration, m is the number of frequencies checked, and
i is the number of selection samples.

4.3. Window

The window function derives aliases caused by the ob-
servational cadence. It takes the temporal data from an
object’s observations to produce a periodogram-like out-
put where a frequency having a high power corresponds to
high aliasing (VanderPlas, 2018).

Pw(f ; {tn}) =

∣∣∣∣∣
N∑
n=1

e−2πiftn

∣∣∣∣∣
2

(2)

Equation 2 shows the window function, but VanderPlas
(2018) showed that a LSP can be used as an approxima-
tion of the window function if in Equation 1, gn = 1;
this simulates a completely spherical, homogeneous object.
Therefore, any signal present in the window periodogram
would be aliasing caused by the underlying cadence.

Figure 4 provides an example of how an object’s LSP
and window periodogram relate. There are three key ob-
servations from Figure 4: (1) there are peaks in the LSP
that do not correspond to the real period, (2) all of the
significantly strong peaks that are in the window peri-
odogram also appear in the LSP, and (3) there exist peaks
in the LSP that are not the real period or in the win-
dow periodogram; these are pseudo-aliases. The example
pseudo-alias marked in Figure 4 is ((1/P )− (1/24 h))

−1

where P is the real period for the object (Ďurech et al.,
2022).

Previous algorithms that use the window function, like
deconvolution and CLEAN, do not work for removing aliases
(VanderPlas, 2018) because they assume that the strongest
peak in the periodogram is the peak that corresponds to
the real period. Here we present a new way to use the win-
dow function to remove aliases, where the pseudocode can
be found in Algorithm 1. This differs from deconvolution
and CLEAN because they rely on deconvolution for their
alias removal while Algorithm 1 does not.

Algorithm 1 takes an object’s time of observation T =
{t1, t2, . . . , tn} (time), observed magnitudesG = {g1, g2, . . . , gn}
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Figure 4: The LSP and window periodogram for an object from
SSPDB. The LSP is in red and the window periodogram is in blue.
The given period for the object is marked by the dash-dot-dash line
and its peak is only present in the LSP. The dashed line marks an
example pseudo-alias which is also only present in the LSP. The
peaks in the window periodogram are the aliases which are also all
present in the LSP.

Algorithm 1 Our method of using the peaks in the win-
dow periodogram to check if a peak in the LSP is an alias.

1: procedure windowMethod(time, mag, freqs)
2: pgramLS ← LS(time, mag, freqs)
3: pgramWindow ← Window(time, freqs)
4: LSPeaks ← findPeaks(pgramLS)
5: WindowPeaks ← findPeaks(pgramWindow)
6: sort(LSPeaks)
7: NPeaks ← length(LSPeaks)
8: index ← 0
9: while index < NPeaks and LSPeaks[index] 6∈Win-

dowPeaks do
10: index ← index+1
11: end while
12: if index ≥ length(LSPeaks) then
13: correctPeak ← LSPeaks[0]
14: else
15: correctPeak ← LSPeak[index]
16: end if
17: return correctPeak
18: end procedure
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(mag) where n is the number of observations, and the fre-
quency grid on [fmin, fmax] (freqs) as arguments. The LS

and Window functions on lines 2 and 3 calculate the L-S and
window periodograms respectively. The findPeaks meth-
ods on lines 4 and 5 find the peaks in those periodograms
and returns the peak frequencies and their powers. Line 6
sorts the LSP peaks by their power in descending order.
Line 9 loops until the current LSP peak is not contained
in the window peaks. If the LSP peak is in the set of win-
dow peaks, the index of the current peak is incremented.
Line 12 tests if all of the detected LSP peaks have been
compared against the set of window peaks. If they have,
then the peak with the highest power is used as the correct
peak (although this is probably an alias), otherwise, the
peak at the current index is used as the correct peak. The
correct peak is then returned. A python implementation
is available as a GitHub gist here1.

Advantage: This method has a distinct advantage
over the masking method. The window function exposes
aliases on a per-object basis, whereas the masking method
uses a single set of masks for all objects in a catalog. Con-
sequently, the window method may enable finding correct
periods that are typical aliases (e.g., those defined in Sec-
tion 1), whereas the masking method excludes all of these
periods.

Disadvantage: Using Algorithm 1, this method has
the same time complexity for L-S as the other methods,
which is O(nm). It also has an additional time com-
plexity for the peak finding algorithm, Ψ, which we de-
scribe below. However, since this method requires two
LSP to be calculated, it is at least twice as many oper-
ations as the LSP. The implementation for the window
periodogram peak finding function considered any power
greater than 5σ from 0, where σ is the standard devia-
tion of all the powers in the window periodogram, a peak.
The LSP peaks were found using the argrelmax function
in SciPy/cuSignal (Virtanen et al., 2020; RAPIDS Devel-
opment Team, 2018), which has a time complexity Ψ of
O(om) where m is the number of frequencies examined
and o is the order parameter. The order parameter for
argrelmax and the minimum peak height, relative to the
strongest peak, is located in Table 2.

