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ABSTRACT

Security threats are rising due to widely available computational

power and near-future quantum computers. New cryptographic

protocols have been developed to address these challenges, but very

few protocols take advantage of parallel computing. In this paper,

we propose optimizations to the cryptography protocol Response-

Based Cryptography (RBC). Since the protocol is general-purpose,

it can be incorporated into post-quantum cryptography systems

to authenticate users in resource-constrained environments, like

Internet of Thing (IoT) devices. The optimizations proposed in this

paper allow for clients to be authenticated faster. Additionally, this

paper makes a cross-platform comparison of the performance of the

optimized RBC protocol on the Graphics Processing Unit (GPU), the

Central Processing Unit (CPU), and the Associative Processing Unit

(APU). We find that the GPU and APU yield similar performance

but the APU can be much more energy efficient. Furthermore, we

evaluate the multi-GPU scalability of the algorithm and achieve a

minimum speedup of 2.66× on 3×A100 GPUs.
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1 INTRODUCTION

The field of cryptography has largely focused on the development of

new algorithms using different mathematical techniques to improve

security [2]; however, there are few cryptographic protocols that

employ parallel computing. New protocols can be designed to take

advantage of these resources, contrasting typical cryptographic
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protocols that assume that both parties have the same computa-

tional capabilities. One example is Response-Based Cryptography

(RBC) [12, 13, 29, 36, 39, 40], which allows for one-time session keys.

Critically, parallel computing is needed in the protocol to enable

these one-time session keys and is a capability that is lacking in

many canonical cryptography systems.

In typical public key infrastructure (PKI), users are assigned

a public and private key pair and the private keys are stored in

memory, e.g., RAM and disk. This puts the private keys at risk

of being appropriated (read) by attackers. To mitigate this threat,

clients can instead use Physical Unclonable Functions (PUFs) [14] to

create private keys on-demand, thus avoiding storing private keys

in memory. PUFs are additional hardware elements that are added

to a device (or connect via USB) which act as digital fingerprints —

each PUF is unique due to deviations in manufacturing. However,

PUFs are well-known to produce errors relative to their initial state

at production, and thus, a way to correct these errors is needed to

successfully authenticate a client in PKI. Error correction codes [5,

23, 27] may be used, but low-powered Internet of Things (IoT)

devices often do not have the computational power to carry out

error correction, and if they were able to carry out error correction,

it may leak information to an opponent. Consequently, a different

method is required; instead, error correction can be performed on a

secure server that has higher computational capabilities than client

devices.

To enable the use of PUFs in PKI, RBC may be leveraged [12,

13, 29, 36, 39, 40], which corrects the errors generated by client

PUFs. The RBC protocol is made up of two main functions: a high

performance search over the PUF seed space and the generation of

public keys from the PUF seeds. In previous work, the RBC search

was carried out on public keys generated by AES or Post Quantum

Cryptography (PQC) algorithms [29, 36, 39, 40]. There are three

drawbacks of the RBC protocol outlined in prior work that we

summarize as follows: (1) key generation accounts for the largest

fraction of the search time and leads to high register usage which

degrades performance [29], (2) the need to search over the large PUF

seed space is intractable on typical multi-core CPU architectures

found in servers, and (3) the method used to iterate over the PUF

seed space is not well-suited for the RBC protocol.

In this paper, we propose two optimizations to the previous RBC

protocol. First, instead of searching over public keys, which requires

generating a public key for every PUF seed in the seed space, we
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propose searching over hashes instead. Since hashing is faster and

requires fewer registers than most PQC public key generation func-

tions, we show that this decreases the execution time of the RBC

protocol. Second, we investigate other seed iteration methods that

may be better suited for the RBC protocol than the method used in

prior work. Optimizing the RBC protocol enables a higher degree

of security, as clients wait less time to be authenticated and with

the same time budget, the search space can be increased.

We present an evaluation of the optimized RBC protocol onmulit-

core CPUs and many-core GPUs. Additionally, we include a pre-

liminary evaluation of the Associative Processing Unit (APU) [26],

with this being the first paper that evaluates the APU performance

on any application. While the APU is a new accelerator architec-

ture, it offers two potential benefits over the many-core GPU: (1)

it is a compute-in-memory architecture, where data is accessed by

the processor directly in-place, thus mitigating expensive off-chip

memory accesses, and (2) it is often more power efficient than the

GPU.

This paper is multi-faceted, as it interfaces with the fields of com-

puter architecture, high performance computing, and both hard-

ware and software aspects of security. Therefore, in what follows,

we articulate the major objectives and contributions of the paper:

• We propose an optimized RBC protocol, RBC-Salted, that takes

advantage of fast hashing and seed iteration methods to simplify

the protocol, while providing the same level of security. We inves-

tigate the use of the Secure Hash Algorithm (SHA), more specifi-

cally, SHA-1 and SHA-3, in the RBC protocol. Although SHA-1

is no longer deemed secure, we include performance results for

SHA-1 to provide a more thorough performance evaluation. Ad-

ditionally, we do not include other hashing algorithms, such as

BLAKE [4] or MD6 [37], as SHA is standardized by NIST and the

other two are not.

• We investigate different PUF seed iteration methods on the GPU.

These algorithms have trade-offs in terms of parallelization po-

tential and work efficiency, where high parallelization potential is

required for high throughput parallel architectures. We find that

the best method results in a 22.7% reduction in authentication

time. We also make an optimization to SHA-3 on the CPU and

GPU.

• We present a cross-platform comparison of performance between

the CPU and GPU to compare how our optimized protocol per-

forms against the state-of-the-art. We also include a preliminary

evaluation of the APU.

• We present a comparison of power consumption between the

GPU and APU. This paper is the first in the literature to report

APU power consumption (on any algorithm).

• We propose a multi-GPU implementation so that we can observe

how the algorithm scales in multi-GPU systems, which has im-

plications for how the algorithm may scale on other accelerators,

including the APU.

The paper is organized as follows: Section 2 outlines the RBC

protocol and related work, Section 3 describes the optimized proto-

col, Section 4 presents the evaluation, and Section 5 concludes the

work.

