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Abstract—Outlier detection algorithms are employed across
numerous application domains. In contrast to distance-based out-
lier detection algorithms that compute distances between points,
hypercube-based algorithms reduce computational costs by eval-
uating the density of a point based on its enclosing hypercube. A
major limitation of state-of-the-art hypercube-based algorithms is
that they do not scale to large datasets. This paper proposes GPU
Density-Based Outlier Detection (GDBOD) that is supported by
efficient tree-based hypercube search methods. We propose two
GPU-friendly n-ary tree data structures for efficient hypercube
searches which are optimized to obtain good locality and exploit
the fine-grained parallelism afforded by the GPU. Also, we
propose a data encoding method that compresses data to reduce
the number of comparisons during distinct hypercube array
construction and reorder the coordinates of the input dataset
to enhance neighborhood search performance. Additionally, we
design sequential and multi-core CPU algorithms that can be
employed on systems not equipped with GPUs. Our sequential
CPU algorithm achieves a mean speedup of 18.35× over the
state-of-the-art and our parallel GPU algorithm achieves a mean
speedup of 3.29× over our multi-core CPU algorithm across
6 real-world datasets. With our proposed optimizations on the
GPU, we achieve a peak compute throughput of 86.51%, along
with 92.06% L1 cache hits and 92.94% L2 cache hits.

Index Terms—Data Analytics, GPU, In-memory Databases,
Outlier Detection

I. INTRODUCTION

Outlier detection (OD) finds objects that deviate from the
majority of the other objects in a dataset. OD is used in many
contexts, such as health care, fraud detection, cyber security,
surveillance, sensor networks, data quality and cleaning, time-
series monitoring, and the Internet of Things [1], [2]. Given
the large number of domains that rely on OD, fast and scalable
OD methods are of great importance.

There are two major classes of OD that are described
as follows: (i) distance-based OD [3]; and, (ii) hypercube-
based OD [4], [5]. Distance-based approaches: an outlier is
defined as a point that has a substantial fraction of a dataset
exterior to a search distance around the point [6], or is defined
using properties of its nearest neighbors [7]. Hypercube-based
approaches: an outlier is defined based on each point’s local
density in the data space. To differentiate between the distance-
based approaches above, here we refer to approaches that
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compute the density without relying on distance calculations.
Therefore, these approaches do not perform neighborhood
searches/range queries. This approach is more computationally
efficient than distance-based approaches.

Cabral & Cordeiro [8] proposed HYSORTOD which assigns
data points to hypercubes, which are axis-aligned partitions in
d dimensions. These hypercubes are used to assign each point
a density based on its parent hypercube. In the supervised
context, HYSORTOD outperforms state-of-the-art algorithms
in terms of accuracy; however, the algorithm is limited to
processing small datasets.

To address the small dataset limitation described above,
we propose a GPU-accelerated algorithm, GPU Density-Based
Outlier Detection (GDBOD), that addresses large datasets.
GPUs have architectural features that make them well-suited
for data analytics applications, including OD. GPUs are
equipped with high memory bandwidth and have thousands
of cores which are best exploited for data-parallel algorithms.
Given that the algorithm spends significant time finding ad-
jacent hypercubes — which is clearly a data-parallel task —
it is well-suited to GPU acceleration. To this end, this paper
makes the following contributions.
• We design two GPU-friendly tree-based data structures that

exploit locality that support hypercube searches. The algo-
rithm employs compression on hypercube data and reorders
the coordinates of each data point to increase the probability
of tree traversals short-circuiting during a depth-first search.

• We exploit the GPU’s fine-grained parallelism by having
multiple threads find adjacent hypercubes of a query hyper-
cube. This decreases load imbalance within warps1.

• We also design sequential and parallel multi-core CPU algo-
rithms. We show that the sequential algorithm has superior
performance to the state-of-the-art algorithm [8].

• Our evaluation employs six real-world datasets spanning d ∈
[18, 128] dimensions with 500K–11.6M data points.

Paper organization: Section II outlines the background and
related work. Section III outlines our algorithm (GDBOD).
Section IV presents the experimental evaluation, and Section V
concludes the paper.

1We use CUDA terminology throughout this paper.



II. BACKGROUND

A. Related Work
Distance-based GPU Approaches: OD algorithms aim to
identify anomalies in a given data space. Distance-based algo-
rithms identify outliers by quantifying the distances between
data points. These algorithms identify outliers by assuming
that typical points in the data are close to each other, whereas
outliers are far from the majority. Nevertheless, computing
distances can be resource-intensive, particularly when pro-
cessing large high-dimensional datasets. Example contribu-
tions to GPU distance-based OD include: Angiulli et al. [9]
which proposed a family of parallel distance-based outlier
detection algorithms for the GPU, Matsumoto and Hung [10]
proposed a fast parallel outlier detection in uncertain data, and
HewaNadungodage et al. [11] proposed a GPU algorithm for
outlier detection for continuous data streams.
Hypercube-based CPU Approaches: To mitigate the compu-
tational costs associated with computing distance calculations,
CPU OD algorithms such as HYSORTOD [8], DB-Out [12],
and aLOCI [13] adopt a hypercube-based approach. Despite
eliminating distance calculations, hypercube-based OD still
requires efficient hypercube searches. Neighborhood searches
are data-parallel tasks that are well-suited to GPU architecture.
GPU Tree-based Searches: Canonical data structures for
finding nearby hypercubes to a query hypercube typically
use trees. However, the limitations of GPU tree searches
include limited stack space, branch divergence, and load
imbalance [14]. Also, traversals of tree data structures rely
on GPU task parallelism to process a batch of queries,
which may cause warp divergence as each thread processes
a different traversal [15]. To address the limited stack space
issue, Goldfarb et al. [16] proposed a stackless tree algorithm
using auxiliary pointers that can be applied to all recursive
tree traversals on the GPU. To address warp divergence on the
GPU, the Parallel Scanning and Backtracking (PSB) algorithm
was proposed by Nam et al. [14]. Zhang et al. [17] proposed
the RegTT tree traversal algorithm that reorders queries based
on the truncation history to mitigate load imbalance for
tree traversals on the GPU. Merrill et al. [18] proposed a
parallelization strategy for BFS traversals on the GPU. Our
approach addresses all of these facets of efficient GPU tree
traversals — it employs (i) a stackless traversal algorithm,
(ii) that addresses warp divergence that yields negligible load
imbalance; and, (iii) has excellent locality.

B. State-of-the-art: HySortOD
HYSORTOD proposed by Cabral & Cordeiro [8] is a

hypercube-based OD algorithm for the CPU where data points
are mapped to bounded multi-dimensional regions denoted as
hypercubes. The hypercubes are then sorted based on their
coordinates such that they are positioned near each other in
memory. A tree-based approach is used to calculate the neigh-
borhood density of the hypercubes and then the outlierness
score of each point is calculated where all points within the
same hypercube have the same score. This general outline
applies to GDBOD presented in Section III.