4.4. VanderPlas (VP) Method

VanderPlas (2018) describes a method for removing
aliases that also utilizes the window function. The dif-
ference between this method and the window method is
that it compares more peaks between the LSP and window
periodogram and in particular it considers pseduo-aliases.

The VP method steps are as follows, where fpeak =
max(P (f)):

1. Check if there are any peaks in the LSP at fpeak/m,
where m ∈ {2, 3} which checks if the found peak is
an integer multiple of the real peak.

1https://gist.github.com/drk98/

6b15633e8fc43e8daf6b628548006376

L-S
Min. Peak Height

L-S
Peak Order

ZTF 1/7 10 000
SSPDB 1/10 3000

Table 2: The parameters for the window/VanderPlas methods. “L-S
Min. Peak Height” is the minimum power of a peak, relative to the
highest power, to still be considered a peak. For example, for LSST,
if the highest peak’s power was 0.8, then the peak power cutoff would
be 0.08. “L-S Peak Order” is the “order” argument to the argrelmax

function in scipy/cuSignal.

2. Check for peaks at fpeak±nδf, where n ∈ {1, 2} and
where δf is the frequency having the highest window
periodogram power.

3. Manually check the highest peaks and fit a model to
find the best one. We ignore this step as this requires
human intervention, which is not feasible for large-
scale survey data.

This method has the same time complexity as the win-
dow method atO(nm)+Ψ, where Ψ, when using argrelmax,
is O(om) and it shares its advantages and disadvan-
tages since the methods are similar. The implementation
also uses the same parameters as the Window method,
located in Table 2.

5. Results

All L-S and window functions used the implementa-
tions from SciPy/cuSignal, using 5× 106 frequencies on a
uniform period grid on [1 h, 150 h].

As a baseline, Figure 6 shows the period distribution
when no dealiasing is applied and Figures 7–10 shows the
period distributions for the four methods presented above.

Each of the distributions has spikes at aliases, mean-
ing that none of the approaches are completely successful
at removing all aliases because we assume that the true
period distributions for our population are continuous .

Our next step is to compare the derived results with
known values. For ZTF period solutions, the known values
are provided by the LCDB (Section 4.1), which contains
few alias solutions because of human curating and/or ob-
servational cadence that do not have aliasing at the de-
rived periods. There are 2544 objects that are in both the
LCDB and ZTF; all of them were used for the calcula-
tions. For the SSPDB, since we assigned rotation periods
for every object, verifying the correct periods in aliased
and de-aliased solutions for this case is straightforward.

The percentage match between the derived period and
the real period is shown in Table 3. Objects were con-
sidered to have matching periods if their period, half their
period, or double their period was within 10% of the LCDB
(for ZTF) or assigned period (for SSPDB). The baseline
method for both surveys had a match rate of over 50%, so
most objects have their correct period derived. Once the
methods were applied, the masking and window methods
increased the match percentage over the baseline for both
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Method
Percentage Match Percentage Change

ZTF SSPDB ZTF SSPDB
None/Baseline 64.8% 57.9% — —

Mask 65.8% 74.5% 1.56% 28.6%
MC 70.1% 53.5% 8.08% −7.61%

Window 69.0% 71.5% 6.39% 23.4%
VP 14.0% 8.91% −78.4% −84.6%

Table 3: The percentage match between the derived period and the
real period for the three surveys and the percentage change from
the baseline. The “None/Baseline” row is when none of the methods
were used and the highest LSP power was used as the derived period.
SSPDB used a sample of 10 000 objects.

surveys while the MC method only increased the match
percentage for ZTF, and the VP method decreased the
match percentage for both surveys.

6. Discussion

We begin by examining ZTF and excluding the VP
method (which will be described later). The best match
percentage using ZTF is with the MC method; however,
all of the methods are within ≈ 6% of each other, including
the baseline. At a minimum, if de-aliasing is needed for
a ZTF-like survey, the masking method should be imple-
mented as it incurs no extra cost. If computational cost
is not prohibitive, then the MC should be implemented.
In all cases (except where VP is implemented), our results
suggest that around two-thirds of all reported solutions
are likely to be correct.