2 BACKGROUND

2.1 Overview of Response-Based Cryptography

Motivation: In typical PKI, client devices store private keys in non-

volatile memory that can be exploited by attackers. To eliminate

this threat, private keys can be stored in volatile memory instead.

PUFs are non-volatile memory that allow for private keys to be

generated on-demand, where a new private/public key pair can

be created per transaction. Thus, even if an attacker was able to

recover a client’s private key, it would become invalid after a short

time.

Threat Model: Here we outline the security assumptions of RBC.

(𝑖) The server is located in a secure environment. (𝑖𝑖) The PUFs
are manufactured in a secure environment. (𝑖𝑖𝑖) Once a PUF is

deployed, it is in an insecure environment.

Because PUFs produce erratic bit streams, and since these bit

streams are used as input to create cryptographic keys in the RBC

protocol, a method to fix these erratic bits is necessary. One ap-

proach is to use helper functions and/or error correction codes to

correct any bit mismatches output by the PUF on the client de-

vice. However, many low-powered IoT devices do not have the

computational power to perform these correction procedures. The

alternative to this approach is to use RBC, where a secure server is

used to perform a parallel search over the seed space to determine

whether the erratic seed produced by the client is valid [12, 15]. Con-

sequently, novel methods for exploiting new parallel architectures

is important for validating erratic PUF-generated client seeds.

The RBC Protocol: Most PKI relies on centralized certificate

authorities (CAs) to authenticate and validate client public keys,

which are then disseminated by a registration authority (RA). Before

validation can occur, all client PUFs are enrolled in a secure facility,

where the PUF image is stored in the CA. PUF images for all clients

are stored in an encrypted database. During validation, PUF output

is used as input into the RBC search; the bit stream from the PUF is

used as input into the key generation function of a cryptographic

algorithm. The public keys are then used to authenticate devices. It

is important to note that client private keys are never generated

or held in memory during the RBC protocol. The RBC search is

described in further detail in Section 3 below.

Regarding the erratic nature of PUFs, the algorithm is agnostic

to the underlying PUF hardware. However, if a PUF has an intrin-

sically large bit error rate, then it is conceivable that a client will

not be authenticated due to an intractable search. To address this

problem, the RBC protocol uses Ternary Addressable Public Key

Infrastructure (TAPKI) [16]. In short, TAPKI will ignore the cells in

the PUF that have a high error rate by masking them. This ensures

that the RBC search is generally tractable, while still being robust

to the erratic nature of PUF technology.

2.2 Complexity of the Search Process

We define the complexity of the RBC search process introduced in

Section 2.1. Consider a bit stream generated from a client’s PUF

that has 𝑑 flipped bits relative to the server’s PUF image. In this

paper, we assume the PUF outputs 256 bits. Thus, the upper bound
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Table 1: The number of seeds searched on the server for the exhaustive (Equa-

tion 1) and average case (Equation 3) searches for each Hamming distance 𝑑

up to 5.

𝑑 1 2 3 4 5

Exhaustive 256 3.3 × 104 2.8 × 106 1.8 × 108 9.0 × 109
Average 129 1.7 × 104 1.4 × 106 9.0 × 107 4.6 × 109

number of keys 𝑢 that will be searched by the server is as follows:

𝑢 (𝑑) =
𝑑∑
𝑖=0

(
256

𝑖

)
. (1)

Now, consider an opponent that would like to derive the client’s

private key by permuting a 256-bit bit stream and generating the

key. Because the opponent does not know the starting position of

the bit stream (i.e., the bits stored in the server’s PUF image for the

client), the worst case number of keys that need to be searched by

the opponent is as follows:

𝑜 =

256∑
𝑖=0

(
256

𝑖

)
= 2

256 . (2)

Comparing Equation 1 to 2, the server’s search is tractable as-

suming 𝑑 is sufficiently low (i.e., the PUF generates bit streams with

limited variability), whereas the opponent’s is intractable because

the entire 256-bit seed space needs to be searched. Furthermore,

given that the PUF allows for one-time keys, the key will change

in a short amount of time.

Equation 1 illustrates the complexity of the server’s search in

the worst-case scenario, where all seeds up to a Hamming distance

𝑑 need to be searched. However, on average, a seed will be searched

halfway through the seed space at Hamming distance 𝑑 , as shown

in Table 1. This yields a number of seeds searched as follows:

𝑎 (𝑑) =
𝑑−1∑
𝑖=0

(
256

𝑖

)
+

(
256

𝑑

)
2

. (3)

In our evaluation, we examine the performance of both exhaus-

tive and average case searches. For the latter, we incorporate an

early exit procedure that signals all threads to terminate their re-

spective searches. This termination procedure varies depending on

the hardware platform.

2.3 Related Work

Prior work can be separated into three categories: RBC, seed per-

mutation, and hashing.

Cambou et al. [15] proposed the RBC protocol using AES and

showed experimental results as a function of PUF bit error rates to

assess the feasibility of performing the search under several scenar-

ios. Cambou [12] modeled the RBC search process and showed that

while a typical workstation is suitable for searches with a low bit

error rate, additional computational resources are needed for PUFs

that generate higher bit error rates. Philabaum et al. [36] proposed

a distributed-memory CPU algorithm that was parallelized using

MPI and achieved a speedup of 404× on 512 CPU cores. Wright

et al. [39] parallelized the RBC search process on the GPU for the

AES, ChaCha20, and SPECK block ciphers, and showed that a single

Nvidia V100 GPU achieves the same search throughput as roughly

300 CPU cores, demonstrating that the GPU has superior search

throughput compared to the CPU.

In addition to the above algorithms that employed AES in the

search, Wright et al. [40] and Lee et al. [29] proposed using the

CRYSTALS-Dilithium [19] and SABER [20] post-quantum cryptog-

raphy (PQC) algorithms for the RBC search, respectively. These

works presented highly efficient RBC search algorithms [29, 40].