1) Hypercube Construction & Sorting: In a normalized
dataset D having d dimensions, the coordinates of each point
lie in the range [0, 1]. We define a point pi ∈ D as pi =
{x1

i , x
2
i , . . . , x

d
i }. Each point pi in the dataset is mapped to a

d dimensional hypercube hi = {⌊x1
i /l⌋, ⌊x2

i /l⌋, . . . , ⌊xd
i /l⌋}

where l is the length of partition in each dimension. The
length of the partition is determined by the number of bins
b ∈ N>1 where l = 1

b . The constructed hypercubes are stored
in an array H = [h1, h2, ..., h|H|] and the number of points
in each hypercube is stored in an array C = [c1, c2, ..., c|H|]
where Cm is the number of points of a hypercube hm for
m = 1, 2, . . . , |H|. The distinct hypercubes in H are sorted
using lexicographical ordering as a function of increasing
dimensionality to bring the neighboring hypercubes close to
each other in the search space.

2) Neighborhood Search: We define hypercubes using the
notation hi = {h1

i , h
2
i , . . . , h

d
i }, where hi ∈ H . A hypercube

hi is defined as an immediate neighbor of hypercube hj in
the hypercube array H iff |hq

i − hq
j | ≤ 1 where 1 ≤ q ≤ d.

Here, hq
i and hq

j are the coordinate values of dimension q of
hypercube hi and hj , respectively.

The immediate neighbors of a given hypercube hi can be
identified by employing a linear scan to search all the hyper-
cubes in the hypercube array H . To improve performance,
a tree-based structure is leveraged to effectively find the
immediate neighbors of hi by limiting comparisons between
hi and all other hypercubes hj ∈ H .

Every node in the first level of the tree structure stores the
starting and ending indices of a subset of hypercubes in H
that have the same coordinate value in the first dimension.
For each node in the previous level, the next level of the
tree structure is constructed by repeating the same process
until all the dimensions are mapped. A threshold parameter
MinSplit is defined to limit the number of mapped hypercubes,
as the linear scan of hypercubes might be faster than the
tree traversal depending on the data distribution. MinSplit
limits tree depth and node traversal for immediate neighbor
identification without impacting the outlierness score. The tree
nodes are further mapped in subsequent dimensions only if
the number of hypercubes mapped in the current dimension is
at least equal to MinSplit. This parameter reaches a trade-off
between a tree traversal and a scan over H .

3) Neighborhood Density & Outlierness Score: The neigh-
borhood density (wi) of a hypercube hi is defined as the sum
of the number of points of all its immediate neighbors and
is defined as follows: wi =

∑
hm∈N(hi)

Cm. Here, wi is the
neighborhood density of the hypercube hi, and N(hi) is the set
of all immediate neighbors of hypercube hi. The neighborhood
densities of all hypercubes in the hypercube array H are
stored in an array W = [w1, w2, ..., w|H|]. The outlierness
score of a hypercube hi is calculated by normalizing it to
the maximum neighborhood density wmax in W as follows:
Oi(wi, wmax) = 1 − (wi/wmax). Scores approaching zero
indicate an inlier and scores close to one indicate an outlier.



III. GDBOD: GPU DENSITY-BASED OUTLIER
DETECTION

In this section, we describe our proposed GPU algorithms
which include a naive scan-based algorithm (GPU-NAIVE), a
dimensional-level tree-based algorithm (GPU-DL-TREE), and
a locality and traversal revised tree-based algorithm (GPU-
LTR-TREE). As part of each algorithm, we outline various
optimizations for different algorithm components including
hypercube construction and tree traversals. We assume that
the hypercube data can fit within the global memory. We
require less memory because we use hypercubes as references
instead of actual data points to identify outliers. Due to space
constraints, we do not describe our parallel CPU algorithm
that is also evaluated in Section IV. However, the algorithm
descriptions in the subsequent sections can be applied to both
CPU and GPU algorithms, but the implementation details
including GPU optimizations differ significantly.

A. Naive Scan-based Algorithm

The immediate neighbors of a given hypercube hi ∈ H can
be found by scanning through all the hypercubes in hypercube
array H and validating if it meets the criteria for immediate
neighbors described in Section II-B2. In subsequent sections,
we outline the construction of a distinct sorted hypercube array
and naive scan-based algorithm (GPU-NAIVE) to identify the
immediate neighbors of a given hypercube along with its
corresponding GPU optimizations.

1) Hypercube Construction: The dataset D of |D| points
is stored in row-major order where D = [p1, p2, . . . , p|D|].
Hypercube array H is constructed in parallel by computing the
assignment of each point pi ∈ D to its hypercube as described
in Section II-B1. We only store non-empty hypercubes in H
to limit memory consumption. In the following sections, we
describe an optimization technique, referred to as ENCDEC,
that efficiently constructs the distinct hypercube array H .

2) Hypercube Encoding: A hypercube of d dimensions
requires d elements to represent its coordinates. The total
number of elements needed to store indistinct hypercube data
of a dataset D of |D| points is |D| ·d. The number of compar-
isons required to check if a hypercube hi is already present
in the distinct hypercube array H is |H| · d. This operation
is expensive for large datasets, so we use an optimization
that efficiently stores the hypercube data and reduces the
comparisons while removing duplicates using bit shifting.

Algorithm 1 outlines our encoding technique (ENCDEC)
on the GPU where the coordinates of a hypercube are en-
coded using bit shifting to compress the data into fewer data
chunks. Without the loss of generality, we illustrate encoding
and decoding hypercube coordinates using a 64-bit unsigned
integer. Assuming that a coordinate hj

i requires at least k
bits, the length of the array that needs to be allocated to
store the coordinates of d dimensions of a hypercube hi is

Algorithm 1 Encoding Algorithm.
1: procedure ENCODE(k, d, hi, h′)
2: maxCount← ⌈64/k⌉ ▷ Max count per data type.
3: encodeCount← 0, idx← 0
4: for j ∈ 1, 2, . . . , d do
5: if encodeCount = maxCount then
6: idx← idx + 1, encodeCount← 0 ▷ Update counters.
7: end if
8: h′[idx]← h′[idx]≪ k ∨ hj

i ▷ Encode current dimension.
9: end for

10: return h′

11: end procedure

lenc = ⌈64/k⌉. This optimizes memory usage and improves
performance while removing duplicate hypercubes.2

We describe Algorithm 1 as follows: line 2 sets the value
for the maximum number of dimensions per 64-bit unsigned
integer. Within the loop body on line 4, the index of the current
block of the 64-bit unsigned integer is updated to the next
position if the current block is filled. On line 8, the value of
hj
i is encoded into h′[idx] by left shifting the existing value in

h′[idx] by k bits and performing a bitwise OR operation with
hj
i where h′[idx] is the idxth value in encoded hypercube h′.
3) Removing Duplicates and Sorting Hypercubes: The en-

coded hypercube array H ′ is copied from the GPU’s device
memory to the host. On the CPU, an ordered map M is used to
store the encoded hypercube as a key and the array of dataset
points belonging to the hypercube as its corresponding value.
If a hypercube is not present in the map M , a new key-value
pair is appended to the map, otherwise, the array of points in
the hypercube is updated. Usage of an ordered map removes
the duplicates in the hypercube array and the hypercube
array is sorted using the lexicographical order as a function
of increasing dimensionality which brings the neighboring
hypercubes close to each other in memory. Encoding the
hypercube data reduces the number of comparisons required
to check if a hypercube is already present in the map M and is
an effective optimization for datasets with high dimensionality.