For SSPDB, the variation among non-VP approaches is
greater than for ZTF, ranging from barely better than 50%
(MC) to almost 75% accurate (masking). Notably, the MC
method performs worse than the baseline. We hypothesize
that the long baseline of the SSPDB observations leads to
the points in each subsample being too temporally distant2

for L-S to reliably derive the correct period.
The VP method was the worst performing of the meth-

ods as it seems to incorrectly select aliases/pseudo-aliases,
causing the method to “overcorrect”. Figure 10 shows that
there are regions where no periods are detected and peri-
ods tend to be derived at longer periods, meaning that
the correct periods get derived a small percentage of the
time. With the VP and window methods being similar,
we hypothesize that the reason the VP method is worse
is that the pseudo-alias check causes an overcorrection of
the periods.

One may wonder whether the match percentages found
here could be improved since all of the methods still have
derived periods at or near aliases. It is possible that better
parameters for the methods could be found with a more
exhaustive search of the parameter space, like those in

2This is only an issue for the MC method. Having a long baseline
of observations is beneficial for the other methods.

Table 2. However, such a search is impractical due to the
large volume of data in the catalogs.

For the masking method, since it is static and therefore
unable to react to changes in aliases, the masks might have
to be re-derived after the survey starts if an inaccurate
simulation was used or if the observational cadence of the
survey changes during the survey.

One important conclusion is that the best de-aliasing
approach is not the same for ZTF and SSPDB, which im-
plies that a study like this should be carried out for every
large-scale survey. If this is impractical and a single uni-
form approach is preferred, we identify the masking pro-
cess as the most effective, though this conclusion is based
only on the two data sets considered here.

7. Conclusions and Future Work

We used two sets of survey data, one real and one syn-
thetic, to test four de-aliasing techniques for period solu-
tions from all-sky surveys.

We find that the masking method provides the overall
best results and should be chosen for any given survey.
This method has a relatively low time complexity. The
masks for ZTF and SSPDB, and therefore LSST, have
been generated and are presented in Table 1. The win-
dow method would also be a good choice to apply if the
computational performance loss compared to the masking
method is not important as it provides aliases for each ob-
ject individually. However, we note that results may vary
from survey to survey, and the best approach is to carry
out individualized studies, such as this one.

This paper leads to several lines of future investigation:

• Improving the window method so it provides a higher
match rate.

• Use several of the methods together to see if that
improves the match rate.

• Develop a GPU version of the MC method in order
to decrease its expensive computation time.

• Develop a method that removes the pseudo-aliases.

• Test how differences in a survey’s simulated data and
its real data change its mask ranges.

• Develop and test methods for determining a “con-
fidence” in a periodogram result in order to better
gauge if a derived period result is correct.
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Appendices
A. LSST Generation

For each object from the LSST Synthetic Moving Ob-
jects Database, the following cuts/steps were taken in gen-
erating a periodic signal in their data

1. Import all objects with at least 30 observations in at
least two filters.

2. Convert the apparent magnitudes to absolute mag-
nitudes using the “filterg12” value as that filter’s G.
SSPDB uses the Bowell HG system (Bowell et al.,
1989) not the HG12 system (Muinonen et al., 2010)
even though the field is called “filterg12”. If that
filter’s “g12” data was NaN, then the average of the
rest of the filter “g12” values were used. If all the fil-
ter’s “g12” values are NaN, then a value of G = 0.15
was used for all filters.

3. A period and amplitude were generated for each ob-
ject and a sine wave with those properties was added
to the objects derived absolute magnitudes. Both
were generated using the parameters located in Ta-
ble 4 and the resulting distributions are shown in
Figure 5. The truncated normal distribution used
SciPy’s truncnorm function and the gamma distri-
bution used SciPy’s gamma function.

Period Amplitude
Distribution Truncated Normal Gamma

Parameters

a −0.1 a 0.48
b 50 1

β 0.18

µ 6
σ 40

Table 4: The distributions and parameters used for the period and
amplitude generation. Plots for these distributions are available in
Figure 5. The distributions were approximated from the LCDB data
(Section 4.1).

4. For each filter, the mean of the absolute magnitudes,
µH , was calculated. H − µH for each filter was then
concatenated, resulting in a single band of data with
µH = 0.
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5. The observation data along with the assigned period
and amplitude values were stored.

B. Derived Period Distributions
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Figure 6: The derived period distribution for the given survey using
the no method (the base derived period distribution).
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(a) The period distribution used for SSPDB.
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(b) The amplitude distribution used for SSPDB.

Figure 5: The period and amplitude distributions for SSPDB. The x-
axis is the period/amplitude and the y–axis is the probability density
of each bin (the area under the histogram is 1).
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Figure 7: The derived period distribution for the given survey using
the mask method.
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Figure 8: The derived period distribution for the given survey using
the Monte Carlo method.
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Figure 9: The derived period distribution for the given survey using
the window method.
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Figure 10: The derived period distribution for the given survey using
the VanderPlas method.
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