For instance, the multi-GPU SABER [29] algorithm achieved a 2.93×
speedup using 3 A100 GPUs. While these GPU-accelerated algo-

rithms are fast, they were shown to be dramatically slower than the

AES-based RBC algorithms described above, as the computational

cost of AES is much lower than PQC key generation methods.

Generating the permutations for each seed in the RBC seed space

is an established problem that has a number of sequential solutions

available [28]. The most efficient permutation generation methods

have a minimal difference from one permutation to the next while

also generating the permutations in a lexicographical ordering.

Early works such as Algorithm 154 [32] first solved these ordered

permutation generation problems, but later works, such as Gosper’s

Hack [28], are able to generate the same permutations with much

less work. While Gosper’s Hack is highly efficient at small scale,

other methods, such as Chase’s Algorithm 382 [18] and Algorithm

515 [11], can scale to larger permutations without the drawbacks

that Gosper’s Hack encounters. While non-lexicographical permu-

tation generation solutions are available, such as Algorithm 155 [33],

they cannot be parallelized as efficiently as Chase’s Algorithm 382

or Algorithm 515.

The literature on parallelizing hashing algorithms is limited on

the GPU and nonexistent on the APU. We briefly describe other

hashing algorithms, but focus on SHA-3, as it is standardized by

NIST. SHA-3 is a subset of the Keccak [8] hashing family. Another

subset of the Keccak hashing family are the tree-based algorithms.

Lee et al. parallelize the tree-based Keccak hashing algorithm on

the GPU [30]; however, this version of Keccak is not standardized

under SHA-3. Two other works parallelize SHA-3 on the GPU, but

they assign multiple threads to work on one hash at a time [17, 21].

This parallelization technique is not beneficial in the RBC protocol,

as the RBC protocol requires computing many different hashes in

parallel to maximize hashing throughput.

3 RBC-SALTED: THE RESPONSE-BASED

CRYPTOGRAPHY PROTOCOL AND

OPTIMIZATIONS

Recall from Section 2.1 that the RBC search process in the server

needs to take as input the bit stream from the PUF image. Then,

the search uses a cryptographic algorithm to generate public keys to

determine whether the client should be authenticated. This scheme

has one major drawback: the logic of the search process is directly re-
lated to the cryptographic algorithm. For instance, if a client wishes to

use a different algorithm, such as a PQC algorithm (e.g., CRYSTALS-

DILITHIUM [19]), the public key generation procedure in the RBC

search needs to be revised. Thus, the standard RBC protocol is algo-
rithm aware. Because the algorithm-aware RBC search is expensive

to carry out, significant work is needed to optimize each of these

cryptographic algorithms.

To address this problem, we propose RBC-Salted. Our aim is to

make the search process agnostic to the type of cryptographic algo-

rithm employed. This has several benefits, summarized as follows:
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• Any cryptographic algorithm that generates public keys can be

employed in the system. The algorithm could be AES or a PQC

algorithm, such as one of the NIST round 4 PQC KEM and DSA

candidates (Classic McEliece [9], BIKE [3], or HQC [31]) or the

NIST selected algorithms (CRYSTALS-Dilithium [19], CRYSTALS-

Kyber [10], FALCON [25], or SPHINCS+ [6]).

• Instead of optimizing the key generation procedure of several

cryptographic algorithms to improve server key search through-

put, optimization efforts can be focused on a single searchmethod.

• A single RBC search system allows the technology to be deployed

on a wider range of hardware platforms, including emerging

parallel architectures. This allows us to assess the performance

and other benefits of using one parallel architecture over another.

Figure 1 describes the RBC-Salted procedure, where the seed

search occurs within the CA. The search begins with a client want-

ing to be authenticated by the CA server. The client then performs a

handshake, where PUF address information is exchanged between

the client and CA. The client will read the PUF at the address speci-

fied by the CA to generate a bit stream. Using the bit stream as input

into SHA, the client generates a message digest,𝑀1. The client then

sends the message digest to the CA and the CA performs the RBC

search. We describe the RBC search as follows:

(1) The server generates a 256-bit seed, 𝑆𝑖𝑛𝑖𝑡 , using the client’s PUF

image. The seed is used as input to the RBC search.

(2) 𝑆𝑖𝑛𝑖𝑡 is hashed using SHA (this can be any variant of SHA) to

create a message digest,𝑀 .

(3) Using the message digest𝑀1 sent to the server from the client,

the server checks if𝑀 = 𝑀1.

(4) If 𝑀 ≠ 𝑀1, the RBC search is conducted, starting at 𝑑 = 1,

where 𝑑 bits are flipped in the bit stream, and the CA hashes

the new seed 𝑆 to generate the next message digest.

(5) If the CA finds message digests (𝑀 and 𝑀1) that match at a

Hamming distance 𝑑 , then the client is authenticated.

(6) If the CA does not find message digests (𝑀 and𝑀1) that match,

the Hamming distance 𝑑 is increased by 1, and the algorithm

starts again at step 4 above.

(7) Once the client is authenticated, i.e., the server found the client’s

256-bit seed, which occurs when𝑀 = 𝑀1, the seed 𝑆 is salted

(e.g., 𝑆 is bit shifted) to create 𝑆 ′.
(8) The public key for the client 𝑃𝑘1 is generated using 𝑆 ′ with a

cryptographic algorithm.

(9) The RA is updated using the client’s public key.

A critical element of this procedure is that both the client and

server share the same salt, such that there is not a correspondence

between the public key and the message digests.

Additionally, RBC uses a time threshold, 𝑇 , for which it must

authenticate a client. Because the error rate could potentially be

high if the client generates a bit stream from a PUF with a high

error rate, the search will be intractable, as the complexity scales

exponentially with 𝑑 . If a timeout occurs, the CA simply sends the

client a new PUF address and the process is restarted. In this paper,

we set 𝑇 = 20 s, as proposed by prior work [29].

Observe that in RBC-Salted, the server only needs to generate

a public key once. In contrast, the original RBC algorithm needs

to generate public keys for each permutation of the 256-bit seed.