4) Decoding the Encoded Hypercube Array: The distinct
encoded hypercube data is copied to a 1-D array H ′ and
is transferred to the device for decoding. On the GPU, the
encoded hypercube array H ′ is decoded in parallel to construct
a distinct hypercube array H .

Our decoding algorithm closely resembles our encoding
technique. Dimension d of an encoded hypercube h′ ∈ H ′

is extracted by performing a bitwise AND operation with k
bits set to 1 on the last block of the encoded hypercube.
Subsequently, the encoded data is right-shifted by k bits to
extract the next dimension, d − 1. This sequential process
continues until all dimensions are extracted. The decoded
hypercube hi is then stored in an array of distinct hypercubes
H = [h1, h2, ..., h|H|]. Figure 1 illustrates the various steps
involved in constructing a distinct sorted hypercube array H
and the architecture in which the construction takes place.

2The coordinates of the dimensions of a hypercube with b = 12 lie within
[0, 12]. The binary representation of the maximum dimension 12 is 1100 and
4 bits are required to store the value of one hypercube coordinate. An unsigned
64-bit integer can store ⌈64/4⌉ = 16 dimensions.
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Fig. 1. Construction of distinct hypercube array H .

Algorithm 2 Tree Construction of GPU-DL-TREE.
1: procedure BUILDTREE(H , T , m, curDim)
2: if curDim > d then return
3: end if
4: dimStart← getDimStart(), dimEnd← getDimEnd()
5: for i ∈ [dimStart, dimEnd] do
6: start← T start

i , end← T end
i ▷ Get start and end.

7: if end− start + 1 ≥ m then
8: val← hcurDim+1

i , childCount← 0
9: for j ∈ [start, end] do

10: if hcurDim+1
j ̸= val then

11: appendNode(Tn, T ) ▷ Append new tree node Tn to T .
12: T start

n ← start, T end
n ← j − 1, T coordinate

n ← val
13: updMap() ▷ Update parent, sibling, and child mapping.
14: start← j, val← hcurDim+1

j ▷ Update start and val.
15: end if
16: end for
17: end if
18: end for
19: buildTree(H , T , m, curDim + 1)
20: return T
21: end procedure

5) Neighborhood Search: In GPU-NAIVE, the neighbor-
hood density of a hypercube hi ∈ H is calculated by
performing a linear scan over all the hypercubes in the distinct
hypercube array H constructed in Section III-A4, validating
if the target hypercube satisfies the definition of an immediate
neighbor, and updating the neighborhood density wi.

B. GPU-DL-TREE

The drawback of the naive approach is that the linear scan is
expensive, especially for large datasets. The time complexity
to identify immediate neighbors for all hypercubes in H is
quadratic, O(|H|2). The number of comparisons to identify
immediate neighbors of a hypercube hi ∈ H can be reduced
by employing a tree-based structure. Throughout the paper, we
reuse the ENCDEC optimization technique for hypercube array
construction described in Section III-A, and we propose a tree-
based approach for the GPU (GPU-DL-TREE) to improve the
performance of the neighborhood search.

1) Tree Construction: In this section, we describe the
construction of a n-ary dimension-wise tree structure (GPU-
DL-TREE), denoted as T , to improve the performance of the
neighborhood search. Each tree node Ti ∈ T is defined by
five attributes: coordinate value (T coordinate

i ), starting index
(T start

i ), and the ending index of the shared coordinate (T end
i ),

sibling index (T sibling
i ), child index (T child

i ), and parent index
(T parent

i ). Here, the parent index in a node points to a tree
node of the prior dimension level from which the current node
is mapped. The child index points to the index of the first
child node mapped from the current node and the sibling index
points to the next node mapped from the same parent.

Algorithm 2 details the construction of GPU-DL-TREE
sequentially on the CPU by mapping hypercubes sharing the
same coordinate in the first dimension and storing them in
an array T . The hypercubes of subsequent dimensions are
recursively mapped based on the starting and ending index of
the coordinate value of each node in the previous dimension
level and are stored contiguously.

Initially, the root node that does not map any coordinate is
appended to the tree array T with the coordinate, starting, and
ending index of the root node as ϕ, 1, and |H|, respectively.
Line 4 in Algorithm 2 store the starting index and the ending
index of the tree nodes belonging to the current dimension in
the tree array T . For each tree node in the current dimension,
line 7 ensures that the number of hypercubes mapped by the
current tree node is at least equal to the threshold parameter
MinSplit (m) for further mapping. The coordinate value of
the next dimension of the hypercubes is scanned within the
starting and ending index of the tree node to identify a change
in the coordinate value. Whenever a change takes place, a new
tree node Tn with the current coordinate value, starting index,
and ending index within which the coordinate value remains
the same is added to the array. The parent and child mapping
is updated between the appended node Tn and the tree node
Tparent from which the current node is mapped. Similarly,
sibling mapping is updated when multiple nodes are mapped
from the same parent node (line 13). The tree is recursively
constructed by appending the nodes of the current level and
reiterating to append the nodes of the next level (line 19).
Illustrative example of the tree: In Figure 2(a), we illustrate a
tree constructed based on the 2-dimensional sorted hypercube
array H = [(0, 0), (0, 1), (1, 1), (2, 0), (2, 1)] using MinSplit
parameter m = 2. The number of hypercubes mapped by the
tree node T2 is 1, which is below the threshold m = 2 and
hence it does not undergo further mapping. Here, for tree node
T1, the parent index is T0, the sibling index is T2 and the child
index is T4. The tree is stored in a 1-D array, T , as shown in
Figure 2(b), where the tree nodes that map the coordinates of
the same dimension are stored together.

2) Tree Traversal: This section outlines the GPU-DL-
TREE traversal constructed in Section III-B1. Tree traversals
occur iteratively on the GPU instead of using recursion due to
limited stack space. The tree traversal is split into three parts:
movement to (i) the child node, (ii) the sibling node, and
(iii) the parent node. We describe the traversal as follows.
1) If the current tree node has a child node, then the current

index is updated to the index of the child node.
2) If the current tree node does not have a child node and

has a sibling node, then the current index is updated to the
index of the sibling node.

3) If the current tree node does not have a child and sibling
node, then the current index is updated to the parent node
until the current node has a sibling node. Then, the current
index is updated to the sibling index of the current node.

4) Steps 1–3 are repeated until the entire tree is traversed.
Figure 2(c) represents the tree traversal starting from root

node T0. Root node T0 has a child node T1 and the current
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Fig. 2. (a) Hypercube tree constructed using dataset D with d = 2 and m = 2. Tree nodes are represented as Ti, dotted lines indicate the tree traversal
while calculating neighborhood density. (b) Tree node positions of GPU-DL-TREE based on (a). (c) Tree traversal on the GPU-DL-TREE based on node
positions in (b). (d) Revised node positions of GPU-LR-TREE based on (a). (e) Tree traversal on GPU-LTR-TREE based on node positions in (d).