Because key generation in most cryptographic algorithms is more

Algorithm 1 RBC-Salted Search Algorithm

1: procedure Salted-CPU(𝑑 ,𝑀1 , 𝑆𝑖𝑛𝑖𝑡 )

2: 𝑟 ← getThreadId()

3: 𝑝 ← getNumThreads()

4: if 𝑟 = 0 then

5: 𝑀 ←SHA(𝑆𝑖𝑛𝑖𝑡 )

6: if 𝑀 = 𝑀1 then

7: NotifyAllThreadsToExitSearch()

8: return True

9: for 𝑖 ∈ 1, . . . , 𝑑 do

10: 𝑛 ←
(
256

𝑖

)
/𝑝

11: for 𝑗 ∈ 1, . . . , 𝑛 do

12: 𝑆 ← genNextSeed(𝑆𝑖𝑛𝑖𝑡 , 𝑟 , 𝑛)

13: 𝑀 ← SHA(𝑆)

14: if 𝑀 = 𝑀1 then

15: NotifyAllThreadsToExitSearch()

16: return True

17: return False

expensive than hashing, the salted approach is less expensive than

the original RBC protocol.

3.1 Overview of the Algorithm

We present an overview of RBC-Salted using pseudocode, provid-

ing minimal hardware-specific details. In the following subsections,

we describe how the work is assigned to the processing elements

(PEs) across several hardware platforms. We use PE to denote a

core on the CPU and GPU and a set of cores on the APU.

Recall that the RBC search response time is bounded by the PUF

error rate and the authentication threshold 𝑇 . Using benchmarks,

we compute the largest value of 𝑑 that yields a latency ≤ 𝑇 .
For the purposes of presentation, we assign each PE 𝑛 = 𝑁 /𝑝

seeds to search at each Hamming distance, 𝑑 , where 𝑁 =
(
256

𝑑

)
and

𝑝 is the number of PEs.

The pseudocode of the search process is given in Algorithm 1.

Algorithm input: a maximum Hamming distance, 𝑑 , for which

to search, the message digest received from the client𝑀1, and the

seed 𝑆𝑖𝑛𝑖𝑡 that is retrieved from the server’s client PUF image.Algo-

rithm output: returns true if the client is authenticated, and false

otherwise. The algorithm begins by retrieving a thread identifier,

𝑟 , and the total number of threads 𝑝 (lines 2–3). On lines 4–7, the

first thread (𝑟 = 0) checks a Hamming distance of 0 by using SHA

to hash the seed 𝑆𝑖𝑛𝑖𝑡 to generate the message digest, 𝑀 . If the

message digests match (𝑀 = 𝑀1), then the client is authenticated

and all threads exit. Otherwise, a parallel search needs to proceed.

The search is executed in a data-parallel fashion, where each

thread searches a different domain of the total seed space. Line 9

loops over each Hamming distance up to 𝑑 . The number of seeds

each thread needs to search for Hamming distance 𝑖 is obtained

on line 10, and a loop is entered on line 11. Inside the loop, a seed

is obtained by calling the function genNextSeed(), which requires

the initial seed, 𝑆𝑖𝑛𝑖𝑡 , the thread id, 𝑟 , and the number of seeds to

search, 𝑛. With this information, the function computes the next

seed, S, that the thread will search, where each thread searches a

different disjoint subspace of the total seed space. The seed is then

hashed on line 13 to create the message digest𝑀 . If the server and

client’s message digests match (𝑀 = 𝑀1), all threads exit and the

client is authenticated. If the seed is not found when searching up

to 𝑑 , then the client is not authenticated. In practice, the client and

server would start the process again with a new handshake.
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Figure 1: The RBC-Salted protocol. The cryptographic algorithm can be replaced with any public key cryptographic protocol. See text for details.

The exit procedure described in Algorithm 1 on lines 7 and 15 is

dependent on the hardware platform. We describe the exit proce-

dures and algorithm-specific optimizations in greater detail in the

following subsections.

3.2 Salted-GPU

Here we present the GPU algorithm. In Algorithm 1, on lines 2–3,

the GPU algorithm computes 𝑟 and 𝑝 using built-in variables in

CUDA, where r=threadIdx.x+blockIdx.x*gridDim.x, and
p=gridDim.x*blockDim.x. The loop on line 9 is executed on the

host, where a kernel is launched to process a single Hamming

distance (i.e., if we search 𝑑 = 5, then we launch 5 kernels).

Section 3.1 describes each PE being assigned 𝑛 =
(
256

𝑑

)
/𝑝 seeds

to search at each Hamming distance 𝑑 . Since the GPU typically

requires thread oversubscription to hide memory latency and stalls,

the value of 𝑝 will be several times larger than the number of GPU

cores. In our evaluation, we tune the parameter 𝑝 for the highest

Hamming distance searched.

Early Exit: The exit procedure described in Algorithm 1 on lines 7

and 15 uses a flag in unified memory such that it is accessible on the

host and across multiple GPUs. The host requires the flag such that

it knows whether to terminate the search early or to launch the

kernel for the next Hamming distance. The GPU threads require the

flag to know whether to return from the kernel early. The thread

that finds the correct seed atomically updates the flag. After each

thread processes a seed, the flag is checked to see whether it has

been set. If it has, the thread returns.

We present three optimizations made to our seed iteration, hash-

ing, and memory storage, in the follow subsections.

3.2.1 Seed Permuting Optimization. Seed permutations are gen-

erated by flipping 𝑑-bits of 𝑆𝑖𝑛𝑖𝑡 , as determined by a combination.

Two different combination generation methods are evaluated with

a focus on the efficiency of parallel generation of combinations.

While there is a large body of literature addressing combination

generation [28, 34, 38], there is little that addresses parallel combi-

nation generation and performance of the methods vary and can

significantly impact overall response time. For example, Gosper’s

Hack [28], as used in prior work [29, 36, 39, 40], is a popular combi-

nation generator that performs well with native datatypes, e.g. 8-bit,

32-bit, and 64-bit types. However, 256-bit input seeds cannot be

stored in a native datatype. Consequently, the performance is poor.