Algorithm 3 Neighborhood Search of GPU-DL-TREE.
1: procedure NEIGHBORHOODSEARCH(T , H , hi, W , C, startIdx, curDim)
2: cur ← startIdx, end← T sibling

cur ▷ Set starting and ending indices.
3: while cur ̸= end ∧ cur ̸= ϕ do
4: if Tcur is leaf node then
5: for j ∈ [T start

cur , T end
cur ] do

6: if hiis immediate neighbor of hj then
7: Wi ← Wi + Cj ▷ Update neighborhood density.
8: end if
9: end for

10: end if
11: if T child

cur ̸= ϕ ∧ Tcur is a neighbor of hi then
12: tmp← T child

cur
13: while Ttmp is not a neighbor of hi do
14: tmp← T sibling

tmp

15: end while
16: if tmp ̸= ϕ then
17: cur ← tmp, curDim← curDim + 1
18: else
19: cur ← getNextIndex(T, cur, curDim) ▷ Backtrack.
20: end if
21: else if T sibling

cur ̸= ϕ then ▷ Check if current node has a sibling.
22: cur ← T sibling

cur
23: else
24: cur ← getNextIndex(T, cur, curDim) ▷ Backtrack.
25: end if
26: end while
27: return W
28: end procedure

node pointer moves to the node T1 and moves to node T4 as
T4 is the child of current node T1. The node T4 does not have
a child node but has a sibling node T5, so the current node
pointer moves to node T5. Node T5 does not have a child node
and a sibling node, so it moves back to the parent node T1

and to its sibling node T2. The same steps described above
are repeated until the the entire tree is traversed.

3) Neighborhood Search: The tree T is transferred from
the host to the device for the calculation of the neighborhood
density. Algorithm 3 outlines the neighborhood search used to
calculate the neighborhood density of a hypercube hi on the
GPU. To describe the neighborhood search, we define a tree
node Tk as a neighbor of hl at dimension j if |hj

l − hj
k| ≤ 1

where hk ∈ Tk. While traversing the tree to calculate the
neighborhood density of a hypercube hi, the start index is
set as the index of the root node, and the end index is
set as the sibling index of the starting node (line 2). Also,
we investigate assigning multiple threads to calculate the
neighborhood density of hi (Section III-F).

While traversing the tree for calculating the neighborhood
density of a hypercube hi, if the current node is a leaf node,
the hypercubes mapped within the leaf node are validated if
they are immediate neighbors. If they are, the neighborhood
density of the hypercube hi is updated by adding the number
of points in each hypercube (Algorithm 3, lines 4–7).

In Algorithm 3, on line 11, if the current node Tcur has a
child node Tchild and Tcur is a neighbor of hi, the current
node index is updated with the index of Tchild if Tchild is
also a neighbor of hk to ensure that the child node is also an
immediate neighbor in the current dimension. If Tchild is not a
neighbor of hi, then the sibling nodes of Tchild are traversed to
find a node Tsibling that is a neighbor of hi. Then the current
node index is updated with the index of Tsibling (lines 13–
14). If none of the tree nodes mapped by the node Tcur is
a neighbor of hi, then the current index is updated with the
index of the parent node of Tcur until the parent node Tparent

has a sibling node. The current index is then updated with the
index of the sibling node of Tparent (line 19). If Tcur does not
have a child node or is not a neighbor of hi but has a sibling
node Tsibling (line 21), the steps detailed in Section III-B2 are
followed to traverse the entire tree T .

C. GPU-LR-TREE

Motivation: One of the limitations of the tree traversal de-
scribed in Algorithm 3 is that the memory accesses to the
nodes in the array T may not have good locality due to
branching. The branching on the GPU architecture results in a
loss of parallel efficiency due to the serialization of instructions
in a warp. Another issue with the traversal is that the same
node is accessed multiple times while backtracking to the
parent node. In the subsequent sections, we propose another
tree that addresses possible inefficiencies during tree traversals.

Recall that the nodes in GPU-DL-TREE are arranged in the
tree T as shown in Figure 2(b). To address the drawbacks of
the GPU-DL-TREE, we detail GPU-LR-TREE where nodes
are rearranged without altering the node mapping.

The memory accesses to the nodes during the depth first
search tree traversal described in Algorithm 3 can be optimized
by rearranging the nodes in the array such that the child node
is close to its parent node in memory. This can be achieved
by creating a new tree with the same number of elements



as T and placing the nodes in the new tree T ′ in the same
order as they are accessed in the GPU-DL-TREE using the
same tree traversal described in Section III-B2. The child,
parent, and sibling mapping of the nodes placed in the new
positions is revised by keeping track of the current node T ′cur
and the last visited node T ′old. The following steps describe
the construction of the optimized tree (T ′).
1) If T ′cur is the child of T ′old, update the parent and child

indices of T ′cur and T ′old with the node positions of T ′cur
and T ′old respectively.

2) If T ′cur is the sibling node of T ′old, update the sibling index
of T ′old with the index of T ′cur.

3) While backtracking to the parent node of T ′cur when it
does not have child and sibling nodes, update the parent
mapping of T ′cur with the index of the parent of T ′cur.

4) Repeat steps 1–3 until the whole tree is traversed.
Figure 2(d) shows the node positions of GPU-LR-TREE.

The tree traversal for the neighborhood search procedure in
GPU-LR-TREE is identical to that of GPU-DL-TREE.

D. GPU-LTR-TREE

Another potential issue with the tree traversal defined in
Algorithm 3 is that each node might be accessed multiple times
while backtracking to the parent node which may directly
impact performance, particularly on high dimensional datasets
where the cost of backtracking is high. To ensure that each
node in the tree is accessed only once, the earlier node
structure is revised which removes the need for the parent and
sibling indices in the tree node structure. We denote this new
index as the “break index”. The break index points directly
to the next node during the tree traversal if the current node
does not have a child node. For example, in Figure 2(a), node
T5 does not have a child or sibling node, and hence, the
break index value of T5 is the index of T2 which is the first
sibling node of the parent node of T5. In subsequent sections,
we describe the construction and neighborhood search for the
locality and traversal revised tree (GPU-LTR-TREE).

1) Tree Construction: The GPU-LTR-TREE node posi-
tions are identical to that of GPU-LR-TREE as described
in Section III-C. The construction of the GPU-LTR-TREE,
denoted as T ′′, using the new node structure is achieved by
copying the coordinate value, start index, end index, and child
node values from the old node structure (GPU-LR-TREE)
to the new node structure (GPU-LTR-TREE) following the
previously defined tree traversal described in Section III-B2.
The break index of the nodes of GPU-LTR-TREE T ′′ is
updated as follows:
1) If the current node in T ′′ has a sibling node, then the break

index of current node in T ′′ is the index of the T ′′sibling.
2) If the current node T ′′cur does not have a sibling node, then

the break index of the current node in T ′′ is the break index
of the parent node of the current node in T ′′.

To construct GPU-LTR-TREE, the following tree construc-
tions are required in this order: GPU-DL-TREE (T ) → GPU-
LR-TREE (T ′) → GPU-LTR-TREE (T ′′). Every node in
GPU-LTR-TREE contains a break index that points to the next

available node when the current node does not have a child
node or when the current node does not satisfy the definition of
an immediate neighbor for a hypercube hi. This removes the
need for backtracking to the parent node to find other available
nodes and ensures that each node is visited only once while
traversing the tree during the neighborhood search.