Instead, we evaluate two algorithms that are both highly optimized

for sequential execution. We also compare them to Gosper’s hack,

described above.

Algorithm 515: One way of generating a unique combination is to

pull a single combination from all possible combinations based on

an index in that ordering. This allows a combination to be generated

without repetition based on a single iteration value. This method

parallelizes well because combinations can be generated indepen-

dently of each other. Also, the method allows for pre-computing a

common subset of the computation and then using a lookup table

to exploit the high memory bandwidth available on the GPU. Algo-

rithm 515, developed by Buckles and Lybanon [11] and adapted for

the GPU, is evaluated in Section 4.5.

Chase’s Algorithm 382: Gray codes generate combinations by

minimizing the work needed to transition from one combination to

the next, while avoiding repetition and maintaining an order [28,

38]. Gray codes are often computed recursively [24]; however, this

is impossible for

(
256

5

)
combinations when executed on GPUs due

to recursive depth limitations. Chase’s Algorithm 382 [18] is a

non-recursive Gray code that sequentially generates combinations.

Each new combination is dependent on the state of the previous

combination, making it difficult to parallelize. To circumvent this

problem, we modify Algorithm 382 such that the combinations are

generated sequentially, with a number of combination states being
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Figure 2: Representation of a GSI Gemini APU core consisting of 16 banks.

Each bank is made up of 2048 × 16 bit processors (top-right, gray) that are

coupled with state memory (bottom-left, blue).

saved at regular intervals. The number of saved states corresponds

to the number of desired independent threads used for hashing.

Each state is evenly spread throughout the combination sequence

so that threads have equal workloads. To compute the combinations

on the GPU, the array of saved states is sent to the GPU and threads

are assigned an initial state. Each thread then uses Algorithm 382

to generate and hash the seed permutation while maintaining a

single state per thread. While overhead may make Algorithm 382

seem like a less attractive option compared to Algorithm 515, the

reduction in computation of Algorithm 382 leads to a speedup over

Algorithm 515. Since the set of initial states can be loaded into GPU

memory once and used to authenticate all clients, this overhead is

excluded in the evaluation.

3.2.2 Hashing Optimizations. The SHA-3 algorithm from Bertoni

et al. [7] was optimized for use in the RBC scheme by eliminating

unnecessary functionality in the generic implementation. Most

hashing is designed for variable sized inputs, which we do not

require for hashing 256-bit seeds. As such, we fixed the padding

bits for our 256-bit seeds to reduce several conditional statements.

We found that this improved the performance of Salted-GPU by

∼3%. We use this optimization in all GPU experiments in Section 4.

3.2.3 Storing Chase’s Algorithm 382 State in Shared Memory. Recall
from Section 3.2.1 that Chase’s algorithm stores a state for each

thread. In order to reduce memory latency, we store the state in

shared memory [22]. This results in 1.20× and 1.01× speedups for

SHA-1 and SHA-3, respectively. We use this optimization in all GPU

experiments in Section 4.

3.3 Salted-APU

We present the APU, Salted-APU, and its optimizations. The APU

used in our experiments contains 4 cores. As shown in Figure 2, each

core is made up of 16 banks, and each bank consists of 2048× 16 bit
processors (BPs). Thus, each chip consists of 4 × 16 × 2048 × 16 ≈ 2

million BPs. For the APU, a PE is software defined based on the

number of BPs needed for each thread. Similarly to the GPU, an

efficient APU program must account for the memory needed by

the algorithm, in addition to maximizing resource (core) utilization.

The number of BPs that are active is dependent on the amount of

state memory used (akin to registers on a CPU).

Each PE is defined by combining 32 and 80 BPs for SHA-1 and

SHA-3, respectively, as SHA-3 has a greater state footprint than

Table 2: Summary of notation that appears in the evaluation.

Definition

𝑑 The searched Hamming distance.

𝑇 The time threshold for authentication. We set𝑇 = 20 s.

𝑝 The number of threads executed for a given algorithm.

𝑛 The number of seeds searched per thread at a given 𝑑 .

𝑏 Number of CUDA threads per block.

SHA-1. This means that 2.5× more PEs can run concurrently for

SHA-1 than for SHA-3. In total, there are 4 × 16 × 2048

2
= 65k PEs

for SHA-1 and 4 × 16 × ⌊ 2048
5
⌋ = 26k PEs for SHA-3.

In Algorithm 1, on line 3, we define the number of threads 𝑝 as

the number of APU PEs. The loop on line 11 is executed on each

PE and starts by loading startup combinations for the seed iterator.

Each combination is used to generate the next seed permutation 𝑆

from 𝑆𝑖𝑛𝑖𝑡 . In total, each startup combination is used to generate

256 seed permutations, after which a new startup seed is loaded for

the next batch of computation.

Early Exit: The exit procedure described in Algorithm 1, on lines 7

and 15 uses a flag stored in associative memory that all threads

have access to. Once the client’s seed is found, the flag is updated.

All threads check the flag after completion of the current 256 seed

permutation batches.

3.3.1 Seed Permutation. In contrast to the GPU, the design space

for seed permutation algorithms is smaller for the APU, as the

allocation of PEs is highly coupled to the algorithm. Consequently,

we evaluate a novel seed permutation method that is designed

specifically for the APU architecture. Other methods used with

the GPU and CPU, such as Chase’s Algorithm 382 and Algorithm

515, would be bottlenecked by PE allocation and excessive memory

usage on the APU.

3.4 Salted-CPU

Salted-CPU is parallelized with OpenMP. The seed permutation

uses the same methodology as described in Section 3.2.1, where

Algorithm 1 shows how RBC-Salted is designed for the CPU.

Early Exit: The early exit procedure shown in Algorithm 1 on

lines 7 and 15 uses a flag that is stored in main memory to signal

all of the threads to stop searching.

Optimizations: The CPU implementation of RBC-Salted uses

the same optimizations to SHA-3 that were used for the GPU, as

well as the same seed generation optimizations.

4 EXPERIMENTAL EVALUATION

Table 2 summarizes relevant notation defined in prior sections.

4.1 Experimental Methodology

Salted-GPU is written in C/C++ and CUDA, Salted-CPU is writ-

ten in C, and Salted-APU is written using C++ and APL (APU

assembly language). We summarize the platforms that we use in

our experiments in Table 3.

As described in Section 3, the complexity of the RBC search is

bound by the Hamming distance 𝑑 . In our experiments, where we

show the RBC search-only response times (excluding communica-

tion), we present both upper bound (exhaustive search) and average

case performance. Because the PUF generates errors, the seeds are
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Table 3: Platform Details: the cores and memory columns for the GPU and APU refer to the number of cores per device.

CPU GPU or APU

Platform Model Total Cores Clock Memory Model Cores Clock Memory Software

PlatformA 2×AMD EPYC 7542 2×32 (64) 2.9 GHz 512 GiB 1×NVIDIA A100 6912 1410 MHz 40 GiB CUDA 11

PlatformB Intel i7-7700 4 3.6 GHz 32 GiB Gemini APU 131072 575 MHz 4 GiB APL

stochastic; therefore, when we show the average case performance,

we present an average of 1,200 trials.

A typical bit error rate from the PUF is 5 bits, and if it is lower, we

perform noise injection on the client to ensure that we have flipped

5 bits in the seed; consequently, we search Hamming distances up to

𝑑 = 5. Throughout the evaluation, we will refer to searching a Ham-

ming distance, and we highlight that, as shown in Equations 1 and 3

and Table 1, we search all Hamming distances up to and including

the value of 𝑑 . Thus, when we refer to searching 𝑑 = 5, this implies

that we search the following values: 𝑑 ∈ {0, 1, . . . , 5}.

4.2 Summary of Experimental Scenarios

We present a comparison of RBC-Salted using two hashing algo-

rithms: SHA-1 and SHA-3. Although SHA-1 is no longer deemed

secure, we include performance results for SHA-1 to provide a more

thorough performance evaluation when comparing the algorithms

tailored for the CPU, GPU, and APU architectures. Additionally, we

only investigate the use of SHA and do not include other hashing

algorithms, such as BLAKE [4] or MD6 [37], as SHA is standardized

by NIST and the other two are not. As described in Section 3, we

use a 𝑇 = 20 s time threshold in this paper, consistent with prior

work [29].

We perform an end-to-end search, requiring network commu-

nication between a client equipped with a PUF and a server that

performs the RBC search. For Salted-GPU and Salted-CPU results,

both client and server are located in the U.S.A. For Salted-APU, the

server is located in Israel. Thus, to make a fair comparison between

algorithms, we report the network latency derived from the CPU

and GPU experiments, and not the latency between the U.S.A. and

Israel. We also present results without any of the end-to-end com-

munication costs, where we only report the response time required

to perform the RBC search.

4.3 Implementation Configurations

We compare the performance of Salted-GPU, Salted-CPU, and

Salted-APU for 𝑑 = 5. We outline the configurations of the im-

plementations for most of the experiments, as follows. For each

algorithm, we select the parameters that achieve the best perfor-

mance.

Salted-GPU: This algorithm is executed on PlatformA using

1×A100 and is configured with 𝑛 = 100 seeds searched per thread

and 𝑏 = 128 threads per block.

Salted-APU: This algorithm is executed on PlatformB. As men-

tioned in Section 3.3, SHA-1 and SHA-3 use 65k and 26k PEs, re-

spectively.

Salted-CPU: This algorithm is executed on PlatformA. We exe-

cute Salted-CPU using 𝑝 = 64 CPU threads, matching the number

of physical cores on our platform. We achieve speedups of 59× and

63× on 64×CPU cores using SHA-1 and SHA-3, respectively.
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Figure 3: Heatmap showing the search-only time in seconds for different com-

binations of seeds per thread (𝑛) and threads per block (𝑏) for an exhaustive

search with SHA-3 and 𝑑 = 5. We also include the total number of threads

required to run the RBC search with the given seeds per thread value. The

minimum search time is reached with 100 seeds per thread and 128 threads

per block, outlined in white.

We also show the timing threshold, 𝑇 = 20 s (dashed, horizontal

line). We find that Salted-CPU does not obtain authentication

within this time limit using SHA-3.

4.4 Salted-GPU: Selection of the Number of

Seeds Searched Per Thread and Seeds

Iterated Between Match Checks

To achieve the best performance, the GPU algorithm needs to use

a sufficient number of threads to saturate its resources, while not

creating too many threads that could cause non-negligible overhead

(an exhaustive search at our nominal Hamming distance, 𝑑 = 5,

requires generating over 8 billion seeds, so assigning a single thread

per seed will cause overhead). Therefore, employing Salted-GPU

using SHA-3, we perform a grid search for the best number of

seeds assigned per thread as a function of the number of threads

per block. We find that the best performance is obtained when we

select 𝑛 = 100 seeds per thread and 𝑏 = 128 threads per block

on PlatformA. Furthermore, several sets of parameters achieve

similarly good performance, so the number of threads per block and

seeds per thread can be selected in a large range. We omit showing

the results for SHA-1, as they are similar.

Recall in Algorithm 1 on lines 7 and 15, a flag stored in unified

memory is used to notify threads that the client’s seed has been

found, i.e., the flag is set to true. Accessing this flag after every

seed iteration could have negative effects on performance. For this

reason, we increased the number of seeds iterated between checks

from 1 up to 64 and found that increasing the iterations did not

have any performance impact. Thus, we check if the client’s hash

has been found after every seed iteration in the rest of this paper.
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Table 4: The total exhaustive search-only time (s) for three seed iteratormeth-

ods. The search was conducted for 𝑑 = 5 using SHA-3 on PlatformA using

one GPU. Since we change the algorithm, we use the best parameters (𝑝 , 𝑛,

and 𝑏) for each method, similarly to Figure 3.