2) Neighborhood Search: We outline the neighborhood
search for GPU-LTR-TREE (T ′′) as follows.
1) If the current node is a leaf node, then the hypercubes

within the node are validated to check if they are the im-
mediate neighbors of hypercube hi and the neighborhood
density wi is updated.

2) If the current node has a child node and is the immediate
neighbor of a target hypercube hi, then the current index
is updated with the index of the child node.

3) If the current node does not have a child node or is not an
immediate neighbor of hi, then the current index is updated
with the index of the break index of the current node.

4) Steps 1–3 are repeated until the whole tree is traversed.
Figure 2(e) shows the traversal of the hypercubes in Fig-

ure 2(a) where each node is accessed once and has improved
locality relative to the tree traversal shown in Figure 2(c).

E. Reordering of Dataset Point Coordinates

GPU-DL-TREE, GPU-LR-TREE, and GPU-LTR-TREE
are constructed based on the coordinates in increasing order
of dimensions 1, 2, . . . , d. However, the performance of the
neighborhood search is sensitive to the order of the dimensions
in the dataset and can be improved by reordering the coordi-
nates of the points based on the variance of the coordinate
values in each dimension [19], [20].3

Consider that dimensions with higher variance imply that
there is significant spread in the data whereas low variance
in a dimension implies that the data are clustered in that
dimension. Thus, if the dimensions with the greatest variance
are located in the first few layers of the tree, then it is more
likely to short circuit early (aborting the search) during the
tree traversal. We exploit this property to short circuit early,
by reordering the coordinates of pi ∈ D from highest to lowest
variance. We refer to reordering the dimensions as REORDER
and NOREORDER when the optimization is disabled.

Using REORDER has better performance relative to NORE-
ORDER due to improved short-circuiting during the tree traver-
sal. However, performance gains are not guaranteed because
the optimization depends on the data distribution of the dataset.
To address this issue, we assess the dataset’s dispersion by
computing the coefficient of variance of the variance of each
of the dimensions and only reorder the dimensions if and only
if there is a high dispersion. The coefficient of variance is
defined as the ratio of the standard deviation of the variance
of the dimensions to the mean variance.

Based on the above, we propose the SELECTIVEREORDER
optimization to selectively reorder the dimensions if the coef-

3For example, consider a d = 3 point pa = {1, 2, 3}. We can swap
dimensions 1 and 3 to obtain pa = {3, 2, 1}. If we swap the dimensions 1
and 3 for all pi ∈ D, then the result of the algorithm is the same.



TABLE I
SUMMARY OF THE ALGORITHMS AND THEIR OPTIMIZATIONS.

Optimization GPU-DL-
TREE

GPU-LR-
TREE

GPU-LTR-
TREE

GPU-NAIVE

Locality ✗(Sec. III-B1) ✓(Sec. III-C) ✓(Sec. III-D1) N/A
Traversal ✗(Sec. III-B2) ✗(Sec. III-C) ✓(Sec. III-D2) N/A
Fine-Grained Parallelism ✓(Sec. III-F) ✓(Sec. III-F) ✓(Sec. III-F) ✓(Sec. III-F)
SELECTIVEREORDER ✓(Sec. III-E) ✓(Sec. III-E) ✓(Sec. III-E) ✓(Sec. III-E)

ficient of variance reaches a threshold c. A higher coefficient
of variance implies that the dispersion of the variance of
dimensions in the dataset is high which directly correlates to
greater performance gains due to the REORDER optimization.
We will compare the performance of the NOREORDER and
REORDER optimization techniques, and show c can be selected
using empirical results.

F. Fine-Grained Parallelism for the GPU

There is an opportunity to increase fine-grained parallelism
during neighborhood searches for the GPU approaches GPU-
NAIVE and the GPU trees (GPU-DL-TREE, GPU-LR-TREE,
and GPU-LTR-TREE). The baseline GPU-NAIVE and GPU
trees above use a total of |H| GPU threads to identify the
immediate neighbors of hi ∈ H . To saturate GPU resources
(compute cores), it is critical that we create additional threads,
particularly if the number of hypercubes |H| is small. We
employ additional threads for the algorithms as follows:
GPU-NAIVE: For a given hypercube search, we assign
multiple threads (t) to perform a linear scan over a subset
of H , where each thread computes |H|/t elements.
GPU trees: Similarly, we allocate multiple threads (t) to each
hypercube being searched (hi) to traverse the tree. The number
of threads, t, is based on the number of tree nodes in the first
dimension of the tree. Typically, t = b for real-world datasets.

G. Summary

Table I summarizes the proposed algorithms, their optimiza-
tions, and corresponding sections in the paper. We compare
two data structures for hypercube searches: GPU-DL-TREE
and GPU-LTR-TREE. Tree nodes in GPU-DL-TREE are
stored such that those with the same dimension are close to
each other in memory. In contrast, the nodes in GPU-LTR-
TREE are reordered such that the child node is closer to the
parent node. This allows comparing different traversal patterns
and their impact on performance.

IV. EXPERIMENTAL EVALUATION

A. Experimental Methodology

Table II outlines the hardware platforms that we employ.
All host and device code is compiled with g++ and CUDA
v 12.2, respectively, and uses the O3 compiler optimization
flag. To understand the effects of different GPUs on the
performance of our algorithms we use the GPUs shown in
PLATFORMA (A100) and PLATFORMB (Quadro RTX 5000)
which are datacenter- and consumer-grade GPUs, respectively.
Other details can be found in Table II. All parallel CPU
experiments are executed on PLATFORMA (using OpenMP).

TABLE II
THE PLATFORMS USED IN OUR EXPERIMENTAL EVALUATION.

PLATFORMA CONTAINS A DATACENTER-GRADE GPU AND PLATFORMB
CONTAINS A CONSUMER-GRADE GPU.

Platform Model Total
Cores

Clock
(GHz)

Main/
Global Memory

CPU
PLATFORMA 2×AMD Epyc 7542 64 2.9 512 GiB
PLATFORMB Intel W-2295 18 3.0 256 GiB

GPU
PLATFORMA A100 6912 1.4 40 GiB
PLATFORMB Quadro RTX 5000 3072 1.8 16 GiB

TABLE III
DATASETS USED IN THE

EXPERIMENTAL EVALUATION
ORDERED BY DIMENSIONALITY,
d.THE DATASET SIZE IS |D|.

Dataset d |D|
SuSy 18 5,000,000
Hepmass 27 10,500,000
Higgs 28 11,000,000
BigCross 57 11,620,300
MSD 90 515,345
Sift 128 10,000,000

The time needed to load the dataset is excluded in all experi-
ments. All other time components, including tree construction,
data transfer between host and GPU, and optimizations are
included in the response time. Due to significant response
times on the CPU, we impose a time limit of 16 hours for all
experiments. We benchmark the algorithms using unsupervised
mode without computing AUC scores because the datasets in
Table III do not have class labels. The time to compute the
AUC score is negligible and thus does not affect our results.
The source code for GDBOD is publicly available.4

B. Datasets

We use the real-world datasets listed in Table III, containing
500K–11.6M data points with 18–128 dimensions.5 We do
not use the labeled datasets used in the accuracy evaluation
of the HySortOD [8] as they are too small to evaluate the
performance of our GPU algorithms. However, we compare
the performance of the HySortOD [8] implementation and our
sequential CPU-LTR-TREE in Section IV-J.