Algorithm Search-Only Time

Alg. 382 (Sec. 3.2.1) 4.67

Alg. 515 (Sec. 3.2.1) 7.53

Prior Work [29, 39, 40] 6.04

4.5 Salted-GPU: Seed Iterators

Prior work in RBC [29, 39, 40] used a modified Gosper’s Hack

for generating seed permutations. Recall from Section 3.2.1 that

Gosper’s Hack is efficient, but only if the size of the seed (256-bit

in RBC-Salted) is a native integer datatype (only up to 64-bit on

current GPUs). Adjusting Gosper’s Hack to work with a non-native

datatype significantly reduces performance.

Instead, there are multiple methods for generating permutations

of 256-bit seeds. Recall from Section 3.2.1, that Algorithm 382 is in-

herently sequential but minimizes work, whereas, Algorithm 515 is

highly parallelizable, but requires more work to permute the seeds.

Another approach in the latter class that has high parallelization po-

tential, is that proposed in prior work on RBC searches [29, 39, 40],

Gosper’s Hack. We find that despite Algorithm 515 and Gosper’s

Hack having excellent parallelization potential, they perform much

worse than using Algorithm 382 (Chase’s sequence) when opti-

mized for GPU execution. Algorithm 382 obtains speedups of 5.89×
and 6.77× over Algorithm 515 and Gosper’s Hack, respectively,

when using SHA-3. In summary, we find that it is best to optimize

the work-efficient sequential algorithm, rather than using the less

efficient but highly parallelizable algorithm. Note that we do not

time the seed iteration separately from SHA-3, as they execute in

the same GPU kernel and so there is a dependency between these

two components.

4.6 Comparison of Algorithm End-to-End and

Search-Only Performance

We compare the total end-to-end response time of the algorithms,

showing the breakdown of the time needed for network commu-

nication, including the client reading the 256-bit stream from the

PUF (the client is a laptop and the PUF is connected via a USB port),

and the search time. We combine PUF reading time and network

communication time.

Table 5 shows the performance of the three algorithms for both

SHA-1 and SHA-3, across the exhaustive and average-case search

scenarios. Here, we show searching up to𝑑 = 5. Comparing Salted-

GPU to Salted-APU, using SHA-1, we find that the algorithms yield

roughly equivalent search throughput, where Salted-GPU achieves

a speedup of 1.02× for the exhaustive search over Salted-APU,

but a slowdown of 0.99× for the average-case search. In contrast,

Salted-CPU with 𝑝 = 64 is significantly slower, where the GPU

obtains a speedup of 5.54× and 3.97× on exhaustive and average

case searches, respectively, over Salted-CPU.

In contrast to SHA-1, we find that SHA-3 is much more efficient

on the GPU than the APU, where Salted-GPU obtains a speedup

over Salted-APU of 2.99× and 2.91× on the exhaustive and average
case searches, respectively. Similarly, the speedup of Salted-GPU

over Salted-CPU is 13.06× (exhaustive) and 12.61× (average case).

Table 5: End-to-end response time (s) of Salted-GPU, Salted-APU, and

Salted-CPU for 𝑑 = 5 and SHA-1 and SHA-3. Exhaustive and average case

searches refer to searching the seeds defined by Equations 1 and 3, respec-

tively.

Algorithm Search Type Comm. Time Search Time Total Time

SHA-1

Salted-GPU Exhaustive 0.90 1.56 2.46

Salted-APU Exhaustive 0.90 1.62 2.52

Salted-CPU Exhaustive 0.90 12.09 12.99

Salted-GPU Average 0.90 0.85 1.75

Salted-APU Average 0.90 0.83 1.73

Salted-CPU Average 0.90 6.04 6.94

SHA-3

Salted-GPU Exhaustive 0.90 4.67 5.57

Salted-APU Exhaustive 0.90 13.95 14.85

Salted-CPU Exhaustive 0.90 60.68 61.58

Salted-GPU Average 0.90 2.42 3.32

Salted-APU Average 0.90 7.05 7.95

Salted-CPU Average 0.90 30.52 31.42

Table 6: Salted-GPU and Salted-APU search-only energy consumption of

the exhaustive search for a Hamming distance 𝑑 = 5.

Algorithm SHA Version Total Joules Maximum

Watts

Idle Watts

Salted-GPU 1 317.20 253.43 31.53

Salted-APU 1 124.43 83.81 22.10

Salted-GPU 3 946.55 258.29 31.53

Salted-APU 3 974.06 83.63 22.10

Thus, Salted-GPU is highly proficient at hashing the more expen-

sive SHA-3 algorithm and gains a runtime performance advantage

over the CPU and APU. Recall from Section 4.3, that for Salted-

APU, SHA-3 requires 5 BPs per PE, whereas SHA-1 requires 2 BPs;

therefore, SHA-3 is more resource intensive. This explains the per-

formance degradation when executing SHA-1 vs. SHA-3 on the

APU.

In summary, we find that we can exhaustively search 𝑑 = 5

and obtain authentication within the nominal authentication time

threshold [29] of 𝑇 = 20 s for all algorithms on SHA-1, whereas we

are above the threshold time only for the Salted-CPU algorithm

using 64 cores on SHA-3.

4.7 Comparison of GPU and APU Energy

Footprints

One motivation for using the GPU is that it has lower energy con-

sumption than the CPU for many applications. Similarly, we com-

pare the energy and power footprints of the Salted-GPU and

Salted-APU algorithms. Unlike the GPU, the APU is designed

for in-memory processing. It is known that most of the energy in

many programs is consumed by moving data between memory

and processor [1, 35], and in the APU, this is nearly eliminated.

Table 6 shows the total energy (J) needed to perform an exhaustive

RBC search for 𝑑 = 5. The table also shows the maximum and idle

wattages for each architecture, where idle watts refers to the device

being powered without program execution. In all presented energy

measurements, we include this idle energy. We find that for SHA-1,

the APU is superior to the GPU in terms of energy consumption,

requiring only 39.2% of the joules needed by the GPU. Regarding

SHA-3, the energy consumption is roughly equivalent, as the GPU



Evaluating Accelerators for a High-Throughput Hash-Based Security Protocol ICPP-W 2023, August 7–10, 2023, Salt Lake City, UT, USA

1 2 3
Number of GPUs

1.0

1.5

2.0

2.5

3.0
S

p
ee

d
u

p
Perfect

RTX- SHA1: Exhaustive

RTX- SHA1: Early Exit

RTX- SHA3: Exhaustive

RTX- SHA3: Early Exit

Figure 4: Multi-GPU scalability of the search-only time, showing the speedup

of up to 3xA100 GPUs in PlatformA for SHA-1 (circle markers) and SHA-3

(diamondmarkers) for exhaustive (solid red lines), and early exit (dashed blue

lines) searches. We use the best parameters (𝑝 , 𝑛, and 𝑏) for each number of

GPUs, similarly to Figure 3, as these parameters change when increasing the

number of GPUs.

Table 7: Comparison of execution time (s) for previous RBC work [29, 39, 40]

and this work on 64xCPU Cores, 3xA100 GPUs, and the APU.

CPU/GPU

(PlatformA)

APU

(PlatformB)

Ref. Algorithm 𝑑 CPU Time (s) GPU Time (s) 𝑑 Time (s)

[39] AES-128 5 44.7 2.56 - -

[29] LightSABER 4 44.58 14.03 - -

[40] Dilithium3 4 204.92 27.91 - -

This Work SHA-3 5 60.68 4.67 5 13.95

is faster than the APU, which makes the APU have a similar energy

footprint to the GPU.

4.8 Salted-GPU: Multi-GPU Scalability

All performance results reported above conducted the RBC search

using a single A100 GPU. Here, we assess multi-GPU scalability on

our GPU platform with 3xA100 GPUs.

Figure 4 plots the speedup of Salted-GPU on up to 3xA100 GPUs

for SHA-1 and SHA-3, for both exhaustive and early exit searches.

We find that the exhaustive SHA-1 and SHA-3 searches have the best

scalability; SHA-3 obtains a speedup of 2.87× on 3xA100 GPUs, and

therefore, exhibits excellent scalability. In contrast, the early exit

searches have lower parallel efficiency, where we observe that SHA-

3 obtains a 2.66× speedup on 3xA100 GPUs, indicating that the early
exit procedure has non-negligible overhead. We also find that for a

given search type (exhaustive or early exit), the scalability of SHA-3

is greater than SHA-1. This is expected, as SHA-3 is more compute-

intensive than SHA-1, and so it can better exploit resources with

an increasing number of GPUs. Because of the similarities between

the GPU and APU, the high scalability of the GPU has implications

that the algorithm will scale well on the APU.

4.9 Comparison with the state-of-the-art

Here, we compare this work to previous RBC work [29, 39, 40].

Table 7 summarizes the time to authenticate a client using the

various RBC methods. For comparison purposes, we executed the

algorithms from prior work on PlatformA. For each RBC method,

we give the cryptographic algorithm used, the platform used, the

Hamming distance 𝑑 searched, the CPU time (s), the GPU time

(s), and the parameters used to gather results on the APU from

this work. Because RBC-Salted only requires generating a PQC

key once (after the seed has been found), and instead relies on

hashing and salting to perform the search, we see that Salted-GPU

outperforms both PQC RBC works on the GPU [29, 40], as it takes

both works over 5 seconds to search up to 𝑑 = 4, while Salted-

GPU can search up to 𝑑 = 5 in under 5 seconds. Additionally,

Salted-APU outperforms both PQC RBC works on the GPU [29,

40]. Comparing Salted-GPU to the AES RBC method, we find

that the AES method is ≈ 45.2% faster; however, because AES is

symmetric, SHA-3 is a one-way function, and an asymmetric key

generation function can be used at the end of the RBC search,

RBC-Salted supplies more security. Overall, because RBC-Salted

is more efficient than the PQC RBC methods [29, 40], it enables

searching larger Hamming distances, allowing the algorithm able

to authenticate clients with a higher PUF bit error rate, in addition

to making the protocol more secure.

5 DISCUSSION & CONCLUSIONS

Very few cryptographic protocols take advantage of parallel comput-

ing, which is a missed opportunity for designers of cryptographic

protocols. RBC places the burden of authentication on a server

located in a secure environment, and thus obviates the need to

have low-powered client devices perform error correction. In this

paper, we made two optimizations to the RBC protocol: using a fast

hashing algorithm and salting technique so that the algorithm is no

longer algorithm-aware, and using a more suitable seed iteration

method tailored to the target platforms. With these optimizations,

we proposed RBC-Salted and evaluated the performance of RBC-

Salted on CPUs, GPUs, and APUs.

We made a cross-platform evaluation of the optimized RBC pro-

tocol on three architectures: the CPU, GPU, and APU. We inves-

tigated the use of an APU that allows for accessing data in-place.

We found that Salted-GPU and Salted-APU perform nearly iden-

tically when hashing using SHA-1, but the GPU outperforms the

APU when hashing with SHA-3. Both the GPU and APU outper-

form the CPU for both SHA versions. We furthered our comparison

of the GPU and the APU by investigating energy consumption. We

found that the APU has superior energy efficiency for SHA-1, but

the total joules for SHA-3 is nearly equivalent between the APU

and GPU because of the longer search time required of the former

architecture. Although the GPU outperformed the APU for SHA-3,

the APU shows promising results and has potential use in other

applications.

Future work includes examining multi-APU scalability within

a single node, where 8×APU can be installed within the 2U form

factor since the APU has a smaller form factor than the A100 GPU.

This may enable the APU to have better single node scalability

than the GPU. Additionally, since we observed that Salted-CPU

achieved near-perfect parallel efficiency on 64 CPU cores, another

direction is to scale the multi-core CPU algorithm across multiple

compute nodes in a cluster. Finally, since Salted-GPU is able to

authenticate a client well under the 𝑇 = 20 s timing threshold, we

can purposefully inject noise into the client’s PUF output, thereby
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increasing the Hamming distance that needs to be searched by the

server, further increasing the level of security afforded by RBC.
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