C. Reference Implementations

We outline all of the implementations and their parameters
and select good values for the parameters in Section IV-E.
GPU-NAIVE: The naive GPU algorithm uses t · |H| threads
and 256 threads per block for the neighborhood search where
t is the number of search space divisions (Section III-F).
GPU Trees: The GPU-DL-TREE and GPU-LTR-TREE use
t · |H| threads and 256 threads per block for the neighborhood
search, where t is the tree node count in the first level.
CPU-NAIVE: CPU-NAIVE is the multi-core naive CPU im-
plementation using 64 threads/cores on PLATFORMA.
CPU Trees: CPU-DL-TREE and CPU-LTR-TREE are multi-
core tree-based CPU implementations on PLATFORMA.6

4https://github.com/revanthmunugala/GDBOD
5All datasets except BigCross [21] are from the UCI Machine Learning

Repository (https://archive.ics.uci.edu/).
6Averaging the speedup across all datasets, using 64 CPU cores compared

to 1 core (sequential execution), we observe an average speedup of 19.04×
for CPU-DL-TREE and an average speedup of 17.40× for CPU-LTR-TREE.



TABLE IV
SELECTED PARAMETER VALUES FOR GPU AND CPU ALGORITHMS.

Algorithm c Bin (b) MinSplit
(m) Threads Per Search (t)

GPU-DL-TREE 60 7 20 Num. nodes in the first level
GPU-LTR-TREE 60 7 20 Num. nodes in the first level
CPU-DL-TREE 60 7 80 Num. nodes in the first level
CPU-LTR-TREE 60 7 40 Num. nodes in the first level
GPU-NAIVE 60 7 N/A 2
HYSORTOD N/A 5 100 1

TABLE V
THE RESPONSE TIME (S) OF GPU-DL-TREE AND GPU-LTR-TREE WITH
m = 0 AND b = 7 ON PLATFORMA USING REORDER AND NOREORDER

OPTIMIZATIONS. THE HORIZONTAL DASHED LINE DEMARCATES THE
COEFFICIENT OF VARIANCE THAT DETERMINES THE THRESHOLD, c.

NOREORDER REORDER
Dataset Coefficient of

Variance (%)
GPU-DL-

TREE
GPU-LTR-

TREE
GPU-DL-

TREE
GPU-LTR-

TREE
Sift 20.38 954.16 442.24 3102.50 2993.02
MSD 54.60 900.90 191.42 979.69 210.85
Hepmass 57.67 134.93 92.82 104.65 100.37
BigCross 75.39 47.29 20.86 20.70 13.91
Higgs 87.76 79.90 61.77 70.14 65.69
SuSy 89.60 7.62 7.36 8.43 7.34

D. Number of Bins (b) vs. AUC Quality Score

The number of hypercubes in H is directly proportional to
the number of bins (b) and has a direct effect on the quality
of the produced outlierness scores. A higher value of b might
lead to identifying all points as outliers whereas a lower value
of b might lead to identifying all points as inliers. To strike a
balance, we analyzed the AUC scores on the labeled datasets
used in Cabral & Cordeiro [8] as a function of b to find an
acceptable range of b with consistent quality. We observe that
the AUC score remains consistent for b ∈ [4, 7] across all
datasets. We use this range to identify a good value of b for
performance purposes in Section IV-E2.

E. Parameter Selection and Tuning

We describe parameter selection for our algorithms. We will
use the same parameters throughout our experimental evalua-
tion to compare the performance of our algorithms. We use the
ENCDEC for hypercube construction in all parameter tuning
experiments. Our algorithm has the following parameters and
the selected values are summarized in Table IV.
• SELECTIVEREORDER parameter (c) - c is used in our SE-

LECTIVEREORDER optimization to find a trade-off between
the NOREORDER and REORDER optimizations.

• The number of bins (b) - The value of b is proportional to
|H|. A lower value of b may enhance performance but may
degrade outlierness score quality for each hypercube.

• MinSplit (m) - m is used to prune the tree and limit
exhaustive tree traversals during neighborhood searches.

• Threads per hypercube (t) - t refers to the number of
divisions in the search space for GPU-NAIVE.
1) SELECTIVEREORDER Parameter (c): As described in

Section III-E, the REORDER optimization may not always
yield performance gains. Table V illustrates the performance of
GPU-DL-TREE and GPU-LTR-TREE with the NOREORDER
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Fig. 3. The response time (s) is plotted on a log scale with m = 0 and
b ∈ [4, 7] for GPU-LTR-TREE executed on PLATFORMA across all datasets.

and REORDER optimizations using m = 0 and b = 7.
m = 0 refers to the complete tree whereas b = 7 is
the maximum value of b within the acceptable range of b
for AUC scores (Section IV-D). We observe that for GPU-
LTR-TREE, using the NOREORDER optimization outperforms
the REORDER optimization for datasets with a coefficient of
variance less than 60%. Similar behavior is observed for GPU-
DL-TREE except for Hepmass where using NOREORDER
degrades performance. Based on these observations, we use
c = 60% for the SELECTIVEREORDER optimization that
enables REORDER only when the coefficient of variance is
at least equal to the threshold coefficient of variance (c).

2) The number of bins (b): The bin parameter (b) affects the
number of threads assigned to each hypercube as described in
Section III-F during the neighborhood search. In Section IV-D,
we observed that the AUC score is consistent in the range
b = 4−7 across all datasets. Within this range, we compare the
performance of each b using our GPU-DL-TREE and GPU-
LTR-TREE to find a good value of b for performance purposes
without affecting the quality of the outlierness score. Figure 3
plots the response times across all datasets on a log scale for
GPU-LTR-TREE, with m = 0 and b ∈ [4, 7]. We observe that
b = 4 yields the best performance for SuSy and MSD, b = 5
performs best for BigCross, while b = 7 outperforms other b
parameters for Higgs, Hepmass, and Sift. We observe similar
behavior for GPU-DL-TREE. Thus, in all that follows, we use
b = 7 for GPU-DL-TREE and GPU-LTR-TREE.

3) MinSplit Parameter (m): We compare the performance
of the GPU trees by varying the value of m where m ∈ [0, 100]
to identify a value that maximizes performance. Figure 4
illustrates the normalized execution time for all datasets for
GPU-DL-TREE and GPU-LTR-TREE, respectively. We ob-
serve that m = 20 has the best performance for all the datasets
for GPU-DL-TREE and GPU-LTR-TREE. In all subsequent
experiments, we use m = 20 for both GPU trees.

4) Threads per hypercube (t): GPU-NAIVE: Recall that
GPU-NAIVE scans H to find the immediate neighbors for a
given hypercube hi. The baseline uses 1 thread per hypercube,
creating a total of |H| threads. We increase the total number
of threads by assigning t threads to perform a parallel scan
for H for each hi ∈ H , where H is partitioned into |H|/t
divisions (Section III-F). We observe that t = 2 outperforms
other t values across most datasets. Higher values of t en-
hance parallelization but also introduce additional overhead
impacting performance. Hence, we employ t = 2 in all future
experiments using GPU-NAIVE. GPU trees: Similar to GPU-
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Fig. 4. Normalized response time on PLATFORMA, as a function of m across
all datasets for (a) GPU-DL-TREE, and (b) GPU-LTR-TREE.
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Fig. 5. The response time (s) for constructing H using our NOENCDEC and
ENCDEC optimizations on the GPU on PLATFORMA.

NAIVE, multiple threads (t) are allocated for the neighborhood
search of a given query hypercube. Here, the value of t is data-
dependent and equals the number of nodes in the first level.

5) CPU Trees: Parameter tuning for the GPU was described
above. We employ the same methodology for the CPU and
select the parameters summarized in Table IV.

F. Hypercube Construction: Encoding

In Sections III-A2–III-A4, we described the construction of
a distinct hypercube array H on the GPU. In this section, we
compare the performance of NOENCDEC which constructs H
entirely on the CPU without encoding.

Figure 5 plots the response time for hypercube construction
on the GPU. We observe that the ENCDEC optimization
outperforms the default, NOENCDEC, across all datasets.
A speedup of 1.94× for the GPU is observed on average
across all datasets. This confirms that the performance gains
resulting from encoding and decoding outweigh the overhead
costs associated with additional operations and transfer costs
between CPU and GPU in our GPU implementation. We notice
a similar performance improvement in our CPU algorithm for
ENCDEC, which we omit due to space limitations. We use
ENCDEC in all our experimental results for both GPU and
CPU algorithms in subsequent sections.

G. Comparison of Tree Methods

We observe that DL-TREE and LTR-TREE have similar
performance across most datasets on the CPU, as shown in

TABLE VI
THE RESPONSE TIME (S) OF GPU-DL-TREE VS. GPU-LTR-TREE USING
m = 20 AND b = 7 ON PLATFORMA ALONG WITH THE PERFORMANCE OF

PARALLEL CPU-DL-TREE VS. CPU-LTR-TREE USING b = 7 AND
m = 80 AND m = 40, RESPECTIVELY.

Dataset PLATFORMA (GPU) PLATFORMA (CPU)
GPU-

DL-TREE
GPU-

LTR-TREE
CPU-

DL-TREE
CPU-

LTR-TREE
SuSy 6.49 6.47 6.75 7.78
Hepmass 93.00 89.26 523.83 561.00
Higgs 30.65 29.93 41.66 39.92
BigCross 8.14 7.94 14.93 14.73
MSD 95.05 74.16 276.03 262.72
Sift 408.52 405.16 1911.97 2246.83

TABLE VII
THE MEAN NEIGHBORHOOD DENSITY FOR DATASETS LISTED IN TABLE III

USING m = 20 AND b = 7. THE MEAN NEIGHBORHOOD DENSITY AS A
FRACTION OF THE TOTAL DISTINCT HYPERCUBES ARE IN PARENTHESIS.

Dataset
Dataset

Size
|D|

Distinct
Hypercubes
|H|

Mean Neighborhood
Density
M

Data
Distribution
(M/|H|)

SuSy 5,000,000 900,926 16,562 Sparse (1.838%)
Hepmass 10,500,000 10,499,723 216 Sparse (0.002%)
Higgs 11,000,000 10,680,406 283 Sparse (0.002%)
BigCross 11,620,300 1,538,368 14,674 Sparse (0.953%)
MSD 515,345 424,292 383,415 Dense (90.365%)
Sift 10,000,000 9,981,970 118 Sparse (0.001%)

Table VI. Focusing on the GPU, we compare the performance
of GPU-DL-TREE and GPU-LTR-TREE to understand the
impact of locality during neighborhood searches and tree
traversals, as well as how data distribution affects performance.
We hypothesize that the GPU-LTR-TREE characteristic of
accessing each node only once and having improved memory
access during neighborhood searches will likely yield better
performance over GPU-DL-TREE.

Table VI shows the performance of the trees described
above. Key observations are as follows: (i) GPU-LTR-TREE
outperforms GPU-DL-TREE across all datasets. (ii) We ob-
serve an average speedup of 2.91× for GPU-DL-TREE over
CPU-DL-TREE and 3.29× for GPU-LTR-TREE over CPU-
LTR-TREE. Thus, GPU algorithms are significantly faster
than the corresponding multi-core CPU algorithms, and the
proposed locality and traversal optimizations confirm our hy-
pothesis that GPU-LTR-TREE outperforms GPU-DL-TREE.

The performance difference between DL-TREE and LTR-
TREE is minimal on both GPU and multi-core implemen-
tations primarily to the SELECTIVEREORDER optimization,
which increases the likelihood of short-circuiting and the fine-
grained parallelism optimization where t threads are employed
to identify the neighbors of a query hypercube hq ∈ H .
However, as described in the next subsection, the GPU-LTR-
TREE is more robust to differing data distributions.

H. Impact of Data Distribution on Tree Methods

Table VII shows the mean neighborhood density per hyper-
cube. We define the mean neighborhood density per hypercube
as M = (

∑
wi∈W wi)/|H|. We observe that Higgs, BigCross,

SuSy, Sift, and Hepmass have sparse distributions because
M/|H| ≈ 0 whereas only MSD has a dense distribution.



TABLE VIII
THE RESPONSE TIME (S) OF GPU-NAIVE WITH t = 2 AND

GPU-LTR-TREE WITH m = 20 AND b = 7 ON PLATFORMA. SPEEDUP IS
THE RATIO OF THE RESPONSE TIME OF GPU-NAIVE TO GPU-LTR-TREE.

Dataset GPU-NAIVE GPU-LTR-TREE Speedup
SuSy 9.47 6.47 1.46×
Hepmass 846.12 89.26 9.48×
Higgs 725.02 29.93 24.22×
BigCross 32.62 7.94 4.11×
MSD 47.45 74.16 0.64×
Sift 2,909.39 405.16 7.18×
Average Speedup 7.85×

Recall that the nodes in the GPU-DL-TREE are arranged such
that the sibling nodes (same dimension nodes) are close to
each other (Section III-B1). This organization is advantageous
for the five datasets above that have sparse data distributions
where short-circuiting is more prevalent than the dense dataset
(MSD). For sparse distributions, GPU-DL-TREE has better
locality than GPU-LTR-TREE as movement to the sibling
node is preferred than moving to the child node. Even in
these cases, GPU-LTR-TREE performs better than GPU-DL-
TREE due to tree traversal optimizations during neighborhood
searches. In summary, the performance advantage of GPU-
LTR-TREE is that it is robust to a wider range of data
distributions (sparse and dense) than the other tree methods.

I. GPU-NAIVE vs. GPU-LTR-TREE

Having established that GPU-LTR-TREE exhibits better
performance than GPU-DL-TREE (Section IV-G), we com-
pare the performance of GPU-LTR-TREE relative to GPU-
NAIVE to determine how well the tree outperforms a brute
force search. Table VIII illustrates the performance between
GPU-NAIVE and GPU-LTR-TREE on PLATFORMA. We use
t = 2 for GPU-NAIVE implementation and m = 20 and
b = 7 for GPU-LTR-TREE. We observe that GPU-LTR-
TREE outperforms GPU-NAIVE across all datasets except
MSD. GPU-LTR-TREE exhibits an average speedup of 7.85×
relative to GPU-NAIVE across all datasets. It is clear that
that GPU-LTR-TREE is more effective than GPU-NAIVE for
neighborhood searches on large datasets.

J. Comparison with the State-of-the-art

To make a fair comparison to HYSORTOD, we compare
to our sequential CPU-LTR-TREE algorithm (without multi-
threading), where we set b = 7 for both algorithms.7 As
outlined in Cabral & Cordeiro [8], we use the MinSplit
parameter of m = 100 for HYSORTOD. For CPU-LTR-
TREE we set m = 40. Table IX presents the total response
time and speedup of CPU-LTR-TREE relative to HYSOR-
TOD. CPU-LTR-TREE outperforms HYSORTOD across all
datasets, achieving an average speedup of 18.35×. This shows
that our algorithm designs are superior to HYSORTOD even
for execution on a single CPU core. We also show that
GPU-LTR-TREE achieves a mean speedup of 436.31× over
HYSORTOD. While this is not a fair comparison, it shows
that GDBOD is scalable to large datasets.

7The source code of HYSORTOD is at https://github.com/eug/hysortod.java.

TABLE IX
THE RESPONSE TIME (S) AND SPEEDUP OF HYSORTOD, SEQUENTIAL

CPU-LTR-TREE, AND GPU-LTR-TREE USING b = 7, m = 100, m = 40,
AND m = 20 RESPECTIVELY ON PLATFORMA.

Dataset HYSORTOD CPU-LTR-TREE GPU-LTR-TREE
SuSy 238.71 68.61 (3.48×) 6.47 (36.89×)
Hepmass 49,918.44 14,987.76 (3.33×) 89.26 (559.25×)
Higgs 37,537.13 565.53 (66.38×) 29.93 (1254.16×)
BigCross 1,596.23 118.17 (13.51×) 7.94 (201.04×)
MSD 31,469.97 6,257.81 (5.03×) 74.16 (424.35×)
Sift TIME OUT TIME OUT (N/A) 405.16 (≥142.17×)
Average Speedup 18.35× 436.31×
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TABLE X
AVERAGED NVIDIA NSIGHT COMPUTE PROFILER STATISTICS ON

PLATFORMA AND PLATFORMB. NEIGHBORHOOD SEARCH ON
GPU-LTR-TREE IS COMPARED WITHOUT AND WITH ALL OPTIMIZATIONS

ENABLED (SELECTIVEREORDER AND MULTITHREADS) ON THE SuSy,
Higgs, AND BigCross DATASETS USING PARAMETERS m = 20 AND b = 7.

Platform &
Optimization Reg. Per

Thread
Th.

Occup.
Ach.

Occup.
L1 Hits L2 Hits Comp.

Through-
put

Branch
Effi-

ciency
PLATFORMA (no opt.) 31 100% 75.69% 84.67% 71.88% 46.74% 88.36%
PLATFORMA (all opt.) 32 100% 81.85% 92.06% 92.94% 86.51% 94.35%
PLATFORMB (no opt.) 30 100% 54.17% 78.90% 58.78% 18.21% 88.36%
PLATFORMB (all opt.) 30 100% 78.91% 89.44% 84.47% 50.36% 94.35%

K. Time Distribution Analysis

Figure 6 shows the time distribution of the components of
GDBOD using m = 20. We focus on the neighborhood den-
sity and hypercube construction components of the algorithm
as they require the greatest fraction of the time. The time
distribution across datasets is similar for both GPU-DL-TREE
and GPU-LTR-TREE so we examine GPU-LTR-TREE. We
find that the neighborhood density and hypercube construction
are parallelized on the GPU and account for 48.09% and
42.98% of the total execution time on average across all
datasets. The reason Higgs, SuSy, BigCross require a larger
fraction of the total time for hypercube construction is that the
neighborhood density procedure short circuits more on these
datasets due to their sparse data distributions. This emphasizes
the fraction of time performing hypercube construction; recall
from Table VI that the response time on these datasets is lower
than MSD, Hepmass, and Sift.



L. Datacenter vs. Consumer-grade GPUs

We compare the performance metrics of the neighborhood
search on GPU-LTR-TREE using Nvidia Nsight Compute
profiler with the MULTITHREADS and SELECTIVEREORDER
optimizations to when these optimizations are disabled. We
also compare these results between PLATFORMA and PLAT-
FORMB to examine how the performance of GPU-LTR-TREE
may differ between the two GPU models. We illustrate the
results on the SuSy, Higgs, and BigCross datasets, as the
profiler fails to collect the metrics on the other datasets.

Based on the metrics outlined in Table X, the theoretical
occupancy of the kernels is 100% on both platforms indicating
that there are sufficient threads to saturate the SMs and so
the number of registers per thread does not limit performance.
Comparing the achieved occupancy on both platforms, we find
that GPU-LTR-TREE benefits from the optimizations (i.e.,
75.69% increases to 81.85% on PLATFORMA and 54.17%
increases to 78.91% on PLATFORMB).

Recall that good locality increases the likelihood that the
data needed by a thread is already in the cache, leading to
fewer expensive accesses to global memory. We find that on
PLATFORMA, the L1 and L2 cache hit rates are very high,
with a minimum L1 and L2 cache hit rate of 84.67% and
71.88%, respectively. Examining GPU-LTR-TREE with all
optimizations enabled, we observe that the compute through-
put is exceptionally high, achieving 86.51%, indicating that the
implementations are able to use most of the compute capacity
and this is clearly due to the high L1 and L2 cache hit rates.
The Quadro RTX 5000 has lower L1 and L2 cache hit rates
than the A100 because it has smaller caches (e.g., the L2
cache on the Quadro RTX 5000 is 4 MiB compared to 40
MiB on the A100). Thus, the compute throughput is lower on
PLATFORMB due to memory stalls.

Recall that branching on the GPU architecture results in
a loss of parallel efficiency due to warp serialization (Sec-
tion III-C). We observe that the branch efficiency is exception-
ally high, achieving up to 94.35% on both PLATFORMA and
PLATFORMB. This indicates that, in most cases, the threads
within the warp follow a uniform execution path mitigating
the branch divergence during neighborhood searches.

In summary, the experiments illustrate that the traversal and
locality properties of GPU-LTR-TREE are well optimized.

V. DISCUSSION & CONCLUSIONS

In this paper, we present GDBOD and compared the
performance of two tree-based variants of the algorithm and
found that the locality and traversal properties of GPU-
LTR-TREE outperformed GPU-DL-TREE. In particular, tree
traversals on the GPU typically yield uncoalesced memory
accesses and thus poor locality, and instruction serialization
due to branching as a consequence of the SIMT architecture.
Despite these challenges with our proposed optimizations on
the GPU, we achieve a peak compute throughput of 86.51%,
along with 92.06% L1 cache hits and 92.94% L2 cache hits on
real-world datasets. For systems without GPUs, our sequential
CPU algorithm achieves an average speedup of 18.35× when

compared to HYSORTOD. Under practical time constraints,
the GPU algorithm allows for scaling to much larger datasets
or those with higher dimensionality than prior work.
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[21] M. R. Ackermann, M. Märtens, C. Raupach, K. Swierkot, C. Lam-
mersen, and C. Sohler, “Streamkm++: A clustering algorithm for data
streams,” ACM J. Exp. Algorithmics, vol. 17, may 2012.


